
Programming Fundamentals

Programming
Fundamentals

A Modular Structured Approach, 2nd
Edition

DAVE BRAUNSCHWEIG AND
KENNETH LEROY BUSBEE

Programming Fundamentals by Authors and Contributors is licensed under a
Creative Commons Attribution-ShareAlike 4.0 International License, except
where otherwise noted.

Creative Commons Attribution CC-BY License

You are free to:

• Share — copy and redistribute the material in any medium
or format

• Adapt — remix, transform, and build upon the material for
any purpose, even commercially.

Under the following terms:

• Attribution — You must give appropriate credit, provide a
link to the license, and indicate if changes were made. You
may do so in any reasonable manner, but not in any way
that suggests the licensor endorses you or your use.

• No additional restrictions — You may not apply legal terms
or technological measures that legally restrict others from
doing anything the license permits.

See https://creativecommons.org/licenses/by/4.0/ for more
information.

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by/4.0/

Contents

Contents xv

About this Book 1

Author Acknowledgements 5

Chapter I. Introduction to
Programming

Systems Development Life Cycle

Kenneth Leroy Busbee

11

Program Design

Kenneth Leroy Busbee

14

Program Quality

Dave Braunschweig

17

Pseudocode

Kenneth Leroy Busbee

20

Flowcharts

Kenneth Leroy Busbee

23

Software Testing

Kenneth Leroy Busbee

38

Integrated Development Environment

Kenneth Leroy Busbee

42

Version Control

Dave Braunschweig

49

Input and Output

Kenneth Leroy Busbee

54

Hello World

Dave Braunschweig

57

C++ Examples

Dave Braunschweig

61

C# Examples

Dave Braunschweig

64

Java Examples

Dave Braunschweig

68

JavaScript Examples

Dave Braunschweig

72

Python Examples

Dave Braunschweig

77

Swift Examples

Dave Braunschweig

80

Practice: Introduction to Programming 83

Chapter II. Data and Operators

Constants and Variables 89

Identifier Names 93

Data Types 97

Integer Data Type 103

Floating-Point Data Type 106

String Data Type 110

Boolean Data Type 113

Nothing Data Type

Dave Braunschweig

115

Order of Operations 117

Assignment

Kenneth Leroy Busbee

121

Arithmetic Operators 123

Integer Division and Modulus

Kenneth Leroy Busbee

129

Unary Operations

Kenneth Leroy Busbee

133

Lvalue and Rvalue

Kenneth Leroy Busbee

137

Data Type Conversions 140

Input-Process-Output Model

Dave Braunschweig

145

C++ Examples

Dave Braunschweig

150

C# Examples

Dave Braunschweig

155

Java Examples

Dave Braunschweig

160

JavaScript Examples

Dave Braunschweig

165

Python Examples

Dave Braunschweig

171

Swift Examples

Dave Braunschweig

175

Practice: Data and Operators 179

Chapter III. Functions

Modular Programming 185

Hierarchy or Structure Chart

Kenneth Leroy Busbee

191

Function Examples

Dave Braunschweig

193

Parameters and Arguments

Dave Braunschweig

198

Call by Value vs. Call by Reference

Dave Braunschweig

201

Return Statement

Dave Braunschweig and Kenneth Leroy
Busbee

205

Void Data Type 208

Scope

Kenneth Leroy Busbee

210

Programming Style 213

Standard Libraries 219

Program Plan 223

C++ Examples

Dave Braunschweig

225

C# Examples

Dave Braunschweig

227

Java Examples

Dave Braunschweig

229

JavaScript Examples

Dave Braunschweig

231

Python Examples

Dave Braunschweig

234

Swift Examples

Dave Braunschweig

236

Practice: Functions 238

Chapter IV. Conditions

Structured Programming 245

Selection Control Structures 249

If Then Else

Kenneth Leroy Busbee

252

Code Blocks 256

Relational Operators

Kenneth Leroy Busbee

260

Assignment vs Equality

Kenneth Leroy Busbee

263

Logical Operators 266

Nested If Then Else

Kenneth Leroy Busbee

272

Case Control Structure

Kenneth Leroy Busbee

275

Program Plan 281

Condition Examples

Dave Braunschweig

284

C++ Examples

Dave Braunschweig

289

C# Examples

Dave Braunschweig

293

Java Examples

Dave Braunschweig

297

JavaScript Examples

Dave Braunschweig

301

Python Examples

Dave Braunschweig

306

Swift Examples

Dave Braunschweig

309

Practice: Conditions

Kenneth Leroy Busbee

313

Chapter V. Loops

Iteration Control Structures 321

While Loop

Kenneth Leroy Busbee

323

Do While Loop 331

Flag Concept

Kenneth Leroy Busbee

338

For Loop

Kenneth Leroy Busbee

342

Branching Statements

Kenneth Leroy Busbee

346

Increment and Decrement Operators

Kenneth Leroy Busbee

350

Integer Overflow

Kenneth Leroy Busbee

355

Nested For Loops

Kenneth Leroy Busbee

359

Program Plan 362

Loop Examples

Dave Braunschweig

365

C++ Examples

Dave Braunschweig

369

C# Examples

Dave Braunschweig

372

Java Examples

Dave Braunschweig

375

JavaScript Examples

Dave Braunschweig

378

Python Examples

Dave Braunschweig

382

Swift Examples

Dave Braunschweig

385

Practice: Loops

Kenneth Leroy Busbee

388

Chapter VI. Arrays

Arrays and Lists 397

Index Notation 401

Displaying Array Members 405

Arrays and Functions 408

Math Statistics with Arrays 411

Searching Arrays 414

Sorting Arrays 417

Parallel Arrays

Dave Braunschweig

419

Multidimensional Arrays

Kenneth Leroy Busbee

422

Fixed and Dynamic Arrays

Dave Braunschweig

425

Program Plan 428

C++ Examples

Dave Braunschweig

433

C# Examples

Dave Braunschweig

438

Java Examples

Dave Braunschweig

444

JavaScript Examples

Dave Braunschweig

449

Python Examples

Dave Braunschweig

454

Swift Examples

Dave Braunschweig

459

Practice: Arrays

Kenneth Leroy Busbee

463

Chapter VII. Strings and Files

Strings 469

String Functions

Dave Braunschweig

472

String Formatting 475

File Input and Output

Kenneth Leroy Busbee

478

Loading an Array from a Text File 484

Program Plan 488

C++ Examples

Dave Braunschweig

490

C# Examples

Dave Braunschweig

494

Java Examples

Dave Braunschweig

498

JavaScript Examples

Dave Braunschweig

501

Python Examples

Dave Braunschweig

505

Swift Examples

Dave Braunschweig

508

Practice: Strings and Files

Kenneth Leroy Busbee

512

Exception Handling 517

Chapter VIII. Object-Oriented
Programming

Objects and Classes

Dave Braunschweig

523

Encapsulation

Dave Braunschweig

527

Inheritance and Polymorphism

Dave Braunschweig

531

C++ Examples

Dave Braunschweig

534

C# Examples

Dave Braunschweig

537

Java Examples

Dave Braunschweig

541

JavaScript Examples

Dave Braunschweig

544

Python Examples

Dave Braunschweig

548

Swift Examples

Dave Braunschweig

551

Practice

Kenneth Leroy Busbee

555

Contents

Chapters

• Preface
• Introduction to Programming
• Data and Operators
• Functions
• Conditions
• Loops
• Arrays
• Strings and Files
• Object-Oriented Programming

Contents | xv

About this Book

A Note to Readers

Welcome to Programming Fundamentals – A
Modular Structured Approach, 2nd Edition!

The original content for this book was created by
Kenneth Leroy Busbee and written specifically for
his course based on C++. The goal for this second
edition is to make it programming-language
neutral, so that it may serve as an introductory
programming textbook for students using any of a
variety of programming languages, including C++,
C#, Java, JavaScript, Python, and Swift. Other
languages will be considered upon request.

Programming concepts are introduced generically,
with logic demonstrated in pseudocode and
flowchart form, followed by examples for different
programming languages. Emphasis is placed on a
modular, structured approach that supports reuse,
maintenance, and self-documenting code.

As you begin to review this edition, please keep the
audience in mind. If something is missing, think
about whether that concept applies to
programming in general or only to certain
programming languages, and whether it is a

About this Book | 1

fundamental, first-semester programming concept
or something better addressed in a more advanced
textbook.

You are encouraged to make use of the Comments
page at the end of the book whenever you have
suggestions or concerns regarding content or
approach. All suggestions will be reviewed and
considered.

Dave Braunschweig

About this Textbook

Programming Fundamentals – A Modular Structured
Approach, 2nd Edition is an adaptation of “Programming
Fundamentals – A Modular Structured Approach using C++“,
written by Kenneth Leroy Busbee, a faculty member at
Houston Community College in Houston, Texas. The materials
used in the first edition were originally developed by Busbee
and others as independent modules for publication within the
Connexions environment. The original source is available
at https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17/.

This second edition, adapted by Dave Braunschweig, expands
on the original vision by supporting multiple programming
languages with pseudocode and flowcharts, and includes
example code in C++, C#, Java, JavaScript, Python, and Swift.

Programming fundamentals are often divided into three
college courses: Modular/Structured, Object Oriented and Data

2 | About this Book

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17/

Structures. This textbook/collection covers the first of those
three courses.

Learning Modules

The learning modules of this textbook were written
as standalone modules. Students using a collection of
modules as a textbook will usually view its contents by reading
the modules sequentially as presented by the author of the
collection.

However, many readers of these modules may find them as
a result of an Internet search. The textbook design allows the
author of a module to create web links to other modules and
Internet locations and designate any necessary prerequisites.

Conceptual Approach

The learning modules of this textbook were, for the most part,
written without consideration of a specific programming
language. Concepts are presented generically, with program
logic demonstrated first in pseudocode and flowchart format.
Language-specific examples follow the general overview.

Re-use and Customization

The Creative Commons (CC) Attribution-ShareAlike
license applies to all modules in this textbook. Under this
license, any module may be used or modified for any purpose
as long as proper attribution to the original author(s) is

About this Book | 3

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

maintained and you distribute your contributions under the
same license.

PDF Conversion Problems

There are several known PDF printing problems. A description
of the known problems are:

1. When it converts an “Example” the PDF displays the first
line of an example properly but indents the remaining
lines of the example. This problem occurs for the printing
of a book (because it prints a PDF) and downloading
either a module or a textbook/collection as a PDF.

2. Within C++ there are three operators that do not convert
properly into PDF format.

decrement — which is two minus signs

insertion << which is two less than signs

extraction >> which is two greater than signs

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

4 | About this Book

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Author
Acknowledgements

1st Edition Acknowledgements

I wish to acknowledge the many people who have helped me
and have encouraged me in this project.

1. Mr. Abass Alamnehe, who is a fellow faculty member at
Houston Community College. He has encouraged the use
of Connexions as an “open source” publishing concept. His
comments on several modules have led directly to the
improvement of the materials in this textbook/collection.

2. The hundreds (most likely a thousand plus) students that I
have taken programming courses that I have taught since
1984. The languages include: COBOL, mainframe IBM
assembly, Intel assembly, Pascal, “C” and “C++”. They have
often suggested that I write my own book because they
thought that I was explaining the subject matter better
than the author of the textbook that we were using. Little
did my students understand that directly or indirectly they
aided in the improvement of the materials from which I
taught as well as improving me as a teacher.

3. To my future students and all those that will use this
textbook/collection. They will provide suggestions for
improvement as well as being the thousand eyes
identifying the hard to find typos, etc.

4. My wife, Carol, who supports me in all that I do. She has
tolerated the many hours that I have spent in
concentration on developing the modules that comprise
this work. Without her support, this work would not have

Author Acknowledgements | 5

happened.

Kenneth Leroy Busbee

2nd Edition Acknowledgements

I wish to acknowledge the many people who have helped
make this edition possible, including:

• Kenneth Leroy Busbee for his initial vision and willingness
to share Programming Fundamentals – A Modular
Structured Approach using C++ as CC-BY, making it
possible to build on his success.

• University of Cape Town for likewise sharing Object-
Oriented Programming in Python as CC-BY-SA and
making it possible to build on their efforts.

• Jay Singelmann and Jean Longhurst, who first taught me
structured programming.

• Joyce Farrell, whose Programming Logic and Design book
I have used for several years and has no doubt influenced
my approach.

• Devin Cook for developing Flowgorithm, releasing it as
free software, and graciously allowing its use to generate
most of the pseudocode and flowcharts used in this
edition of the book.

• Zoe Wake Hyde and the staff and volunteers at Rebus
Community for providing a community and platform to
create and collaborate on open content.

• April Browne, Carol Potaczek, and Maisie Sparks for
providing subject matter expertise and recommendations
for content improvement.

• My wife and family for accepting my dedication to open
educational resources and loving me anyway.

6 | Author Acknowledgements

Dave Braunschweig

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

• Cover Art: Puzzle pieces – CC0 by MsReadIt, downloaded
from https://openclipart.org/detail/231093/puzzle-pieces

Author Acknowledgements | 7

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://openclipart.org/detail/231093/puzzle-pieces

CHAPTER I

INTRODUCTION TO
PROGRAMMING

Overview

This chapter introduces programming, the software
development process, tools and methods used to develop and
test programs. These include integrated development
environments (IDEs), version control, input and output, and a
Hello World program in pseudocode and flowchart format. The
programming languages C++, C#, Java, JavaScript, Python, and
Swift are introduced with example code.

Chapter Outline

• Systems Development Life Cycle
• Program Design
• Program Quality
• Pseudocode
• Flowcharts
• Software Testing
• Integrated Development Environment
• Version Control
• Input and Output
• Hello World
• Code Examples

◦ C++
◦ C#
◦ Java

Introduction to Programming | 9

◦ JavaScript
◦ Python
◦ Swift

• Practice

Learning Objectives

1. Understand key terms and definitions.
2. Create pseudocode for a programming problem.
3. Create a flowchart for a programming problem.
4. Perform software testing for a programming problem.
5. List the four categories and give examples of errors that

may be encountered when using an Integrated
Development Environment (IDE).

6. Test an Integrated Development Environment using a
Hello World program.

7. Modify an existing program to meet given requirements.

10 | Introduction to Programming

Systems Development
Life Cycle
KENNETH LEROY BUSBEE

Overview

The Systems Development Life Cycle (SDLC) describes a
process for planning, creating, testing, and deploying an
information system. A number of SDLC models or
methodologies have been implemented to address different
system needs, including waterfall, spiral, Agile software
development, rapid prototyping, and incremental.1

Discussion

The Systems Development Life Cycle is the big picture of
creating an information system that handles a major task
(referred to as an application). The applications usually consist
of many programs. An example would be the Department of
Defense supply system, the customer system used at your local
bank, the repair parts inventory system used by car dealerships.
There are thousands of applications that use an information
system created just to help solve a business problem.

Another example of an information system would be the “101
Computer Games” software you might buy at any of several

1. Wikipedia: Systems development life cycle

Systems Development Life
Cycle | 11

https://en.wikipedia.org/wiki/Systems_development_life_cycle

retail stores. This is an entertainment application, that is we
are applying the computer to do a task (entertain you). The
software actually consists of many different programs
(checkers, chess, tic tac toe, etc.) that were most likely written
by several different programmers.

Computer professionals that are in charge of creating
applications often have the job title of System Analyst. The
major steps in creating an application include the following
and start at Planning step.

Systems Development Life Cycle

During the Design phase, the System Analyst will document
the inputs, processing, and outputs of each program within the
application. During the Implementation phase, programmers
would be assigned to write the specific programs using a
programming language decided by the System Analyst. Once
the system of programs is tested the new application is
installed for people to use. As time goes by, things change
and a specific part or program might need repair. During

12 | Systems Development Life Cycle

the Maintenance phase, it goes through a mini planning,
analysis, design, and implementation. The programs that need
modification are identified and programmers change or repair
those programs. After several years of use, the system usually
becomes obsolete. At this point, a major revision of the
application is done. Thus the cycle repeats itself.

Key Terms

applications
An information system or collection of programs that
handles a major task.

implementation
The phase of a Systems Development Life Cycle where the
programmers would be assigned to write specific
programs.

life cycle
Systems Development Life Cycle: Planning – Analysis –
Design – Implementation – Maintenance

system analyst
Computer professional in charge of creating applications.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

Systems Development Life Cycle | 13

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Program Design
KENNETH LEROY BUSBEE

Overview

Program design consists of the steps a programmer should do
before they start coding the program in a specific language.
These steps when properly documented will make the
completed program easier for other programmers to maintain
in the future. There are three broad areas of activity:

• Understanding the Program
• Using Design Tools to Create a Model
• Develop Test Data

Understanding the Program

If you are working on a project as one of many programmers,
the system analyst may have created a variety of
documentation items that will help you understand what the
program is to do. These could include screen layouts, narrative
descriptions, documentation showing the processing steps,
etc. If you are not on a project and you are creating a simple
program you might be given only a simple description of the
purpose of the program. Understanding the purpose of a
program usually involves understanding its:

• Inputs
• Processing
• Outputs

14 | Program Design

This IPO approach works very well for beginning programmers.
Sometimes, it might help to visualize the program running
on the computer. You can imagine what the monitor will look
like, what the user must enter on the keyboard and what
processing or manipulations will be done.

Using Design Tools to Create a Model

At first, you will not need a hierarchy chart because your first
programs will not be complex. But as they grow and become
more complex, you will divide your program into several
modules (or functions).

The first modeling tool you will usually learn is pseudocode.
You will document the logic or algorithm of each function in
your program. At first, you will have only one function, and thus
your pseudocode will follow closely the IPO approach above.

There are several methods or tools for planning the logic of
a program. They include: flowcharting, hierarchy or structure
charts, pseudocode, HIPO, Nassi-Schneiderman charts,
Warnier-Orr diagrams, etc. Programmers are expected to be
able to understand and do flowcharting and pseudocode.
These methods of developing the model of a program are
usually taught in most computer courses. Several standards
exist for flowcharting and pseudocode and most are very
similar to each other. However, most companies have their own
documentation standards and styles. Programmers are
expected to be able to quickly adapt to any flowcharting or
pseudocode standards for the company at which they work.
The other methods that are less universal require some
training which is generally provided by the employer that
chooses to use them.

Later in your programming career, you will learn about using

Program Design | 15

application software that helps create an information system
and/or programs. This type of software is called Computer-
Aided Software Engineering (CASE).

Understanding the logic and planning the algorithm on paper
before you start to code is a very important concept. Many
students develop poor habits and skipping this step is one of
them.

Develop Test Data

Test data consists of the programmer providing some input
values and predicting the outputs. This can be quite easy for
a simple program and the test data can be used to check the
model to see if it produces the correct results.

Key Terms

IPO
Inputs – Processing – Outputs

pseudocode
English-like statements used to convey the steps of an
algorithm or function.

test data
Providing input values and predicting the outputs.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

16 | Program Design

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Program Quality
DAVE BRAUNSCHWEIG

Overview

Program quality describes fundamental properties of the
program’s source code and executable code, including
reliability, robustness, usability, portability, maintainability,
efficiency, and readability.

Discussion

Whatever the approach to development may be, the final
program must satisfy some fundamental properties. The
following properties are among the most important:

• Reliability: how often the results of a program are correct.
This depends on the conceptual correctness of algorithms,
and minimization of programming mistakes, such as
mistakes in resource management (e.g., buffer
overflows and race conditions) and logic errors (such as
division by zero or off-by-one errors).

• Robustness: how well a program anticipates problems
due to errors (not bugs). This includes situations such as
incorrect, inappropriate or corrupt data, unavailability of
needed resources such as memory, operating system
services and network connections, user error, and
unexpected power outages.

• Usability: the ergonomics of a program: the ease with
which a person can use the program for its intended

Program Quality | 17

purpose or in some cases even unanticipated purposes.
Such issues can make or break its success even regardless
of other issues. This involves a wide range of textual,
graphical and sometimes hardware elements that
improve the clarity, intuitiveness, cohesiveness, and
completeness of a program’s user interface.

• Portability: the range of computer
hardware and operating system platforms on which the
source code of a program can be compiled/
interpreted and run. This depends on differences in the
programming facilities provided by the different
platforms, including hardware and operating system
resources, expected behavior of the hardware and
operating system, and availability of platform specific
compilers (and sometimes libraries) for the language of
the source code.

• Maintainability: the ease with which a program can be
modified by its present or future developers in order to
make improvements or customizations,
fix bugs and security holes, or adapt it to new
environments. Good practices during initial development
make the difference in this regard. This quality may not be
directly apparent to the end user but it can significantly
affect the fate of a program over the long term.

• Efficiency/performance: the measure of system resources
a program consumes (processor time, memory space,
slow devices such as disks, network bandwidth and to
some extent even user interaction): the less, the better.
This also includes careful management of resources, for
example cleaning up temporary files and
eliminating memory leaks.

• Readability: the ease with which a human reader can
comprehend the purpose, control flow, and operation of
source code. It affects the aspects of quality above,
including portability, usability and most importantly

18 | Program Quality

maintainability. Readability is important because
programmers spend the majority of their time reading,
trying to understand and modifying existing source code,
rather than writing new source code. Unreadable code
often leads to bugs, inefficiencies, and duplicated code.

Key Terms

efficiency
The measure of system resources a program consumes.

maintainability
The ease with which a program can be modified by its
present or future developers.

portability
The range of computer hardware and operating
system platforms on which the source code of a program
can be compiled/interpreted and run.

readability
The ease with which a human reader can comprehend the
purpose, control flow, and operation of source code.

reliability
How often the results of a program are correct.

robustness
How well a program anticipates problems due to errors.

usability
The ease with which a person can use the program.

References

• Wikipedia: Computer programming

Program Quality | 19

https://en.wikipedia.org/wiki/Computer_programming

Pseudocode
KENNETH LEROY BUSBEE

Overview

Pseudocode is an informal high-level description of the
operating principle of a computer program or other algorithm.1

Discussion

Pseudocode is one method of designing or planning a
program. Pseudo means false, thus pseudocode means false
code. A better translation would be the word fake or imitation.
Pseudocode is fake (not the real thing). It looks like (imitates)
real code but it is NOT real code. It uses English statements to
describe what a program is to accomplish. It is fake because
no compiler exists that will translate the pseudocode to any
machine language. Pseudocode is used for documenting the
program or module design (also known as the algorithm).

The following outline of a simple program illustrates
pseudocode. We want to be able to enter the ages of two
people and have the computer calculate their average age and
display the answer.

Outline using Pseudocode

Input

1. Wikipedia: Pseudocode

20 | Pseudocode

https://en.wikipedia.org/wiki/Pseudocode

 display a message asking the user to enter the first age

 get the first age from the keyboard

 display a message asking the user to enter the second age

 get the second age from the keyboard

Processing

 calculate the answer by adding the two ages together and dividing by two

Output

 display the answer on the screen

 pause so the user can see the answer

After developing the program design, we use the pseudocode
to write code in a language (like C++, Java, Python, etc.) where
you must follow the rules of the language (syntax) in order
to code the logic or algorithm presented in the pseudocode.
Pseudocode usually does not include other items produced
during programming design such as identifier lists for
variables or test data.

There are other methods for planning and documenting the
logic for a program. One method is HIPO. It stands for
Hierarchy plus Input Process Output and was developed by
IBM in the 1960s. It involved using a hierarchy (or structure)
chart to show the relationship of the sub-routines (or functions)
in a program. Each sub-routine had an IPO piece. Since the
above problem/task was simple, we did not need to use
multiple sub-routines, thus we did not produce a hierarchy
chart. We did incorporate the IPO part of the concept for the
pseudocode outline.

Pseudocode | 21

Key Terms

pseudo
Means false and includes the concepts of fake or imitation.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

22 | Pseudocode

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Flowcharts
KENNETH LEROY BUSBEE

Overview

A flowchart is a type of diagram that represents an algorithm,
workflow or process. The flowchart shows the steps as boxes
of various kinds, and their order by connecting the boxes with
arrows. This diagrammatic representation illustrates a solution
model to a given problem. Flowcharts are used in analyzing,
designing, documenting or managing a process or program in
various fields.1

Discussion

Common flowcharting symbols and examples follow. When
first reading this section, focus on the simple symbols and
examples. Return to this section in later chapters to review the
advanced symbols and examples.

1. Wikipedia: Flowchart

Flowcharts | 23

https://en.wikipedia.org/wiki/Flowchart

Simple Flowcharting Symbols

Terminal

The rounded rectangles, or terminal points, indicate the
flowchart’s starting and ending points.

Flow Lines

Note: The default flow is left to right and top to bottom (the
same way you read English). To save time arrowheads are often
only drawn when the flow lines go contrary the normal.

Input/Output

The parallelograms designate input or output operations.

24 | Flowcharts

Process

The rectangle depicts a process such as a mathematical
computation, or a variable assignment.

Decision

The diamond is used to represent the true/false statement
being tested in a decision symbol.

Flowcharts | 25

Advanced Flowcharting Symbols

Module Call

A program module is represented in a flowchart by rectangle
with some lines to distinguish it from process symbol. Often
programmers will make a distinction between program control
and specific task modules as shown below.

Local module: usually a program control function.

Library module: usually a specific task function.

26 | Flowcharts

Connectors

Sometimes a flowchart is broken into two or more smaller
flowcharts. This is usually done when a flowchart does not fit
on a single page, or must be divided into sections. A connector
symbol, which is a small circle with a letter or number inside
it, allows you to connect two flowcharts on the same page. A
connector symbol that looks like a pocket on a shirt, allows you
to connect to a flowchart on a different page.

On-Page Connector

Off-Page Connector

Flowcharts | 27

Simple Examples

We will demonstrate various flowcharting items by showing
the flowchart for some pseudocode.

Functions

pseudocode: Function with no parameter passing

Function clear monitor

 Pass In: nothing

 Direct the operating system to clear the monitor

 Pass Out: nothing

End function

28 | Flowcharts

Function clear monitor

pseudocode: Function main calling the clear monitor function

Function main

 Pass In: nothing

 Doing some lines of code

 Call: clear monitor

 Doing some lines of code

 Pass Out: value zero to the operating system

End function

Flowcharts | 29

Function main

Sequence Control Structures

The next item is pseudocode for a simple temperature
conversion program. This demonstrates the use of both the on-
page and off-page connectors. It also illustrates the sequence
control structure where nothing unusual happens. Just do one
instruction after another in the sequence listed.

pseudocode: Sequence control structure

Filename: Solution_Lab_04_Pseudocode.txt

Purpose: Convert Temperature from Fahrenheit to Celsius

Author: Ken Busbee; © 2008 Kenneth Leroy Busbee

Date: Dec 24, 2008

Pseudocode = IPO Outline

input

 display a message asking user for the temperature in Fahrenheit

 get the temperature from the keyboard

30 | Flowcharts

processing

 calculate the Celsius by subtracting 32 from the Fahrenheit

 temperature then multiply the result by 5 then

 divide the result by 9. Round up or down to the whole number.

 HINT: Use 32.0 when subtracting to ensure floating-point accuracy.

output

 display the celsius with an appropriate message

 pause so the user can see the answer

Sequence control structure

Flowcharts | 31

Sequence control structured continued

Advanced Examples

Selection Control Structures

pseudocode: If then Else

If age > 17

 Display a message indicating you can vote.

Else

 Display a message indicating you can't vote.

Endif

If then Else control structure

pseudocode: Case

Case of age

 0 to 17 Display "You can't vote."

 18 to 64 Display "You are in your working years."

 65 + Display "You should be retired."

32 | Flowcharts

End case

Case control structure

Iteration (Repetition) Control Structures

pseudocode: While

count assigned zero

While count < 5

 Display "I love computers!"

 Increment count

End while

Flowcharts | 33

While control structure

pseudocode: For

For x starts at 0, x < 5, increment x

 Display "Are we having fun?"

End for

The for loop does not have a standard flowcharting method
and you will find it done in different ways. The for loop as a
counting loop can be flowcharted similar to the while loop as a
counting loop.

34 | Flowcharts

For control structure

pseudocode: Do While

count assigned five

Do

 Display "Blast off is soon!"

 Decrement count

While count > zero

Do While control structure

Flowcharts | 35

pseudocode: Repeat Until

count assigned five

Repeat

 Display "Blast off is soon!"

 Decrement count

Until count < one

Repeat Until control structure

Key Terms

decision symbol
A diamond used in flowcharting for asking a question and
making a decision.

flow lines
Lines (sometimes with arrows) that connect the various
flowcharting symbols.

flowcharting
A programming design tool that uses graphical elements
to visually depict the flow of logic within a function.

36 | Flowcharts

input/output symbol
A parallelogram used in flowcharting for input/output
interactions.

process symbol
A rectangle used in flowcharting for normal processes
such as assignment.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

Flowcharts | 37

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Software Testing
KENNETH LEROY BUSBEE

Overview

Software testing involves the execution of a software
component or system component to evaluate one or more
properties of interest. In general, these properties indicate the
extent to which the component or system under test:1

• meets the requirements that guided its design and
development

• responds correctly to all kinds of inputs
• performs its functions within an acceptable time
• is sufficiently usable
• can be installed and run in its intended environments
• achieves the general result its stakeholders desire

Discussion

Test data consists of the user providing some input values and
predicting the outputs. This can be quite easy for a simple
program and the test data can be used twice.

1. to check the model to see if it produces the correct results
(model checking)

2. to check the coded program to see if it produces the

1. Wikipedia: Software testing

38 | Software Testing

https://en.wikipedia.org/wiki/Software_testing

correct results (code checking)

Test data is developed by using the algorithm of the program.
This algorithm is usually documented during the program
design with either flowcharting or pseudocode. Here is the
pseudocode in outline form describing the inputs, processing,
and outputs for a program used to calculate gross pay for
hourly work.

Pseudocode using an IPO Outline for Calculating Gross Pay

Input

 display a message asking user for their hours worked

 get the hours from the keyboard

 display a message asking user for their pay rate

 get the rate from the keyboard

Processing

 calculate the gross pay by:

 multiplying the hours worked by the hourly rate

Output

 display the gross pay on the monitor

 pause so the user can see the answer

Creating Test Data and Model Checking

Test data is used to verify that the inputs, processing, and
outputs are working correctly. As test data is initially developed
it can verify that the documented algorithm (pseudocode in
the example we are doing) is correct. It helps us understand
and even visualize the inputs, processing, and outputs of the
program.

Inputs: I worked 37.5 hours this week and my hourly rate is

Software Testing | 39

$15.50 per hour. We should verify that the pseudocode is
prompting the user for this data.

Processing: Using my solar powered handheld calculator, I can
calculate the gross pay would be: 37.5 * 15.50 or $581.25. We
should verify that the pseudocode is performing the correct
calculations.

Output: Only the significant information (total gross pay) is
displayed for the user to see. We should verify that the
appropriate information is being displayed.

Testing the Coded Program – Code
Checking

The test data can be developed and used to test the algorithm
that is documented (in our case our pseudocode) during the
program design phase. Once the program is code with
compiler and linker errors resolved, the programmer gets to
play user and should test the program using the test data
developed. When you run your program, how will you know
that it is working properly? Did you properly plan your logic to
accomplish your purpose? Even if your plan was correct, did it
get converted correctly (coded) into the chosen programming
language? The answer (or solution) to all of these questions is
our test data.

By developing test data we are predicting what the results
should be, thus we can verify that our program is working
properly. When we run the program we would enter the input
values used in our test data. Hopefully, the program will output
the predicted values. If not then our problem could be any of
the following:

1. The plan (IPO outline or another item) could be wrong

40 | Software Testing

2. The conversion of the plan to code might be wrong
3. The test data results were calculated wrong

Resolving problems of this nature can be the most difficult
problems a programmer encounters. You must review each of
the above to determine where the error is lies. Fix the error and
re-test your program.

Key Terms

code checking
Using test data to check the coded program in a specific
language (like C++).

model checking
Using test data to check the design model (usually done in
pseudocode).

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

Software Testing | 41

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Integrated
Development
Environment
KENNETH LEROY BUSBEE

Overview

An integrated development environment (IDE) is a software
application that provides comprehensive facilities to computer
programmers for software development. An IDE normally
consists of a source code editor, build automation tools, and
a debugger. Most modern IDEs have intelligent code
completion. Some IDEs contain a compiler, interpreter, or both.
The boundary between an integrated development
environment and other parts of the broader software
development environment is not well-defined. Sometimes a
version control system, or various tools to simplify the
construction of a graphical user interface (GUI), are integrated.
Many modern IDEs also have a class browser, an object
browser, and a class hierarchy diagram, for use in object-
oriented software development.1

Discussion

High-level language programs are usually written (coded) as

1. Wikipedia: Integrated development environment

42 | Integrated Development
Environment

https://en.wikipedia.org/wiki/Integrated_development_environment

ASCII text into a source code file. A unique file extension
(Examples: .asm .c .cpp .java .js .py) is used to identify it as
a source code file. As you might guess for our examples –
Assembly, “C”, “C++”, Java, JavaScript, and Python, however,
they are just ASCII text files (other text files usually use the
extension of .txt). The source code produced by the
programmer must be converted to an executable machine
code file specifically for the computer’s CPU (usually an Intel
or Intel-compatible CPU within today’s world of computers).
There are several steps in getting a program from its source
code stage to running the program on your computer.
Historically, we had to use several software programs (a text
editor, a compiler, a linker, and operating system commands)
to make the conversion and run our program. However, today
all those software programs with their associated tasks have
been integrated into one program. However, this one program
is really many software items that create an environment used
by programmers to develop software. Thus the
name: Integrated Development Environment or IDE.

Programs written in a high-level language are either directly
executed by some kind of interpreter or converted into
machine code by a compiler (and assembler and linker) for
the CPU to execute. JavaScript, Perl, Python, and Ruby are
examples of interpreted programming languages. C, C++, C#,
Java, and Swift are examples of compiled programming
languages.2 The following figure shows the progression of
activity in an IDE as a programmer enters the source code and
then directs the IDE to compile and run the program.

2. Wikipedia: Interpreter (computing)

Integrated Development Environment | 43

https://en.wikipedia.org/wiki/Interpreter_(computing)

Integrated Development Environment or IDE

Upon starting the IDE software the programmer usually
indicates the file he or she wants to open for editing as source
code. As they make changes they might either do a “save as” or
“save”. When they have finished entering the source code, they
usually direct the IDE to “compile & run” the program. The IDE
does the following steps:

1. If there are any unsaved changes to the source code file it
has the test editor save the changes.

2. The compiler opens the source code file and does its first
step which is executing the pre-processor compiler
directives and other steps needed to get the file ready for
the second step. The #include will insert header files into
the code at this point. If it encounters an error, it stops the
process and returns the user to the source code file within
the text editor with an error message. If no problems
encountered it saves the source code to a temporary file
called a translation unit.

44 | Integrated Development Environment

3. The compiler opens the translation unit file and does
its second step which is converting the programming
language code to machine instructions for the CPU, a data
area, and a list of items to be resolved by the linker. Any
problems encountered (usually a syntax or violation of the
programming language rules) stops the process and
returns the user to the source code file within the text
editor with an error message. If no problems encountered
it saves the machine instructions, data area, and linker
resolution list as an object file.

4. The linker opens the program object file and links it with
the library object files as needed. Unless all linker items
are resolved, the process stops and returns the user to the
source code file within the text editor with an error
message. If no problems encountered it saves the linked
objects as an executable file.

5. The IDE directs the operating system’s program called
the loader to load the executable file into the computer’s
memory and have the Central Processing Unit (CPU) start
processing the instructions. As the user interacts with the
program, entering test data, he or she might discover that
the outputs are not correct. These types of errors are called
logic errors and would require the user to return to the
source code to change the algorithm.

Resolving Errors

Despite our best efforts at becoming perfect programmers,
we will create errors. Solving these errors is known
as debugging your program. The three types of errors in the
order that they occur are:

1. Compiler
2. Linker

Integrated Development Environment | 45

3. Logic

There are two types of compiler errors; pre-processor (1st step)
and conversion (2nd step). A review of Figure 1 above shows
the four arrows returning to the source code so that the
programmer can correct the mistake.

During the conversion (2nd step) the compiler might give
a warning message which in some cases may not be a
problem to worry about. For example: Data type demotion may
be exactly what you want your program to do, but most
compilers give a warning message. Warnings don’t stop the
compiling process but as their name implies, they should be
reviewed.

The next three figures show IDE monitor interaction for
the Bloodshed Dev-C++ 5 compiler/IDE.

Compiler Error (the red line is where the compiler stopped)

46 | Integrated Development Environment

Linker Error (no red line with an error message describing a
linking problem)

Logic Error (from the output within the “Black Box” area)

Integrated Development Environment | 47

Key Terms

compiler
Converts source code to object code.

debugging
The process of removing errors from a program. 1)
compiler 2) linker 3) logic

linker
Connects or links object files into an executable file.

loader
Part of the operating system that loads executable files
into memory and directs the CPU to start running the
program.

pre-processor
The first step the compiler does in converting source code
to object code.

text editor
A software program for creating and editing ASCII text
files.

warning
A compiler alert that there might be a problem.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

48 | Integrated Development Environment

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Version Control
DAVE BRAUNSCHWEIG

Overview

Version control, also known as revision control or source
control, is the management of changes to documents,
computer programs, large websites, and other collections of
information. Each revision is associated with a timestamp and
the person making the change. Revisions can be compared,
restored, and with some types of files, merged.1

Version control systems (VCS) most commonly run as stand-
alone applications, but may also be embedded in various types
of software, including integrated development environments
(IDEs).

Discussion

Version control implements a systematic approach to
recording and managing changes in files. At its simplest,
version control involves taking ‘snapshots’ of your file at
different stages. This snapshot records information about
when the snapshot was made, and also about what changes
occurred between different snapshots. This allows you to

1. Wikipedia: Version control

Version Control | 49

https://en.wikipedia.org/wiki/Version_control

‘rewind’ your file to an older version. From this basic aim of
version control, a range of other possibilities is made available.2

Version control allows you to:3

• Track developments and changes in your files
• Record the changes you made to your file in a way that

you will be able to understand later
• Experiment with different versions of a file while

maintaining the original version
• ‘Merge’ two versions of a file and manage conflicts

between versions
• Revert changes, moving ‘backward’ through your history

to previous versions of your file

Version control is particularly useful for facilitating
collaboration. One of the original motivations behind version
control systems was to allow different people to work on large
projects together. Using version control to collaborate allows
for a greater deal of flexibility and control than many other
solutions. As an example, it would be possible for two people to
work on a file at the same time and then merge these together.
If there were ‘conflicts’ between the two versions, the version
control system would allow you to see these conflicts and make
an active decision about how to ‘merge’ these different
versions into a new ‘third’ document. With this approach you

2. Programming Historian: An Introduction to Version Control
Using GitHub Desktop

3. Programming Historian: An Introduction to Version Control
Using GitHub Desktop

50 | Version Control

https://programminghistorian.org/en/lessons/getting-started-with-github-desktop
https://programminghistorian.org/en/lessons/getting-started-with-github-desktop
https://programminghistorian.org/en/lessons/getting-started-with-github-desktop
https://programminghistorian.org/en/lessons/getting-started-with-github-desktop

would also retain a ‘history’ of the previous version should you
wish to revert back to one of these later on.4

Popular version control systems include:5

• Git
• Helix VCS
• Microsoft Team Foundation Server
• Subversion

The following focuses on using the Git version control system.

Git

Git is a version control system for tracking changes in
computer files and coordinating work on those files among
multiple people. It is primarily used for source code
management in software development, but it can be used to
keep track of changes in any set of files. Git was created by
Linus Torvalds in 2005 for development of the Linux kernel and
is free and open source software.6

Free public and private git repositories are available from:

• Bitbucket
• GitHub

Cloning an existing repository requires only a URL to the
repository and the following git command:

4. Programming Historian: An Introduction to Version Control
Using GitHub Desktop

5. G2Crowd: Best Version Control Systems
6. Wikipedia: Git

Version Control | 51

https://en.wikipedia.org/wiki/Bitbucket
https://en.wikipedia.org/wiki/GitHub
https://programminghistorian.org/en/lessons/getting-started-with-github-desktop
https://programminghistorian.org/en/lessons/getting-started-with-github-desktop
https://www.g2crowd.com/categories/version-control-systems?segment=enterprise
https://en.wikipedia.org/wiki/Git

• git clone <url>

Once cloned, repositories are synchronized by pushing and
pulling changes. If the original source repository has been
modified, the following git command is used to pull those
changes to the local repository:

• git pull

Local changes must be added and committed, and then
pushed to the remote repository. Note the period (dot) at the
end of the first command.

• git add .

• git commit -m "reason for commit"

• git push

If there are conflicts between the local and remote repositories,
the changes should be merged and then pushed. If necessary,
local changes may be forced upon the remote server using:

• git push --force

Key Terms

branch
A separate working copy of files under version control
which may be developed independently from the origin.

clone
Create a new repository containing the revisions from
another repository.

commit
To write or merge the changes made in the working copy
back to the repository.

52 | Version Control

merge
An operation in which two sets of changes are applied to a
file or set of files.

push
Copy revisions from the current repository to a remote
repository.

pull
Copy revisions from a remote repository to the current
repository.

version control
The management of changes to documents, computer
programs, large websites, and other collections of
information.

References

• Programming Historian: An Introduction to Version
Control Using GitHub Desktop

Version Control | 53

https://programminghistorian.org/en/lessons/getting-started-with-github-desktop
https://programminghistorian.org/en/lessons/getting-started-with-github-desktop

Input and Output
KENNETH LEROY BUSBEE

Overview

Input and output, or I/O is the communication between an
information processing system, such as a computer, and the
outside world, possibly a human or another information
processing system. Inputs are the signals or data received by
the system and outputs are the signals or data sent from it.1

Discussion

Every task we have the computer do happens inside the
central processing unit (CPU) and the associated memory.
Once our program is loaded into memory and the operating
system directs the CPU to start executing our programming
statements the computer looks like this:

1. Wikipedia: Input/output

54 | Input and Output

https://en.wikipedia.org/wiki/Input/output

CPU – Memory – Input/Output Devices

Our program now loaded into memory has basically two areas:

• Machine instructions – our instructions for what we want
done

• Data storage – our variables that we using in our program

Often our program contains instructions to interact with the
input/output devices. We need to move data into (read) and/
or out of (write) the memory data area. A device is a piece of
equipment that is electronically connected to the memory so
that data can be transferred between the memory and the
device. Historically this was done with punched cards and
printouts. Tape drives were used for electronic storage. With
time we migrated to using disk drives for storage with
keyboards and monitors (with monitor output called soft copy)
replacing punch cards and printouts (called hard copy).

Most computer operating systems and by extension
programming languages have identified the keyboard as

Input and Output | 55

the standard input device and the monitor as the standard
output device. Often the keyboard and monitor are treated as
the default device when no other specific device is indicated.

Key Terms

device
A piece of equipment that is electronically connected to
the memory so that data can be transferred between the
memory and the device.

escape code
A code directing an output device to do something.

extraction
Aka reading or getting data from an input device.

insertion
Aka writing or sending data to an output device.

standard input
The keyboard.

standard output
The monitor.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

56 | Input and Output

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Hello World
DAVE BRAUNSCHWEIG

Overview

A “Hello, world!” program is a computer program that outputs
or displays “Hello, world!” to a user. Being a very simple
program in most programming languages, it is often used to
illustrate the basic syntax of a programming language for a
working program, and as such is often the very first program
people write.1

Discussion

A “Hello, world!” program is traditionally used to introduce
novice programmers to a programming language. “Hello,
world!” is also traditionally used in a sanity test to make sure
that a computer language is correctly installed, and that the
operator understands how to use it.2

The tradition of using the phrase “Hello, world!” as a test
message was influenced by an example program in the
seminal book The C Programming Language. The example
program from that book prints “hello, world” (without capital

1. Wikipedia: "Hello, World!" program
2. Wikipedia: "Hello, World!" program

Hello World | 57

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://en.wikipedia.org/wiki/%22Hello,_World!%22_program

letters or exclamation mark), and was inherited from a 1974 Bell
Laboratories internal memorandum by Brian Kernighan.3

In addition to displaying “Hello, world!”, a “Hello, world!”
program might include comments. A comment is a
programmer-readable explanation or annotation in the source
code of a computer program. They are added with the purpose
of making the source code easier for humans to understand,
and are generally ignored by compilers and interpreters. The
syntax of comments in various programming languages varies
considerably.4

Program Plan

This program displays “Hello world!”

Input:

None

Process:

None

Output:

Hello world!

Pseudocode

Function Main

3. Wikipedia: "Hello, World!" program
4. Wikipedia: Comment (computer programming)

58 | Hello World

https://en.wikipedia.org/wiki/%22Hello,_World!%22_program
https://en.wikipedia.org/wiki/Comment_(computer_programming)

 ... This program displays "Hello world!"

 Output "Hello world!"

End

Output

Hello world!

Each code element represents:5

• Function Main begins the main function

• ... begins a comment

• Output indicates the following value(s) will be displayed or

printed
• "Hello world!" is the literal string to be displayed

• End ends a block of code

Flowchart

5. Wikibooks: Programming Fundamentals/Hello World

Hello World | 59

https://en.wikibooks.org/wiki/Programming_Fundamentals/Hello_World

Examples

The following pages provide examples of “Hello, world!”
programs in different programming languages. Each page
includes an explanation of the code elements that comprise
the program and links to IDEs you may use to test the program.

Key Terms

comment
A programmer-readable explanation or annotation in the
source code of a computer program.

References

• Wikiversity: Computer Programming
• Flowgorithm – Flowchart Programming Language

60 | Hello World

https://en.wikiversity.org/wiki/Computer_Programming
http://www.flowgorithm.org/

C++ Examples
DAVE BRAUNSCHWEIG

Overview

C++ is a general-purpose programming language. It has
imperative, object-oriented and generic programming
features, while also providing facilities for low-level memory
manipulation. C++ was developed by Bjarne Stroustrup at Bell
Labs starting in 1979 as an extension of the C language. The C++
programming language was initially standardized in 1998.1

C++ is one of the most popular current programming
languages2 and is often used in computer science courses.

Example

Hello World

// This program displays "Hello world!"

//

// References:

1. Wikipedia: C++
2. TIOBE: Index

C++ Examples | 61

https://en.wikipedia.org/wiki/C%2B%2B
https://www.tiobe.com/tiobe-index/

// http://www.cplusplus.com/doc/tutorial/program_structure/

#include <iostream>

int main()

{

 std::cout << "Hello world!";

}

Output

Hello world!

Discussion

Each code element represents:3

• // begins a comment

• #include <iostream> includes standard input and

output streams
• int main() begins the main function, which returns an

integer value
• { begins a block of code

• std::cout is standard output

• << directs the next element to standard output

• "Hello world!" is the literal string to be displayed

• ; ends each line of C++ code

• } ends a block of code

3. Wikibooks: Programming Fundamentals/Hello World

62 | C++ Examples

https://en.wikibooks.org/wiki/Programming_Fundamentals/Hello_World

C++ IDEs

There are many free cloud-based and local IDEs available
to begin coding in C++. Check with your instructor or do your
own research for recommendations.

Cloud-Based IDEs

• CodeChef
• GDB Online
• Ideone
• paiza.IO
• PythonTutor
• repl.it
• TutorialsPoint

Local IDEs

• Code::Blocks
• Dev-C++
• Microsoft Visual Studio

References

• Wikiversity: Computer Programming

C++ Examples | 63

https://www.codechef.com/ide
https://www.onlinegdb.com/
http://ideone.com/
https://paiza.io/projects/new
http://pythontutor.com/visualize.html#code=&py=cpp
https://repl.it/languages/cpp
https://www.tutorialspoint.com/compile_cpp_online.php
https://en.wikipedia.org/wiki/Code::Blocks
https://en.wikipedia.org/wiki/Dev-C%2B%2B
https://en.wikipedia.org/wiki/Microsoft_Visual_Studio
https://en.wikiversity.org/wiki/Computer_Programming

C# Examples
DAVE BRAUNSCHWEIG

Overview

C# is a general-purpose, object-oriented programming
language encompassing strong typing, imperative, declarative,
functional, generic, object-oriented (class-based), and
component-oriented programming disciplines. It was
developed around 2000 by Microsoft within its .NET initiative
and later approved as a standard by Ecma (ECMA-334) and ISO
(ISO/IEC 23270:2006). C# is one of the programming languages
designed for the Common Language Infrastructure.1

C# is one of the most popular current programming
languages2, is the primary language for Windows application
development and is often used in computer science and
gaming courses.

1. Wikipedia: C Sharp (programming language)
2. TIOBE: Index

64 | C# Examples

https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://www.tiobe.com/tiobe-index/

Example

Hello World

// This program displays "Hello world!"

//

// References:

// https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/inside-a-program/hello-world-your-first-program

public class Hello

{

 public static void Main()

 {

 System.Console.WriteLine("Hello world!");

 }

}

Output

Hello world!

Discussion

Each code element represents:3

• // begins a comment

• public class Hello begins the Hello World program

3. Wikibooks: Programming Fundamentals/Hello World

C# Examples | 65

https://en.wikibooks.org/wiki/Programming_Fundamentals/Hello_World

• { begins a block of code

• public static void Main() begins the main function

• System.Console.WriteLine() calls the standard output

write line function
• "Hello world!" is the literal string to be displayed

• ; ends each line of C# code

• } ends a block of code

C# IDEs

There are many free cloud-based and local IDEs available
to begin coding in C#. Check with your instructor or do your
own research for recommendations.

Cloud-Based IDEs

• CodeChef
• C# Pad
• .NET Fiddle
• Ideone
• paiza.IO
• Rextester
• repl.it
• TutorialsPoint

Local IDEs

• Microsoft Visual Studio
• Visual Studio Code

66 | C# Examples

https://www.codechef.com/ide
https://csharppad.com/
https://dotnetfiddle.net/
http://ideone.com/
https://paiza.io/projects/new
http://rextester.com/l/csharp_online_compiler
https://repl.it/languages/java
https://www.tutorialspoint.com/compile_java_online.php
https://en.wikipedia.org/wiki/Microsoft_Visual_Studio
https://en.wikipedia.org/wiki/Visual_Studio_Code

References

• Wikiversity: Computer Programming

C# Examples | 67

https://en.wikiversity.org/wiki/Computer_Programming

Java Examples
DAVE BRAUNSCHWEIG

Overview

Java is a general-purpose computer-programming language
that is concurrent, class-based, object-oriented, and
specifically designed to have as few implementation
dependencies as possible. It is intended to let application
developers “write once, run anywhere” (WORA), meaning that
compiled Java code can run on all platforms that support Java
without the need for recompilation. Java was originally
developed by James Gosling at Sun Microsystems and released
in 1995.1

Java is one of the most popular current programming
languages2 and is often used in computer science courses.

1. Wikipedia: Java (programming language)
2. TIOBE: Index

68 | Java Examples

https://en.wikipedia.org/wiki/Java_(programming_language)
https://www.tiobe.com/tiobe-index/

Example

Hello World

// This program displays "Hello world!"

//

// References:

// https://introcs.cs.princeton.edu/java/11hello/HelloWorld.java.html

class Main {

 public static void main(String[] args) {

 System.out.println("Hello world!");

 }

}

Output

Hello world!

Discussion

Each code element represents:3

• // begins a comment

• class hello begins the Hello World program

• { begins a block of code

• public static void main(String[] args) begins the

3. Wikibooks: Programming Fundamentals/Hello World

Java Examples | 69

https://en.wikibooks.org/wiki/Programming_Fundamentals/Hello_World

main function
• System.out.println() calls the standard output print

line function
• "Hello world!" is the literal string to be displayed

• ; ends each line of Java code

• } ends a block of code

Java IDEs

There are many free cloud-based and local IDEs available
to begin coding in Java. Check with your instructor or do your
own research for recommendations.

Cloud-Based IDEs

• CodeChef
• GDB Online
• Ideone
• paiza.IO
• PythonTutor
• repl.it
• TutorialsPoint

Local IDEs

• BlueJ
• jEdit
• jGRASP

70 | Java Examples

https://www.codechef.com/ide
https://www.onlinegdb.com/
http://ideone.com/
https://paiza.io/projects/new
http://pythontutor.com/visualize.html#code=&py=java
https://repl.it/languages/java
https://www.tutorialspoint.com/compile_java_online.php
https://en.wikipedia.org/wiki/BlueJ
https://en.wikipedia.org/wiki/JEdit
https://en.wikipedia.org/wiki/JGRASP

References

• Wikiversity: Computer Programming

Java Examples | 71

https://en.wikiversity.org/wiki/Computer_Programming

JavaScript Examples
DAVE BRAUNSCHWEIG

Overview

JavaScript, often abbreviated as JS, is a high-level, interpreted
programming language. Alongside HTML and CSS, JavaScript
is one of the three core technologies of the World Wide Web.
JavaScript enables interactive web pages and therefore is an
essential part of web applications. The vast majority of websites
use it, and all major web browsers have a dedicated JavaScript
engine to execute it.1

JavaScript is one of the most popular current programming
languages2, and is the primary programming language for
front-end web development. JavaScript has been
implemented in multiple platforms with different I/O
commands. Several examples follow.

1. Wikipedia: JavaScript
2. TIOBE: Index

72 | JavaScript Examples

https://en.wikipedia.org/wiki/JavaScript
https://www.tiobe.com/tiobe-index/

Example

Hello World – Console Log

// This script displays "Hello world!".

//

// References:

// https://www.digitalocean.com/community/tutorials/how-to-write-your-first-javascript-program

console.log("Hello world!")

Output

Hello world!

Discussion

Each code element represents:

• // begins a comment

• console.log() writes to the JavaScript console output log

• "Hello world!" is the literal string to be displayed

Hello World – Window Alert

// This script displays "Hello world!".

//

// References:

// https://www.digitalocean.com/community/tutorials/how-to-write-your-first-javascript-program

JavaScript Examples | 73

alert("Hello world!")

Output

Hello world!

Discussion

Each code element represents:

• // begins a comment

• alert() calls the window alert function to display a

message
• "Hello world!" is the literal string to be displayed

Hello World – Document Write

// This script displays "Hello world!".

//

// References:

// https://www.w3schools.com/jsref/met_doc_write.asp

document.write("Hello world!")

Output

Hello world!

74 | JavaScript Examples

Discussion

Each code element represents:

• // begins a comment

• document.write() writes output to the current document

• "Hello world!" is the literal string to be displayed

JavaScript IDEs

There are many free cloud-based and local IDEs available
to begin coding in JavaScript. Check with your instructor or do
your own research for recommendations.

Cloud-Based IDEs

• Chapman.edu: Online JavaScript Interpreter
• CodeChef
• GDB Online
• Ideone
• paiza.IO
• PythonTutor
• repl.it

Local IDEs

• Brackets
• Visual Studio Code

JavaScript Examples | 75

http://math.chapman.edu/~jipsen/js/
https://www.codechef.com/ide
https://www.onlinegdb.com/
http://ideone.com/
https://paiza.io/projects/new
http://pythontutor.com/visualize.html#code=&py=js
https://repl.it/languages/python3
https://en.wikipedia.org/wiki/Brackets_(text_editor)
https://en.wikipedia.org/wiki/Visual_Studio_Code

References

• Wikiversity: Computer Programming

76 | JavaScript Examples

https://en.wikiversity.org/wiki/Computer_Programming

Python Examples
DAVE BRAUNSCHWEIG

Overview

Python is an interpreted high-level programming language for
general-purpose programming. Created by Guido van Rossum
and first released in 1991, Python has a design philosophy that
emphasizes code readability, notably using significant
whitespace. It provides constructs that enable clear
programming on both small and large scales.1

Python is one of the most popular current programming
languages2, is frequently recommended as a first
programming language, and often used in information
systems and data science courses.

Example

Hello World

This program displays "Hello world!"

References:

1. Wikipedia: Python (programming language)
2. TIOBE: Index

Python Examples | 77

https://en.wikipedia.org/wiki/Python_(programming_language)
https://www.tiobe.com/tiobe-index/

https://en.wikibooks.org/wiki/Non-Programmer%27s_Tutorial_for_Python_3/Hello,_World

print("Hello world!")

Output

Hello world!

Discussion

Each code element represents:3

• # begins a comment

• print() calls the print function

• "Hello world!" is the literal string to be displayed

Python IDEs

There are many free cloud-based and local IDEs available
to begin coding in Python. Check with your instructor or do
your own research for recommendations.

Cloud-Based IDEs

• CodeChef
• GDB Online

3. Wikibooks: Programming Fundamentals/Hello World

78 | Python Examples

https://www.codechef.com/ide
https://www.onlinegdb.com/
https://en.wikibooks.org/wiki/Programming_Fundamentals/Hello_World

• Ideone
• paiza.IO
• Python Fiddle
• PythonTutor
• repl.it
• TutorialsPoint

Local IDEs

• IDLE
• Thonny

References

• Wikiversity: Computer Programming

Python Examples | 79

http://ideone.com/
https://paiza.io/projects/new
http://pythonfiddle.com/
http://pythontutor.com/visualize.html#code=&py=3
https://repl.it/languages/python3
https://www.tutorialspoint.com/execute_python3_online.php
https://en.wikipedia.org/wiki/IDLE
https://en.wikipedia.org/wiki/Thonny
https://en.wikiversity.org/wiki/Computer_Programming

Swift Examples
DAVE BRAUNSCHWEIG

File:Swift logo
with text.svg Overview

Swift is a general-purpose, multi-paradigm, compiled
programming language developed by Apple Inc. for iOS,
macOS, watchOS, tvOS, and Linux. Apple intended Swift to
support many core concepts associated with Objective-C, but
in a “safer” way, making it easier to catch software bugs. Swift
was introduced in 2014.1

Swift is a popular programming language for the Apple
platforms it supports, but it lacks support for Microsoft
Windows environments.2

Example

Hello World

// This program displays "Hello world!"

//

// References:

// https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/GuidedTour.html

1. Swift (programming language)
2. TIOBE: Index

80 | Swift Examples

https://en.wikipedia.org/wiki/Swift_(programming_language)
https://www.tiobe.com/tiobe-index/

print("Hello world!")

Output

Hello world!

Discussion

Each code element represents:3

• // begins a comment

• print() calls the print function

• "Hello world!" is the literal string to be displayed

Swift IDEs

There are several free cloud-based and local IDEs available
to begin coding in Swift. Check with your instructor or do your
own research for recommendations.

Cloud-Based IDEs

• GDB Online
• IBM Swift Sandbox
• Ideone

3. Wikibooks: Programming Fundamentals/Hello World

Swift Examples | 81

https://www.onlinegdb.com/
https://swiftlang.ng.bluemix.net/#/repl
http://ideone.com/
https://en.wikibooks.org/wiki/Programming_Fundamentals/Hello_World

• iSwift
• paiza.IO
• repl.it

Local IDEs

• AppCode
• Atom
• Xcode

References

• Wikiversity: Computer Programming

82 | Swift Examples

https://iswift.org/playground
https://paiza.io/projects/new
https://repl.it/languages/swift
https://en.wikipedia.org/wiki/AppCode
https://en.wikipedia.org/wiki/Atom_(text_editor)
https://en.wikipedia.org/wiki/Xcode
https://en.wikiversity.org/wiki/Computer_Programming

Practice: Introduction
to Programming

Review Questions

True / False:

1. Beginning programmers participate in all phases of the
Systems Development Life Cycle.

2. Coding the program in a language like C++ is the first task
of planning. You plan as you code.

3. Pseudocode is the only commonly used planning tool.
4. Pseudocode has a strict set of rules and is the same

everywhere in the computer programming industry.
5. Test data is developed for testing the program once it is

code into a language like C++.
6. The word pseudo means false and includes the concepts

of fake or imitation.
7. Many programmers pick up the bad habit of not

completing the planning step before starting to code the
program.

8. IDE means Integer Division Expression.
9. Most modern compilers are really an IDE type of software,

not just a compiler.
10. Programming errors are extremely easy to understand

and fix.

Answers:

1. false
2. false
3. false

Practice: Introduction to
Programming | 83

4. false
5. false
6. true
7. true
8. false
9. true

10. false

Short Answer:

1. List the steps of the Systems Development Life Cycle and
indicate which step you are likely to work in as a new
computer professional.

2. List and describe what might cause the four (4) types of
errors encountered in a program using a compiler and an
Integrated Development Environment software product.

Activities

Pseudocode and Flowcharts

The following activities focus on software planning and testing
using pseudocode and / or flowcharts.

1. Search the Internet for pseudocode for making a peanut
butter and jelly sandwich. Based on the examples you
find, create pseudocode to make your own favorite
sandwich or other non-prepackaged meal. Note: Because
peanut butter and jelly sandwich examples are already
available, you must select something else for your
pseudocode. Test your pseudocode by reading the
instructions out loud as someone else follows your
directions.

84 | Practice: Introduction to Programming

2. Search the Internet for a flowchart for making a peanut
butter and jelly sandwich. Use a free online or
downloadable flowchart tool to create a flowchart that
describes how to make your favorite sandwich or other
non-prepackaged meal. Note: Because peanut butter and
jelly sandwich examples are already available, you must
select something else for your flowchart. Test your
flowchart by reading the instructions out loud while
someone else follows your directions.

3. Create pseudocode or a flowchart for a program that
would interact with bank customers and help them
determine the value of a bag or jar of coins brought in for
deposit. Include counts for pennies, nickels, dimes and
quarters and calculate the total value of all of the coins
deposited. Test your program by having someone else
follow the instructions and guide them as they use your
program.

4. Create pseudocode or a flowchart for a program that
allows the user to enter gallons of gas and converts it to
liters (metric system). NOTE: One US gallon equals 3.7854
liters. Test your program by having someone else follow
the instructions and guide them as they use your
program.

5. A major restaurant sends a chef to purchase fruits and
vegetables every day. Upon returning to the store the chef
must enter two pieces of data for each item purchased:
the quantity (Example: 2 cases) and the price paid
(Example: $4.67). The program has a list of 20 items and
after the chef enters the information, the program
provides a total for the purchases for that day. Prepare test
data for five (5) items: apples, oranges, bananas, lettuce,
and tomatoes.

Programming Languages and Integrated

Practice: Introduction to Programming | 85

Development Environments

The following activities focus on selecting a programming
language and testing integrated development environments.

1. Research different programming languages and select a
programming language to use with this textbook. Copy
the Hello World example code for your selected
programming language and use one of the free cloud-
based IDEs to try running the Hello World program.

2. Modify the example Hello World program to instead
display Hello <name>!, where <name> is your name.

Include comments at the top of the program and test the
program to verify that it works correctly.

3. Research free downloadable tools for your selected
programming language (interpreter/compiler, IDE, etc.).
Consider downloading and installing a development
environment on your system. If you set up your own
development environment, test the environment using
your Hello Name program written above.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

• Wikiversity: Computer Programming

86 | Practice: Introduction to Programming

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://en.wikiversity.org/wiki/Computer_Programming

CHAPTER II

DATA AND OPERATORS

Overview

This chapter introduces constants and variables, data types,
and operators.

Chapter Outline

• Constants and Variables
• Identifier Names
• Data Types

◦ Integer Data Type
◦ Floating-Point Data Type
◦ String Data Type
◦ Boolean Data Type
◦ Nothing Data Type

• Order of Operations
• Assignment
• Arithmetic Operators
• Integer Division and Modulus
• Unary Operations
• Lvalue and Rvalue
• Data Type Conversions
• Input-Process-Output Model
• Code Examples

◦ C++
◦ C#
◦ Java

Data and Operators | 87

◦ JavaScript
◦ Python
◦ Swift

• Practice

Learning Objectives

1. Understand key terms and definitions.
2. Understand basic data types and how operators

manipulate data.
3. Given example pseudocode, flowcharts, and source code,

create a program that uses appropriate data types and
operators to solve a given problem.

88 | Data and Operators

Constants and
Variables

Overview

A constant is a value that cannot be altered by the program
during normal execution, i.e., the value is constant. When
associated with an identifier, a constant is said to be “named,”
although the terms “constant” and “named constant” are often
used interchangeably. This is contrasted with a variable, which
is an identifier with a value that can be changed during normal
execution, i.e., the value is variable.1

Discussion

Understanding Constants

A constant is a data item whose value cannot change during
the program’s execution. Thus, as its name implies – the value
is constant.

A variable is a data item whose value can change during the
program’s execution. Thus, as its name implies – the value can
vary.

Constants are used in two ways. They are:

1. Wikipedia: Constant (computer programming)

Constants and Variables | 89

https://en.wikipedia.org/wiki/Constant_(computer_programming)

1. literal constant
2. defined constant

A literal constant is a value you type into your program
wherever it is needed. Examples include the constants used for
initializing a variable and constants used in lines of code:

21

12.34

'A'

"Hello world!"

false

null

In addition to literal constants, most textbooks refer to symbolic
constants or named constants as a constant represented by a
name. Many programming languages use ALL CAPS to define
named constants.

Language Example

C++
#define PI 3.14159
or
const double PI = 3.14159;

C# const double PI = 3.14159;

Java const double PI = 3.14159;

JavaScript const PI = 3.14159;

Python PI = 3.14159

Swift let pi = 3.14159

Technically, Python does not support named constants,
meaning that it is possible (but never good practice) to change
the value of a constant later. There are workarounds for

90 | Constants and Variables

creating constants in Python, but they are beyond the scope of
a first-semester textbook.

Defining Constants and Variables

Named constants must be assigned a value when they are
defined. Variables do not have to be assigned initial values.
Variables once defined may be assigned a value within the
instructions of the program.

Language Example

C++ double value = 3;

C# double value = 3;

Java double value = 3;

JavaScript
var value = 3;

let value = 3;

Python value = 3

Swift var value:Int = 3

Key Terms

constant
A data item whose value cannot change during the
program’s execution.

variable
A data item whose value can change during the program’s
execution.

Constants and Variables | 91

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

92 | Constants and Variables

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Identifier Names

Overview

Within programming a variety of items are given descriptive
names to make the code more meaningful to us as humans.
These names are called “Identifier Names”. Constants,
variables, type definitions, functions, etc. when declared or
defined are identified by a name. These names follow a set of
rules that are imposed by:

1. the language’s technical limitations
2. good programming practices
3. common industry standards for the language

Discussion

Technical to Language

• Use only allowable characters (in many languages the first
character must be alphabetic or underscore, can continue
with alphanumeric or underscore)

• Can’t use reserved words
• Length limit

These attributes vary from one programming language to
another. The allowable characters and reserved words will be
different. The length limit refers to how many characters are
allowed in an identifier name and often is compiler dependent
and may vary from compiler to compiler for the same

Identifier Names | 93

language. However, all programming languages have some
form of the technical rules listed here.

Good Programming Techniques

• Meaningful
• Be case consistent

Meaningful identifier names make your code easier for another
to understand. After all what does “p” mean? Is it pi, price,
pennies, etc. Thus do not use cryptic (look it up in the
dictionary) identifier names.

Some programming languages treat upper and lower case
letters used in identifier names as the same. Thus: pig and Pig
are treated as the same identifier name. Unknown to you the
programmer, the compiler usually forces all identifier names
to upper case. Thus: pig and Pig both get changed to PIG.
However, not all programming languages act this way. Some
will treat upper and lower case letters as being different things.
Thus: pig and Pig are two different identifier names. If you
declare it as pig and then reference it in your code later as Pig
– you get a different variable or perhaps a compiler error. To
avoid the problem altogether, we teach students to be case
consistent. Use an identifier name only one way and spell it
(upper and lower case) the same way every time within your
program.

Industry Rules

Almost all programming languages and most coding shops
have a standard code formatting style guide programmers are

94 | Identifier Names

expected to follow. Among these are three common identifier
casing standards:

• camelCase – each word is capitalized except the first word,
with no intervening spaces

• PascalCase – each word is capitalized including the first
word, with no intervening spaces

• snake_case – each word is lowercase with underscores
separating words

C++, Java, and JavaScript typically use camelCase, with
PascalCase reserved for libraries and classes. C# uses primarily
PascalCase with camelCase parameters. Python uses
snake_case for most identifiers. In addition, the following rules
apply:

• Do not start with an underscore (used for technical
programming)

• CONSTANTS IN ALL UPPER CASE (often
UPPER_SNAKE_CASE).

These rules are decided by the industry (those who are using
the programming language).

Key Terms

camel case
The practice of writing compound words or phrases such
that each word or abbreviation in the middle of the phrase
begins with a capital letter, with no intervening spaces or
punctuation.

Pascal case
The practice of writing compound words or phrases such
that each word or abbreviation in the phrase begins with a

Identifier Names | 95

capital letter, including the first letter, with no intervening
spaces or punctuation.

reserved word
Words that cannot be used by the programmer as
identifier names because they already have a specific
meaning within the programming language.

snake case
The practice of writing compound words or phrases in
which the elements are separated with one underscore
character (_) and no spaces, with each element’s initial
letter usually lowercased within the compound and the
first letter either upper or lower case.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

96 | Identifier Names

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Data Types

Overview

A data type is a classification of data which tells the compiler
or interpreter how the programmer intends to use the data.
Most programming languages support various types of data,
including integer, real, character or string, and Boolean.1

Discussion

Our interactions (inputs and outputs) with a program are
treated in many languages as a stream of bytes. These bytes
represent data that can be interpreted as representing values
that we understand. Additionally, within a program, we process
this data in various ways such as adding them up or sorting
them. This data comes in different forms. Examples include:

• your name – a string of characters
• your age – usually an integer
• the amount of money in your pocket – usually a value

measured in dollars and cents (something with a
fractional part)

A major part of understanding how to design and code
programs is centered in understanding the types of data that
we want to manipulate and how to manipulate that data.

1. Wikipedia: Data type

Data Types | 97

https://en.wikipedia.org/wiki/Data_type

Common data types include:

Data Type Represents Examples

integer whole numbers -5, 0, 123

floating point
(real) fractional numbers

-87.5, 0.0,

3.14159

string A sequence of
characters "Hello world!"

Boolean logical true or false true, false

nothing no data null

The common data types usually exist in most programming
languages and act or behave similarly from language to
language. Additional complex and/or composite data types
may exist and vary from language to language.

Pseudocode

Function Main

 ... This program demonstrates variables, literal constants, and data types.

 Declare Integer i

 Declare Real r

 Declare String s

 Declare Boolean b

 Assign i = 1234567890

 Assign r = 1.23456789012345

 Assign s = "string"

 Assign b = true

 Output "Integer i = " & i

98 | Data Types

 Output "Real r = " & r

 Output "String s = " & s

 Output "Boolean b = " & b

End

Output

Integer i = 1234567890

Real r = 1.23456789012345

String s = string

Boolean b = true

Data Types | 99

Flowchart

100 | Data Types

Data Types | 101

Key Terms

Boolean
A data type representing logical true or false.

data type
Defines a set of values and a set of operations that can be
applied on those values.

floating point
A data type representing numbers with fractional parts.

integer
A data type representing whole numbers.

string
A data type representing a sequence of characters.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

• Flowgorithm – Flowchart Programming Language

102 | Data Types

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
http://www.flowgorithm.org/

Integer Data Type

Overview

An integer data type represents some range of mathematical
integers. Integral data types may be of different sizes and may
or may not be allowed to contain negative values. Integers are
commonly represented in a computer as a group of binary
digits (bits). The size of the grouping varies so the set of integer
sizes available varies between different types of computers and
different programming languages.1

Discussion

The integer data type basically represents whole numbers (no
fractional parts). The integer values jump from one value to
another. There is nothing between 6 and 7. It could be asked
why not make all your numbers floating point which allow for
fractional parts. The reason is threefold. First, some things in
the real world are not fractional. A dog, even with only 3 legs, is
still one (1) dog not ¾ of a dog. Second, the integer data type is
often used to control program flow by counting, thus the need
for a data type that jumps from one value to another. Third,
integer processing is significantly faster within the CPU than is
floating point processing.

The integer data type has similar attributes and acts or behaves
similarly in all programming languages that support it.

1. Wikipedia: Integer (computer science)

Integer Data Type | 103

https://en.wikipedia.org/wiki/Integer_(computer_science)

Language Reserved
Word Size Range

C++ short 16 bits / 2
bytes -32,768 to32,767

C++ int varies depends on compiler

C++ long 32 bits /
4 bytes -2,147,483,648 to 2, 147,483,647

C++
long

long
64 bits /
8 bytes

−9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

C# short 16 bits / 2
bytes -32,768 to32,767

C# int 32 bits /
4 bytes -2,147,483,648 to 2, 147,483,647

C# long 64 bits /
8 bytes

−9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

Java short 16 bits / 2
bytes -32,768 to32,767

Java int 32 bits /
4 bytes -2,147,483,648 to 2, 147,483,647

Java long 64 bits /
8 bytes

−9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

JavaScript N/A

Python int() no limit

Swift Int varies depends on platform

Swift Int32 32 bits /
4 bytes -2,147,483,648 to 2, 147,483,647

Swift Int64 64 bits /
8 bytes

−9,223,372,036,854,775,808 to
9,223,372,036,854,775,807

For C++ and Swift the size of a default integer varies with the
compiler being used and the computer. This effect is known
as being machine dependent. These variations of the integer
data type are an annoyance for a beginning programmer. For
a beginning programmer, it is more important to understand

104 | Integer Data Type

the general attributes of the integer data type that apply to
most programming languages.

JavaScript does not support an integer data type, but the
Math.round() function may be used to return the value of a

number rounded to the nearest integer.2

Python 3 integers are not limited in size, however, sys.maxsize

may be used to determine the maximum practical size of a list
or string index.3

Key Terms

machine dependent
An attribute of a programming language that changes
depending on the computer’s CPU.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

2. Mozilla: Math.round()
3. Python.org: Integers

Integer Data Type | 105

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Math/round
https://docs.python.org/3.1/whatsnew/3.0.html#integers

Floating-Point Data
Type

Overview

A floating-point data type uses a formulaic representation of
real numbers as an approximation so as to support a trade-
off between range and precision. For this reason, floating-point
computation is often found in systems which include very
small and very large real numbers, which require fast
processing times. A number is, in general, represented
approximately to a fixed number of significant digits and
scaled using an exponent in some fixed base.1

Discussion

The floating-point data type is a family of data types that act
alike and differ only in the size of their domains (the allowable
values). The floating-point family of data types represents
number values with fractional parts. They are technically stored
as two integer values: a mantissa and an exponent. The
floating-point family has the same attributes and acts or
behaves similarly in all programming languages. They can
always store negative or positive values thus they always are
signed; unlike the integer data type that could be unsigned.
The domain for floating-point data types varies because they
could represent very large numbers or very small numbers.

1. Wikipedia: Floating-point arithmetic

106 | Floating-Point Data Type

https://en.wikipedia.org/wiki/Floating-point_arithmetic

Rather than talk about the actual values, we mention
the precision. The more bytes of storage the larger the
mantissa and exponent, thus more precision.

Floating-Point Data Type | 107

Language Reserved
Word Size Precision Range

C++ float

32
bits /
4
bytes

7
decimal
digits

±3.40282347E+38

C++ double

64
bits /
8
bytes

15
decimal
digits

±1.79769313486231570E+308

C# float

32
bits /
4
bytes

7
decimal
digits

±3.40282347E+38

C# double

32
bits /
4
bytes

15
decimal
digits

±1.79769313486231570E+308

Java float

32
bits /
4
bytes

7
decimal
digits

±3.40282347E+38

Java double

32
bits /
4
bytes

15
decimal
digits

±1.79769313486231570E+308

JavaScript Number

64
bits /
8
bytes

15
decimal
digits

±1.79769313486231570E+308

Python float()

64
bits /
8
bytes

15
decimal
digits

±1.79769313486231570E+308

Swift Float

32
bits /
4
bytes

7
decimal
digits

±3.40282347E+38

Swift Double

64
bits /
8
bytes

15
decimal
digits

±1.79769313486231570E+308

108 | Floating-Point Data Type

Key Terms

double
The most often used floating-point family data type used.

mantissa exponent
The two integer parts of a floating-point value.

precision
The effect on the domain of floating-point values given a
larger or smaller storage area in bytes.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

Floating-Point Data Type | 109

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

String Data Type

Overview

A string data type is traditionally a sequence of characters,
either as a literal constant or as some kind of variable. The
latter may allow its elements to be mutated and the length
changed, or it may be fixed (after creation). A string is generally
considered a data type and is often implemented as an array
data structure of bytes (or words) that stores a sequence of
elements, typically characters, using some character
encoding.1

Discussion

Depending on programming language and precise data type
used, a variable declared to be a string may either cause
storage in memory to be statically allocated for a
predetermined maximum length or employ dynamic
allocation to allow it to hold a variable number of elements.
When a string appears literally in source code, it is known as a
string literal or an anonymous string.2

The character data type represents individual or single
characters. Characters comprise a variety of symbols such as
the alphabet (both upper and lower case) the numeral digits (0
to 9), punctuation, etc. All computers store character data in a

1. Wikipedia: String (computer science)
2. Wikipedia: String (computer science)

110 | String Data Type

https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/String_(computer_science)

one-byte field as an integer value. Because a byte consists of
8 bits, this one-byte field has 28 or 256 possibilities using the
positive values of 0 to 255.

C++, C#, and Java differentiate between single characters and
strings using single quotes and double quotes, respectively.
JavaScript, Python, and Swift do not differentiate between
characters and strings and use either single quotes or double
quotes to define string literals.

Language Reserved
Word Example

C++ char 'A'

C++ string "Hello world!"

C# char 'A'

C# String "Hello world!"

Java char 'A'

Java String "Hello world!"

JavaScript String
'Hello world!', "Hello

world!"

Python str()
'Hello world!', "Hello

world!"

Swift Character "A"

Swift String "Hello world!"

Most computing devices use the ASCII (stands for American
Standard Code for Information Interchange and is pronounced
“ask-key”) Character Set which has established values for 0 to
127. For the values of 128 to 255 they usually use the Extended
ASCII Character Set. When we hit the capital A on the keyboard,
the keyboard sends a byte with the bit pattern equal to an

String Data Type | 111

integer 65. When the byte is sent from the memory to the
monitor, the monitor converts the integer value of 65 to into
the symbol of the capital A to display on the monitor.

For now, we will address only the use of strings and characters
as constants. Most modern compilers that are part of an
Integrated Development Environment (IDE) will color the
source code to help the programmer see different features
more readily. Beginning programmers will use string constants
to send messages to standard output.

Key Terms

ASCII
American Standard Code for Information Interchange

character
A data type representing single text characters like the
alphabet, numeral digits, punctuation, etc.

double quote marks
Used to create string type data within most programming
languages.

single quote marks
Used to create character type data within languages that
differentiate between string and character data types.

string
A series or array of characters as a single piece of data.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

112 | String Data Type

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Boolean Data Type

Overview

A Boolean data type has one of two possible values (usually
denoted true and false), intended to represent the two truth
values of logic and Boolean algebra. It is named after George
Boole, who first defined an algebraic system of logic in the
mid 19th century. The Boolean data type is primarily associated
with conditional statements, which allow different actions by
changing control flow depending on whether a programmer-
specified Boolean condition evaluates to true or false.1

Discussion

The Boolean data type is also known as the logical data type
and represents the concepts of true and false. The name
“Boolean” comes from the mathematician George Boole; who
in 1854 published: An Investigation of the Laws of Thought.
Boolean algebra is the area of mathematics that deals with
the logical representation of true and false using the numbers
0 and 1. The importance of the Boolean data type within
programming is that it is used to control programming
structures (if then else, while loops, etc.) that allow us to
implement “choice” into our algorithms.

The Boolean data type has the same attributes and acts or
behaves similarly in all programming languages. However,

1. Wikipedia: Boolean data type

Boolean Data Type | 113

https://en.wikipedia.org/wiki/Boolean_data_type

while all languages recognize false as 0, some languages
define true as -1 rather than 1. This is the result of storing the
Boolean values as an integer and using a one’s complement
representation that negates all bits rather than only the
rightmost bit. To simplify processing, most programming
languages recognize any non-zero value as being true.

Language Reserved Word True False

C++ bool true false

C# bool or Boolean true false

Java bool true false

JavaScript Boolean() true false

Python bool() True False

Swift Bool true false

Key Terms

Boolean
A data type representing the concepts of true or false.

one’s complement
The value obtained by inverting all the bits in the binary
representation of a number (swapping 0s for 1s and vice
versa).

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

114 | Boolean Data Type

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Nothing Data Type
DAVE BRAUNSCHWEIG

Overview

A nothing data type is a feature of some programming
languages which allow the setting of a special value to indicate
a missing or uninitialized value rather than using the value 0
(zero).1

Discussion

Most programming languages support the use of a reserved
word or words to represent missing, uninitialized, or invalid
values.

Language Reserved Word Meaning

C++ null no value

C# null no value

Java null no value

JavaScript null no value

JavaScript NaN Not a Number

Python None no value

Swift nil no value

1. Wikipedia: Nullable type

Nothing Data Type | 115

https://en.wikipedia.org/wiki/Nullable_type

Key Terms

NaN
Reserved word used to indicate a non-numeric value in a
numeric variable.

null
Reserved word used to represent a missing value or invalid
value.

116 | Nothing Data Type

Order of Operations

Overview

The order of operations (or operator precedence) is a collection
of rules that reflect conventions about which procedures to
perform first in order to evaluate a given mathematical
expression.1

Discussion

Single values by themselves are important; however, we need
a method of manipulating values (processing data). Scientists
wanted an accurate machine for manipulating values. They
wanted a machine to process numbers or calculate answers
(that is, compute the answer). Prior to 1950, dictionaries listed
the definition of computers as ” humans that do
computations”. Thus, all of the terminology for describing data
manipulation is math oriented. Additionally, the two
fundamental data type families (the integer family and
floating-point family) consist entirely of number values.

An Expression Example with Evaluation

Let’s look at an example: 2 + 3 * 4 + 5 is our expression but what
does it equal?

1. Wikipedia: Order of operations

Order of Operations | 117

https://en.wikipedia.org/wiki/Order_of_operations

1. the symbols of + meaning addition and * meaning
multiplication are our operators

2. the values 2, 3, 4 and 5 are our operands
3. precedence says that multiplication is higher than

addition
4. thus, we evaluate the 3 * 4 to get 12
5. now we have: 2 + 12 + 5
6. the associativity rules say that addition goes left to right,

thus we evaluate the 2 +12 to get 14
7. now we have: 14 + 5
8. finally, we evaluate the 14 + 5 to get 19; which is the value

of the expression

Parentheses would change the outcome. (2 + 3) * (4 + 5)
evaluates to 45.

Parentheses would change the outcome. (2 + 3) * 4 + 5
evaluates to 25.

Operator Precedence Chart

Each computer language has some rules that define
precedence and associativity. They often follow rules we may
have already learned. Multiplication and division come before
addition and subtraction is a rule we learned in grade school.
This rule still works.

Order of Operations2

• Parentheses
• Exponents

2. Wikipedia: Order of operations

118 | Order of Operations

https://en.wikipedia.org/wiki/Order_of_operations

• Multiplication / Division
• Addition / Subtraction

A common mnemonic to remember this rule is PEMDAS, or
Please Excuse My Dear Aunt Sally. Precedence rules may vary
from one programming language to another. You should refer
to the reference sheet that summarizes the rules for the
language that you are using. It is often called an Operator
Precedence, Precedence of Operators, or Order of Operations
chart. You should review this chart as needed when evaluating
expressions.

A valid expression consists of operand(s) and operator(s) that
are put together properly. Why the (s)? Some operators are:

1. Unary – only have one operand
2. Binary – have two operands, one on each side of the

operator
3. Trinary – have two operator symbols that separate three

operands

Most operators are binary, that is they require two operands.
Some precedence charts indicate of which operators are unary
and trinary and thus all others are binary.

Key Terms

associativity
Determines the order in which the operators of the same
precedence are allowed to manipulate the operands.

evaluation
The process of applying the operators to the operands and
resulting in a single value.

Order of Operations | 119

expression
A valid sequence of operand(s) and operator(s) that
reduces (or evaluates) to a single value.

operand
A value that receives the operator’s action.

operator
A language-specific syntactical token (usually a symbol)
that causes an action to be taken on one or more
operands.

parentheses
Change the order of evaluation in an expression. You do
what’s in the parentheses first.

precedence
Determines the order in which the operators are allowed
to manipulate the operands.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

120 | Order of Operations

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Assignment
KENNETH LEROY BUSBEE

Overview

An assignment statement sets and/or re-sets the value stored
in the storage location(s) denoted by a variable name; in other
words, it copies a value into the variable.1

Discussion

The assignment operator allows us to change the value of a
modifiable data object (for beginning programmers this
typically means a variable). It is associated with the concept
of moving a value into the storage location (again usually a
variable). Within most programming languages the symbol
used for assignment is the equal symbol. But bite your tongue,
when you see the = symbol you need to start thinking:
assignment. The assignment operator has two operands. The
one to the left of the operator is usually an identifier name for a
variable. The one to the right of the operator is a value.

Simple Assignment

age = 21

The value 21 is moved to the memory location for the variable
named: age. Another way to say it: age is assigned the value 21.

1. Wikipedia: Assignment (computer science)

Assignment | 121

https://en.wikipedia.org/wiki/Assignment_(computer_science)

Assignment with an Expression

total_cousins = 4 + 3 + 5 + 2

The item to the right of the assignment operator is an
expression. The expression will be evaluated and the answer
is 14. The value 14 would be assigned to the variable named:
total_cousins.

Assignment with Identifier Names in the Expression

students_period_1 = 25

students_period_2 = 19

total_students = students_period_1 + students_period_2

The expression to the right of the assignment operator
contains some identifier names. The program would fetch the
values stored in those variables; add them together and get a
value of 44; then assign the 44 to the total_students variable.

Key Terms

assignment
An operator that changes the value of a modifiable data
object.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

122 | Assignment

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Arithmetic Operators

Overview

The basic arithmetic operations are addition, subtraction,
multiplication, and division. Arithmetic is performed according
to an order of operations.1

Discussion

An operator performs an action on one or more operands. The
common arithmetic operators are:

Action Common Symbol

Addition +

Subtraction -

Multiplication *

Division /

Modulus (associated with integers) %

These arithmetic operators are binary that is they have two
operands. The operands may be either constants or variables.

age + 1

This expression consists of one operator (addition) which has

1. Wikipedia: Arithmetic operators

Arithmetic Operators | 123

https://en.wikipedia.org/wiki/Arithmetic#Arithmetic_operations

two operands. The first is represented by a variable named age
and the second is a literal constant. If age had a value of 14 then
the expression would evaluate (or be equal to) 15.

These operators work as you have learned them throughout
your life with the exception of division and modulus. We
normally think of division as resulting in an answer that might
have a fractional part (a floating-point data type). However,
division, when both operands are of the integer data type, may
act differently. Please refer to the next section on “Integer
Division and Modulus”.

Arithmetic Assignment Operators

Many programming languages support a combination of the
assignment (=) and arithmetic operators (+, -, *, /, %). Various

textbooks call them “compound assignment operators” or
“combined assignment operators”. Their usage can be
explained in terms of the assignment operator and the
arithmetic operators. In the table, we will use the variable age
and you can assume that it is of integer data type.

Arithmetic assignment examples: Equivalent code:

age += 14; age = age + 14;

age -= 14; age = age - 14;

age *= 14; age = age * 14;

age /= 14; age = age / 14;

age %= 14; age = age % 14;

124 | Arithmetic Operators

Pseudocode

Function Main

 ... This program demonstrates arithmetic operations.

 Declare Integer a

 Declare Integer b

 Assign a = 3

 Assign b = 2

 Output "a = " & a

 Output "b = " & b

 Output "a + b = " & a + b

 Output "a - b = " & a - b

 Output "a * b = " & a * b

 Output "a / b = " & a / b

 Output "a % b = " & a % b

End

Output

a = 3

b = 2

a + b = 5

a - b = 1

a * b = 6

a / b = 1.5

a % b = 1

Arithmetic Operators | 125

Flowchart

126 | Arithmetic Operators

Arithmetic Operators | 127

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

• Flowgorithm – Flowchart Programming Language

128 | Arithmetic Operators

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
http://www.flowgorithm.org/

Integer Division and
Modulus
KENNETH LEROY BUSBEE

Overview

In integer division and modulus, the dividend is divided by the
divisor into an integer quotient and a remainder. The integer
quotient operation is referred to as integer division, and the
integer remainder operation is the modulus.12

Discussion

By the time we reach adulthood, we normally think of division
as resulting in an answer that might have a fractional part
(a floating-point data type). This type of division is known
as floating-point division. However, division, when both
operands are of the integer data type, may act differently,
depending on the programming language, and is
called: integer division. Consider:

11 / 4

Because both operands are of the integer data type the
evaluation of the expression (or answer) would be 2 with no
fractional part (it gets thrown away). Again, this type of division

1. Wikipedia: Division (mathematics)
2. Wikipedia: Modulo operation

Integer Division and Modulus | 129

http://en.wikipedia.org/wiki/Division_(mathematics)
https://en.wikipedia.org/wiki/Modulo_operation

is called integer division and it is what you learned in grade
school the first time you learned about division.

Integer division as learned in grade school.

In the real world of data manipulation there are some things
that are always handled in whole units or numbers (integer
data type). Fractions just don’t exist. To illustrate our example:
I have 11 dollar coins to distribute equally to my 4 children. How
many do they each get? The answer is 2, with me still having
3 left over (or with 3 still remaining in my hand). The answer
is not 2 ¾ each or 2.75 for each child. The dollar coins are not
divisible into fractional pieces. Don’t try thinking out of the box
and pretend you’re a pirate. Using an axe and chopping the 3
remaining coins into pieces of eight. Then, giving each child 2
coins and 6 pieces of eight or 2 6/8 or 2 ¾ or 2.75. If you do think
this way, I will change my example to cans of tomato soup. I
dare you to try and chop up three cans of soup and give each
kid ¾ of a can. Better yet, living things like puppy dogs. After
you divide them up with an axe, most children will not want the
¾ of a dog.

What is modulus? It’s the other part of the answer for integer
division. It’s the remainder. Remember in grade school you
would say, “Eleven divided by four is two remainder three.” In

130 | Integer Division and Modulus

many programming languages, the symbol for the modulus
operator is the percent sign (%).

11 % 4

Thus, the answer or value of this expression is 3 or the
remainder part of integer division.

Many compilers require that you have integer operands on
both sides of the modulus operator or you will get a compiler
error. In other words, it does not make sense to use the
modulus operator with floating-point operands.

Don’t let the following items confuse you.

6 / 24 which is different from 6 % 24

How many times can you divide 24 into 6? Six divided by 24 is
zero. This is different from: What is the remainder of 6 divided
by 24? Six, the remainder part is given by modulus.

Evaluate the following division expressions:

1. 14 / 4
2. 5 / 13
3. 7 / 2.0

Evaluate the following modulus expressions:

1. 14 % 4
2. 5 % 13
3. 7 % 2.0

Integer Division and Modulus | 131

Key Terms

integer division
Division with no fractional parts.

modulus
The remainder part of integer division.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

132 | Integer Division and Modulus

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Unary Operations
KENNETH LEROY BUSBEE

Overview

A unary operation is an operation with only one operand. As
unary operations have only one operand, they are evaluated
before other operations containing them.1 Common unary
operators include Positive (+) and Negative (-).

Discussion

Unary positive also known as plus and unary negative also
known as minus are unique operators. The plus and minus
when used with a constant value represent the concept that
the values are either positive or negative. Let’s consider:

+5 + -2

We have three operators in this order: unary positive, addition,
and unary negative. The answer to this expression is a positive
3. As you can see, one must differentiate between when the
plus sign means unary positive and when it means addition.
Unary negative and subtraction have the same problem. Let’s
consider:

-2 - +5

1. Wikipedia: Unary operation

Unary Operations | 133

https://en.wikipedia.org/wiki/Unary_operation

The expression evaluates to negative 7. Let’s consider:

7 - -2

First constants that do not have a unary minus in front of them
are assumed (the default) to be positive. When you subtract a
negative number it is like adding, thus the expression evaluates
to positive 9.

Negation – Unary Negative

The concept of negation is to take a value and change its sign,
that is: flip it. If it is positive make it negative and if it is negative
make it positive. Mathematically, it is the following C++ code
example, given that money is an integer variable with a value
of 6:

-money

money * -1

The above two expressions evaluate to the same value. In the
first line, the value in the variable money is fetched and then
it’s negated to a negative 6. In the second line, the value in the
variable money is fetched and then it’s multiplied by negative 1
making the answer a negative 6.

Unary Positive – Worthless

Simply to satisfy symmetry, the unary positive was added to
the C++ programming language as on operator. However, it
is a totally worthless or useless operator and is rarely used.
However, don’t be confused the following expression is
completely valid:

134 | Unary Operations

6 + +5

The second + sign is interpreted as unary positive. The first +
sign is interpreted as addition.

money

+money

money * +1

For all three lines, if the value stored in money is 6 the value of
the expression is 6. Even if the value in money was negative 77
the value of the expression would be negative 77. The operator
does nothing because multiplying anything by 1 does not
change its value.

Possible Confusion

Do not confuse the unary negative operator with decrement.
Decrement changes the value in the variable and thus is an
Lvalue concept. Unary negative does not change the value of
the variable but uses it in an Rvalue context. It fetches the value
and then negates that value. The original value in the variable
does not change.

Because there is no changing of the value associated with the
identifier name, the identifier name could represent a variable
or named constant.

Exercises

Evaluate the following items involving unary positive and unary
negative:

Unary Operations | 135

1. +10 – -2
2. -18 + 24
3. 4 – +3
4. +8 + – +5
5. +8 + / +5

Key Terms

minus
Aka unary negative.

plus
Aka unary positive.

unary negative
An operator that causes negation.

unary positive
A worthless operator almost never used.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

136 | Unary Operations

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Lvalue and Rvalue
KENNETH LEROY BUSBEE

Overview

Some programming languages use the idea of l-values and
r-values, deriving from the typical mode of evaluation on the
left and right hand side of an assignment statement. An lvalue
refers to an object that persists beyond a single expression. An
rvalue is a temporary value that does not persist beyond the
expression that uses it.1

Discussion

Lvalue and Rvalue refer to the left and right side of the
assignment operator. The Lvalue (pronounced: L value)
concept refers to the requirement that the operand on the
left side of the assignment operator is modifiable, usually a
variable. Rvalue concept pulls or fetches the value of the
expression or operand on the right side of the assignment
operator. Some examples:

age = 39

The value 39 is pulled or fetched (Rvalue) and stored into the
variable named age (Lvalue); destroying the value previously
stored in that variable.

1. Wikipedia: Value (computer science)

Lvalue and Rvalue | 137

http://en.wikipedia.org/wiki/Value_(computer_science)

voting_age = 18

age = voting_age

If the expression has a variable or named constant on the right
side of the assignment operator, it would pull or fetch the value
stored in the variable or constant. The value 18 is pulled or
fetched from the variable named voting_age and stored into
the variable named age.

age < 17

If the expression is a test expression or Boolean expression, the
concept is still an Rvalue one. The value in the identifier named
age is pulled or fetched and used in the relational comparison
of less than.

JACK_BENNYS_AGE = 39

JACK_BENNYS_AGE = 65;

This is illegal because the identifier JACK_BENNYS_AGE does
not have Lvalue properties. It is not a modifiable data object,
because it is a constant.

Some uses of the Lvalue and Rvalue can be confusing in
languages that support increment and decrement operators.
Consider:

oldest = 55

age = oldest++

Postfix increment says to use my existing value then when
you are done with the other operators; increment me. Thus,
the first use of the oldest variable is an Rvalue context where
the existing value of 55 is pulled or fetched and then assigned
to the variable age; an Lvalue context. The second use of the
oldest variable is an Lvalue context wherein the value of the
oldest is incremented from 55 to 56.

138 | Lvalue and Rvalue

Key Terms

Lvalue
The requirement that the operand on the left side of the
assignment operator is modifiable, usually a variable.

Rvalue
Pulls or fetches the value stored in a variable or constant.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

Lvalue and Rvalue | 139

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Data Type Conversions

Overview

Changing a data type of a value is referred to as “type
conversion”. There are two ways to do this:

1. Implicit – the change is implied
2. Explicit – the change is explicitly done with an operator or

function

The value being changed may be:

1. Promotion – going from a smaller domain to a larger
domain

2. Demotion – going from a larger domain to a smaller
domain

Discussion

Implicit Type Conversion

Automatic conversion of a value from one data type to another
by a programming language, without the programmer
specifically doing so, is called implicit type conversion. It
happens whenever a binary operator has two operands of
different data types. Depending on the operator, one of the
operands is going to be converted to the data type of the other.
It could be promoted or demoted depending on the operator.

140 | Data Type Conversions

Implicit Promotion

55 + 1.75

In this example, the integer value 55 is converted to a floating-
point value (most likely double) of 55.0. It was promoted.

Implicit Demotion

In programming languages that have explicit integer data
types (C++, C#, Java), care must be taken to avoid implicit
demotion. For example:

int money;

money = 23.16;

In this example, the variable money is an integer. We are trying
to move a floating-point value 23.16 into an integer storage
location. This is demotion and the floating-point value usually
gets truncated to 23.

Promotion

Promotion is never a problem because the lower data type
(smaller range of allowable values) is a subset of the higher
data type (larger range of allowable values). Promotion often
occurs with three of the standard data types: character, integer,
and floating-point. The allowable values (or domains) progress
from one type to another. That is, the character data type
values are a subset of integer values and integer values are a
subset of floating-point values; and within the floating-point
values, float values are a subset of double. Even though
character data represent the alphabetic letters, numeral digits
(0 to 9) and other symbols (a period, $, comma, etc.) their bit
pattern also represent integer values from 0 to 255. This

Data Type Conversions | 141

progression allows us to promote them up the chain from
character to integer to float to double.

Demotion

Demotion represents a potential problem with truncation or
unpredictable results often occurring. How do you fit an
integer value of 456 into a character value? How do you fit the
floating-point value of 45656.453 into an integer value? Most
compilers give a warning if it detects demotion happening.
A compiler warning does not stop the compilation process. It
does warn the programmer to check to see if the demotion is
reasonable.

If I calculate the number of cans of soup to buy based on the
number of people I am serving (say 8) and the servings per
can (say 2.3), I would need 18.4 cans. I might want to demote
the 18.4 into an integer. It would truncate the 18.4 into 18 and
because the value 18 is within the domain of an integer data
type, it should demote with the truncation side effect.

If I tried demoting a double that contained the number of
stars in the Milky Way galaxy into an integer, I might have a
get an unpredictable result (assuming the number of stars is
larger than allowable values within the integer domain).

Explicit Type Conversion

Most languages have a method for the programmer to change
or cast a value from one data type to another; called explicit
type conversion. Some languages support a cast operator. The
cast operator is a unary operator; it only has one operand and
the operand is to the right of the operator. The operator is

142 | Data Type Conversions

a set of parentheses surrounding the new data type. Other
languages have functions that perform explicit type
conversion. In each of the following examples, the expression
value would be 3.

Language Floating-Point to Integer Type Conversion Example

C++ (int) 3.14

C# Convert.ToInt32(3.14)

Java Math.floor(3.14)

JavaScript Math.floor(3.14)

Python int(3.14)

Swift Int(3.14)

In each of the following examples, the expression value would
be 3.14.

Language String to Floating-Point Type Conversion Example

C++
#include <string.h>

std::stod("3.14")

C# Convert.ToDouble("3.14")

Java Double.parseDouble("3.14")

JavaScript parseFloat("3.14")

Python float("3.14")

Swift Double("3.14")

Data Type Conversions | 143

Key Terms

demotion
Going from a larger domain to a smaller domain.

explicit
Changing a value’s data type with the cast operator.

implicit
A value that has its data type changed automatically.

promotion
Going from a smaller domain to a larger domain.

truncation
The fractional part of a floating-point data type that is
dropped when converted to an integer.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

144 | Data Type Conversions

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Input-Process-Output
Model
DAVE BRAUNSCHWEIG

Overview

The input–process–output (IPO) model is a widely used
approach in systems analysis and software engineering for
describing the structure of an information processing program
or another process. Many introductory programming and
systems analysis texts introduce this as the most basic
structure for describing a process.1

Discussion

A computer program or any other sort of process using the
input-process-output model receives inputs from a user or
other source, does some computations on the inputs, and
returns the results of the computations. The system divides the
work into three categories:2

• A requirement from the environment (input)
• A computation based on the requirement (process)
• A provision for the environment (output)

1. Wikipedia: IPO model
2. Wikipedia: IPO model

Input-Process-Output Model | 145

https://en.wikipedia.org/wiki/IPO_model
https://en.wikipedia.org/wiki/IPO_model

For example, a program might be written to convert
Fahrenheit temperatures into Celsius temperatures. Following
the IPO model, the program must:

• Ask the user for the Fahrenheit temperature (input)
• Perform a calculation to convert the Fahrenheit

temperature into the corresponding Celsius temperature
(process)

• Display the Celsius temperature (output)

Program Plan

This program converts an input Fahrenheit temperature to
Celsius.

Input:

Display prompt

Get Fahrenheit temperature

Process:

Convert Fahrenheit temperature to Celsius

Output:

Display Fahrenheit and Celsius temperatures

Pseudocode

Function Main

 ... This program converts an input Fahrenheit temperature to Celsius.

 Declare Real fahrenheit

146 | Input-Process-Output Model

 Declare Real celsius

 Output "Enter Fahrenheit temperature:"

 Input fahrenheit

 Assign celsius = (fahrenheit - 32) * 5 / 9

 Output fahrenheit & "° Fahrenheit is " & celsius & "° Celsius"

End

Output

Enter Fahrenheit temperature:

100

100° Fahrenheit is 37.7777777777778° Celsius

Input-Process-Output Model | 147

Flowchart

148 | Input-Process-Output Model

References

• Wikiversity: Computer Programming
• Flowgorithm – Flowchart Programming Language

Input-Process-Output Model | 149

https://en.wikiversity.org/wiki/Computer_Programming
http://www.flowgorithm.org/

C++ Examples
DAVE BRAUNSCHWEIG

Overview

The following examples demonstrate data types, arithmetic
operations, and input in C++.

Data Types

// This program demonstrates variables, literal constants, and data types.

#include <iostream>

#include <sstream>

using namespace std;

int main() {

 int i;

 double d;

 string s;

 bool b;

 i = 1234567890;

 d = 1.23456789012345;

 s = "string";

 b = true;

 cout << "Integer i = " << i << endl;

 cout << "Double d = " << d << endl;

 cout << "String s = " << s << endl;

150 | C++ Examples

 cout << "Boolean b = " << b << endl;

 return 0;

}

Output

Integer i = 1234567890

Real r = 1.23457

String s = string

Boolean b = 1

Discussion

Each code element represents:

• // begins a comment

• #include <iostream> includes standard input and

output streams

• #include <sstream> includes standard string streams

• using namespace std allows reference to string, cout,

and endl without writing std::string, std::cout, and

std::endl.

• int main() begins the main function, which returns an

integer value
• { begins a block of code

• int i defines an integer variable named i

• ; ends each line of C++ code

• double d defines a double floating-point variable named

d
• string s defines a string variable named s

• bool b defines a Boolean variable named b

• i = , d = , s =, b = assign literal values to the

C++ Examples | 151

corresponding variables
• cout is standard output

• << directs the next element to standard output

• endl ends the current line

• return 0 returns the value 0 from main, indicating the

main function completed successfully
• } ends a block of code

Arithmetic

// This program demonstrates arithmetic operations.

#include <iostream>

#include <sstream>

using namespace std;

int main() {

 int a;

 int b;

 a = 3;

 b = 2;

 cout << "a = " << a << endl;

 cout << "b = " << b << endl;

 cout << "a + b = " << a + b << endl;

 cout << "a - b = " << a - b << endl;

 cout << "a * b = " << a * b << endl;

 cout << "a / b = " << a / b << endl;

 cout << "a % b = " << a + b << endl;

 return 0;

}

152 | C++ Examples

Output

a = 3

b = 2

a + b = 5

a - b = 1

a * b = 6

a / b = 1

a % b = 5

Discussion

Each new code element represents:

• +, -, *, /, and % represent addition, subtraction,

multiplication, division, and modulus, respectively.

Temperature

// This program converts an input Fahrenheit temperature to Celsius.

//

// References:

// https://www.mathsisfun.com/temperature-conversion.html

// https://en.wikibooks.org/wiki/C%2B%2B_Programming

#include <iostream>

using namespace std;

int main() {

 double fahrenheit;

 double celsius;

 cout << "Enter Fahrenheit temperature:" << endl;

C++ Examples | 153

 cin >> fahrenheit;

 celsius = (fahrenheit - 32) * 5 / 9;

 cout << fahrenheit << "° Fahrenheit is " << celsius << "° Celsius" << endl;

 return 0;

}

Output

Enter Fahrenheit temperature:

 100

100° Fahrenheit is 37.7778° Celsius

Discussion

Each new code element represents:

• cin >> fahrenheit reads the next integer from standard

input and assigns the value to the fahrenheit variable

References

• Wikiversity: Computer Programming

154 | C++ Examples

https://en.wikiversity.org/wiki/Computer_Programming

C# Examples
DAVE BRAUNSCHWEIG

Overview

The following examples demonstrate data types, arithmetic
operations, and input in C#.

Data Types

// This program demonstrates variables, literal constants, and data types.

using System;

public class DataTypes

{

 public static void Main(string[] args)

 {

 int i;

 double d;

 string s;

 Boolean b;

 i = 1234567890;

 d = 1.23456789012345;

 s = "string";

 b = true;

 Console.WriteLine("Integer i = " + i);

 Console.WriteLine("Double d = " + d);

C# Examples | 155

 Console.WriteLine("String s = " + s);

 Console.WriteLine("Boolean b = " + b);

 }

}

Output

Integer i = 1234567890

Double d = 1.23456789012345

String s = string

Boolean b = True

Discussion

Each code element represents:

• // begins a comment

• using System allows references to Boolean and Console

without writing System.Boolean and System.Console

• public class DataTypes begins the Data Types program

• { begins a block of code

• public static void Main() begins the main function

• int i defines an integer variable named i

• ; ends each line of C# code

• double d defines a double floating-point variable named

d
• string s defines a string variable named s

• Boolean b defines a Boolean variable named b

• i = , d = , s =, b = assign literal values to the

corresponding variables
• Console.WriteLine() calls the standard output write line

function

156 | C# Examples

• } ends a block of code

Arithmetic

// This program demonstrates arithmetic operations.

using System;

public class Arithmetic

{

 public static void Main(string[] args)

 {

 int a;

 int b;

 a = 3;

 b = 2;

 Console.WriteLine("a = " + a);

 Console.WriteLine("b = " + b);

 Console.WriteLine("a + b = " + (a + b));

 Console.WriteLine("a - b = " + (a - b));

 Console.WriteLine("a * b = " + a * b);

 Console.WriteLine("a / b = " + a / b);

 Console.WriteLine("a % b = " + (a + b));

 }

}

Output

a = 3

b = 2

a + b = 5

C# Examples | 157

a - b = 1

a * b = 6

a / b = 1

a % b = 5

Discussion

Each new code element represents:

• +, -, *, /, and % represent addition, subtraction,

multiplication, division, and modulus, respectively.

Temperature

// This program converts an input Fahrenheit temperature to Celsius.

using System;

public class Temperature

{

 public static void Main(string[] args)

 {

 double fahrenheit;

 double celsius;

 Console.WriteLine("Enter Fahrenheit temperature:");

 fahrenheit = Convert.ToDouble(Console.ReadLine());

 celsius = (fahrenheit - 32) * 5 / 9;

 Console.WriteLine(

 fahrenheit.ToString() + "° Fahrenheit is " +

 celsius.ToString() + "° Celsius" + "\n");

158 | C# Examples

 }

}

Output

Enter Fahrenheit temperature:

 100

100° Fahrenheit is 37.7777777777778° Celsius

Discussion

Each new code element represents:

• Console.ReadLine() reads the next line from standard

input
• Convert.ToDouble converts the input to a double

floating-point value

References

• Wikiversity: Computer Programming

C# Examples | 159

https://en.wikiversity.org/wiki/Computer_Programming

Java Examples
DAVE BRAUNSCHWEIG

Overview

The following examples demonstrate data types, arithmetic
operations, and input in Java.

Data Types

// This program demonstrates variables, literal constants, and data types.

public class Main {

 public static void main(String[] args) {

 int i;

 double d;

 String s;

 boolean b;

 i = 1234567890;

 d = 1.23456789012345;

 s = "string";

 b = true;

 System.out.println("Integer i = " + i);

 System.out.println("Double d = " + d);

 System.out.println("String s = " + s);

 System.out.println("Boolean b = " + b);

 }

}

160 | Java Examples

Output

Integer i = 1234567890

Double d = 1.23456789012345

String s = string

Boolean b = true

Discussion

Each code element represents:

• // begins a comment

• public class DataTypes begins the Data Types program

• { begins a block of code

• public static void main(String[] args) begins the

main function
• int i defines an integer variable named i

• ; ends each line of Java code

• double d defines a double floating-point variable named

d
• string s defines a string variable named s

• boolean b defines a Boolean variable named b

• i = , d = , s =, b = assign literal values to the

corresponding variables
• System.out.println calls the standard output print line

function
• } ends a block of code

Arithmetic

// This program demonstrates arithmetic operations.

Java Examples | 161

public class Main {

 public static void main(String[] args) {

 int a;

 int b;

 a = 3;

 b = 2;

 System.out.println("a = " + a);

 System.out.println("b = " + b);

 System.out.println("a + b = " + (a + b));

 System.out.println("a - b = " + (a - b));

 System.out.println("a * b = " + a * b);

 System.out.println("a / b = " + a / b);

 System.out.println("a % b = " + (a % b));

 }

}

Output

a = 3

b = 2

a + b = 5

a - b = 1

a * b = 6

a / b = 1

a % b = 1

Discussion

Each new code element represents:

• +, -, *, /, and % represent addition, subtraction,

162 | Java Examples

multiplication, division, and modulus, respectively.

Temperature

// This program converts an input Fahrenheit temperature to Celsius.

import java.util.*;

public class Main {

 private static Scanner input = new Scanner(System.in);

 public static void main(String[] args) {

 double fahrenheit;

 double celsius;

 System.out.println("Enter Fahrenheit temperature:");

 fahrenheit = input.nextDouble();

 celsius = (fahrenheit - 32) * 5 / 9;

 System.out.println(Double.toString(fahrenheit) + "° Fahrenheit is " + celsius + "° Celsius");

 }

}

Output

Enter Fahrenheit temperature:

 100

100° Fahrenheit is 37.7777777777778° Celsius

Java Examples | 163

Discussion

Each new code element represents:

• private static Scanner input ... defines an object

to read from standard input
• input.nextDouble() reads input as a double floating-

point value

References

• Wikiversity: Computer Programming

164 | Java Examples

https://en.wikiversity.org/wiki/Computer_Programming

JavaScript Examples
DAVE BRAUNSCHWEIG

Overview

The following examples demonstrate data types, arithmetic
operations, and input in JavaScript.

Data Types

// This program demonstrates variables, literal constants, and data types.

var n;

var s;

var b;

n = 1.23456789012345;

s = "string";

b = true;

output("Number n = " + n);

output("String s = " + s);

output("Boolean b = " + b);

// Display output to the current environment

function output(text) {

 if (typeof document === 'object') {

 document.write(text);

 }

 else if (typeof console === 'object') {

JavaScript Examples | 165

 console.log(text);

 }

 else {

 print(text);

 }

}

Output

Number n = 1.23456789012345

String s = string

Boolean b = true

Discussion

Each code element represents:

◦ // begins a comment

◦ var n, s, and b define variables

◦ ; ends each line of JavaScript code

◦ i = , d = , s =, b = assign literal values to the

corresponding variables
◦ output() calls the output function

◦ function output(text) defines a output function

that checks the JavaScript environment and writes to
the current document, the console, or standard
output as appropriate.

Arithmetic

// This program demonstrates arithmetic operations.

166 | JavaScript Examples

var a;

var b;

a = 3;

b = 2;

output("a = " + a);

output("b = " + b);

output("a + b = " + (a + b));

output("a - b = " + (a - b));

output("a * b = " + a * b);

output("a / b = " + a / b);

output("a % b = " + (a % b));

// Display output to the current environment

function output(text) {

 if (typeof document === 'object') {

 document.write(text);

 }

 else if (typeof console === 'object') {

 console.log(text);

 }

 else {

 print(text);

 }

}

Output

a = 3

b = 2

a + b = 5

a - b = 1

a * b = 6

JavaScript Examples | 167

a / b = 1.5

a % b = 1

Discussion

Each new code element represents:

• +, -, *, /, and % represent addition, subtraction,

multiplication, division, and modulus, respectively.

Temperature

// This program converts an input Fahrenheit temperature to Celsius.

var fahrenheit;

var celsius;

output("Enter Fahrenheit temperature:");

fahrenheit = input();

celsius = (fahrenheit - 32) * 5 / 9;

output(fahrenheit.toString() + "° Fahrenheit is " + celsius + "° Celsius");

// Get input from the current environment

function input(text) {

 if (typeof window === 'object') {

 return prompt(text)

 }

 else if (typeof console === 'object') {

 const rls = require('readline-sync');

 var value = rls.question(text);

 return value;

168 | JavaScript Examples

 }

 else {

 output(text);

 var isr = new java.io.InputStreamReader(java.lang.System.in);

 var br = new java.io.BufferedReader(isr);

 var line = br.readLine();

 return line.trim();

 }

}

// Display output to the current environment

function output(text) {

 if (typeof document === 'object') {

 document.write(text);

 }

 else if (typeof console === 'object') {

 console.log(text);

 }

 else {

 print(text);

 }

}

Output

Enter Fahrenheit temperature:

 100

100° Fahrenheit is 37.7777777777778° Celsius

Discussion

Each new code element represents:

JavaScript Examples | 169

• function input(text) defines a function that checks the

JavaScript environment and reads from the window, the
console, or standard input as appropriate.

References

• Wikiversity: Computer Programming

170 | JavaScript Examples

https://en.wikiversity.org/wiki/Computer_Programming

Python Examples
DAVE BRAUNSCHWEIG

Overview

The following examples demonstrate data types, arithmetic
operations, and input in Python.

Data Types

This program demonstrates variables, literal constants, and data types.

i = 1234567890

f = 1.23456789012345

s = "string"

b = True

print("Integer i =", i)

print("Float f =", f)

print("String s =", s)

print("Boolean b =", b)

Output

Integer i = 1234567890

Float f = 1.23456789012345

String s = string

Boolean b = true

Python Examples | 171

Discussion

Each code element represents:

• # begins a comment

• i = , d = , s =, b = assign literal values to the

corresponding variables
• print() calls the print function

Arithmetic

This program demonstrates arithmetic operations.

a = 3

b = 2

print("a =", a)

print("b =", b)

print("a + b =", (a + b))

print("a - b =", (a - b))

print("a * b =", a * b)

print("a / b =", a / b)

print("a % b =", (a % b))

Output

a = 3

b = 2

a + b = 5

a - b = 1

a * b = 6

a / b = 1.5

172 | Python Examples

a % b = 1

Discussion

Each new code element represents:

• +, -, *, /, and % represent addition, subtraction,

multiplication, division, and modulus, respectively.

Temperature

This program converts an input Fahrenheit temperature to Celsius.

print("Enter Fahrenheit temperature:")

fahrenheit = float(input())

celsius = (fahrenheit - 32) * 5 / 9

print(str(fahrenheit) + "° Fahrenheit is " + str(celsius) + "° Celsius")

Output

Enter Fahrenheit temperature:

 100

100.0° Fahrenheit is 37.77777777777778° Celsius

Discussion

Each new code element represents:

• input() reads the next line from standard input

Python Examples | 173

• float() converts the input to a floating-point value

References

• Wikiversity: Computer Programming

174 | Python Examples

https://en.wikiversity.org/wiki/Computer_Programming

Swift Examples
DAVE BRAUNSCHWEIG

Overview

The following examples demonstrate data types, arithmetic
operations, and input in Swift.

Data Types

// This program demonstrates variables, literal constants, and data types.

var i: Int

var d: Double

var s: String

var b: Bool

i = 1234567890

d = 1.23456789012345

s = "string"

b = true

print("Integer i =", i)

print("Double d =", d)

print("String s =", s)

print("Boolean b =", b)

Swift Examples | 175

Output

Integer i = 1234567890

Double d = 1.23456789012345

String s = string

Boolean b = true

Discussion

Each code element represents:

• // begins a comment

• var i: Int defines an integer variable named i

• var d: Double defines a double floating-point variable

named d
• var s: String defines a string variable named s

• var b: Bool defines a Boolean variable named b

• i = , d = , s =, b = assign literal values to the

corresponding variables
• print() calls the print function

Arithmetic

// This program demonstrates arithmetic operations.

var a: Int

var b: Int

a = 3

b = 2

print("a =", a)

176 | Swift Examples

print("b =", b)

print("a + b =", (a + b))

print("a - b =", (a - b))

print("a * b =", a * b)

print("a / b =", a / b)

print("a % b =", (a % b))

Output

a = 3

b = 2

a + b = 5

a - b = 1

a * b = 6

a / b = 1

a % b = 1

Discussion

Each new code element represents:

• +, -, *, /, and % represent addition, subtraction,

multiplication, division, and modulus, respectively.

Temperature

// This program converts a Fahrenheit temperature to Celsius.

//

// References:

// https://www.mathsisfun.com/temperature-conversion.html

// https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html

Swift Examples | 177

var fahrenheit: Double

var celsius: Double

print("Enter Fahrenheit temperature:")

fahrenheit = Double(readLine()!)!

celsius = (fahrenheit - 32) * 5 / 9

print(String(fahrenheit) + "° Fahrenheit is " + String(celsius) + "° Celsius")

Output

Enter Fahrenheit temperature:

 100

100.0° Fahrenheit is 37.7777777777778° Celsius

Discussion

Each new code element represents:

• readline()! reads the next line from standard input

• Double()! converts the input to a double floating-point

value
• String() converts the output numeric value to a string

References

• Wikiversity: Computer Programming

178 | Swift Examples

https://en.wikiversity.org/wiki/Computer_Programming

Practice: Data and
Operators

Review Questions

True or false:

1. A data type defines a set of values and the set of
operations that can be applied to those values.

2. Reserved or key words can be used as identifier names.
3. The concept of precedence says that some operators (like

multiplication and division) are to be executed before
other operators (like addition and subtraction).

4. An operator that needs two operands, will promote one of
the operands as needed to make both operands be of the
same data type.

5. Parentheses change the precedence of operators.
6. Integer data types are stored with a mantissa and an

exponent.
7. Strings are identified by single quote marks in most

programming languages.
8. An operand is a value that receives the operator’s action.
9. Arithmetic assignment is a shorter way to write some

expressions.
10. Integer division is rarely used in computer programming.

Answers:

1. true
2. false
3. true
4. true

Practice: Data and Operators | 179

5. false – Parentheses change the order of evaluation in an
expression.

6. false
7. false
8. true
9. true

10. false

Short Answer:

1. A men’s clothing store that caters to the very rich wants to
create a database for its customers that records clothing
measurements. They need to record information for shoes,
socks, pants, dress shirts and casual shirts. HINT: You may
need more than 5 data items.

2. The sequence operator can be used when declaring
multiple identifier names for variables or constants of the
same data type. Is this a good or bad programming habit
and why?

Activities

Complete the following activities using pseudocode, a
flowcharting tool, or your selected programming language.
Use appropriate data types for each variable, and include
separate statements for input, processing, and output. Create
test data to validate the accuracy of each program. Add
comments at the top of the program and include references to
any resources used.

1. Create a program to prompt the user for hours worked
per week and rate per hour and then calculate and
display their weekly, monthly, and annual gross pay
(hours * rate). Base monthly and annual calculations

180 | Practice: Data and Operators

on 12 months per year and 52 weeks per year.1

2. Create a program that asks the user how old they are
in years, and then calculate and display their
approximate age in months, days, hours, and seconds.
For example, a person 1 year old is 12 months old, 365
days old, etc.

3. Review MathsIsFun: US Standard Lengths. Create a
program that asks the user for a distance in miles, and
then calculate and display the distance in yards, feet,
and inches, or ask the user for a distance in miles, and
then calculate and display the distance in kilometers,
meters, and centimeters.

4. Review MathsIsFun: Area of Plane Shapes. Create a
program that asks the user for the dimensions of
different shapes and then calculate and display the
area of the shapes. Do not include shape choices. That
will come later. For now, just include multiple shape
calculations in sequence.

5. Create a program that calculates the area of a room to
determine the amount of floor covering required. The
room is rectangular with the dimensions measured in
feet with decimal fractions. The output needs to be in
square yards. There are 3 linear feet (9 square feet) to a
yard.

6. Create a program that helps the user determine how
much paint is required to paint a room and how much
it will cost. Ask the user for the length, width, and
height of a room, the price of a gallon of paint, and the
number of square feet that a gallon of paint will cover.
Calculate the total area of the four walls as 2 * length

* height + 2 * width * height Calculate the

number of gallons as: total area / square feet

1. PythonLearn: Variables, expressions, and statements

Practice: Data and Operators | 181

http://www.mathsisfun.com/measure/us-standard-length.html
http://www.mathsisfun.com/area.html
http://www.pythonlearn.com/html-270/book003.html

per gallon Note: You must round up to the next full

gallon. To round up, add 0.9999 and then convert the

resulting value to an integer. Calculate the total cost of
the paint as: gallons * price per gallon.

7. Review Wikipedia: Aging in dogs. Create a program to
prompt the user for the name of their dog and its age
in human years. Calculate and display the age of their
dog in dog years, based on the popular myth that one
human year equals seven dog years. Be sure to include
the dog’s name in the output, such as:
Spike is 14 years old in dog years.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

• Wikiversity: Computer Programming

182 | Practice: Data and Operators

https://en.wikipedia.org/wiki/Aging_in_dogs
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://en.wikiversity.org/wiki/Computer_Programming

CHAPTER III

FUNCTIONS

Overview

This chapter introduces modular programming, functions,
parameters, return values, and scope.

Chapter Outline

• Modular Programming
• Hierarchy or Structure Chart
• Function Examples
• Parameters and Arguments
• Call by Value vs. Call by Reference
• Return Statement
• Void Data Type
• Scope
• Programming Style
• Standard Libraries
• Code Examples

◦ Program Plan
◦ C++
◦ C#
◦ Java
◦ JavaScript
◦ Python
◦ Swift

• Practice

Functions | 183

Learning Objectives

1. Understand key terms and definitions.
2. Given example pseudocode, flowcharts, and source code,

create a program that uses functions, parameters, and
return values to solve a given problem.

184 | Functions

Modular Programming

Overview

Modular programming is a software design technique that
emphasizes separating the functionality of a program into
independent, interchangeable modules, such that each
contains everything necessary to execute only one aspect of
the desired functionality.1

Concept of Modularization

One of the most important concepts of programming is the
ability to group some lines of code into a unit that can be
included in our program. The original wording for this was a
sub-program. Other names include: macro, sub-routine,
procedure, module and function. We are going to use the
term function for that is what they are called in most of the
predominant programming languages of today. Functions are
important because they allow us to take large complicated
programs and to divide them into smaller manageable pieces.
Because the function is a smaller piece of the overall program,
we can concentrate on what we want it to do and test it to
make sure it works properly. Generally, functions fall into two
categories:

1. Program Control – Functions used to simply sub-divide
and control the program. These functions are unique to

1. Wikipedia: Modular programming

Modular Programming | 185

https://en.wikipedia.org/wiki/Modular_programming

the program being written. Other programs may use
similar functions, maybe even functions with the same
name, but the content of the functions are almost always
very different.

2. Specific Task – Functions designed to be used with
several programs. These functions perform a specific task
and thus are usable in many different programs because
the other programs also need to do the specific task.
Specific task functions are sometimes referred to as
building blocks. Because they are already coded and
tested, we can use them with confidence to more
efficiently write a large program.

The main program must establish the existence of functions
used in that program. Depending on the programming
language, there is a formal way to:

1. define a function (its definition or the code it will execute)
2. call a function
3. declare a function (a prototype is a declaration to a

compiler)

Note: Defining and calling functions are common
activities across programming languages. Declaring
functions with prototypes is specific to certain
programming languages, including C and C++.

Program Control functions normally do not communicate
information to each other but use a common area for variable
storage. Specific Task functions are constructed so that data
can be communicated between the calling program piece
(which is usually another function) and the function being

186 | Modular Programming

called. This ability to communicate data is what allows us to
build a specific task function that may be used in many
programs. The rules for how the data is communicated in and
out of a function vary greatly by programming language, but
the concept is the same. The data items passed (or
communicated) are called parameters. Thus the
wording: parameter passing. The four data communication
options include:

1. no communication in with no communication out
2. no communication in with some communication out
3. some communication in with some communication out
4. some communication in with no communication out

Program Control Function

The main program piece in many programming languages is a
special function with the identifier name of main. The special
or uniqueness of main as a function is that this is where the
program starts executing code and this is where it usually stops
executing code. It is often the first function defined in a
program and appears after the area used for includes, other
technical items, declaration of prototypes, the listing of global
constants and variables and any other items generally needed
by the program. The code to define the function main is
provided; however, it is not prototyped or usually called like
other functions within a program.

Specific Task Function

We often have the need to perform a specific task that might
be used in many programs.

Modular Programming | 187

General layout of a function in a statically-typed language such
as C++, C#, and Java:

<return value data type> function identifier name(<data type> <identifier name for input value>) {

 //lines of code;

 return <value>;

}

General layout of a function in a dynamically typed language
such as JavaScript and Python:

function identifier name(<identifier name for input value>) {

 //lines of code;

 return <value>;

}

def function identifier name(<identifier name for input value>):

 //lines of code

 return <value>

In some programming languages, functions have a set
of braces {} used for identifying a group or block of statements
or lines of code. Other languages use indenting or some type
of begin and end statements to identify a code block. There are
normally several lines of code within a function.

Programming languages will either have specific task
functions defined before or after the main function, depending
on coding conventions for the given language.

When you call a function you use its identifier name and a set
of parentheses. You place any data items you are passing inside
the parentheses. After our program is compiled and running,
the lines of code in the main function are executed, and when
it gets to the calling of a specific task function, the control of
the program moves to the function and starts executing the
lines of code in the function. When it’s done with the lines of

188 | Modular Programming

code, it will return to the place in the program that called it (in
our example the function main) and continue with the code in
that function.

Program Layout

Most programs have several items before the functions,
including:

1. Documentation – Most programs have a comment area at
the start of the program with a variety of comments
pertinent to the program.

2. Include or import statements used to access standard
library functions.

3. Language-specific code such as namespace references or
function prototypes.

4. Global or module-level constants and variables, when
required.

Key Terms

braces
Used to identify a block of code in languages such as C++,
C#, Java, and JavaScript.

function
What modules are called in many predominant
programming languages of today.

function call
A function’s using or invoking of another function.

function definition
The code that defines what a function does.

Modular Programming | 189

function prototype
A function’s communications declaration to a compiler.

identifier name
The name given by the programmer to identify a function
or other program items such as variables.

modularization
The ability to group some lines of code into a unit that can
be included in our program.

parameter passing
How the data is communicated in to and out of a function.

program control
Functions used to simply subdivide and control the
program.

specific task
Functions designed to be used with several programs.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

190 | Modular Programming

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Hierarchy or Structure
Chart
KENNETH LEROY BUSBEE

Overview

The hierarchy chart (also known as a structure chart) shows
the relationship between various modules. Its name comes
from its general use in showing the organization (or structure)
of a business. The President at the top, then vice presidents on
the next level, etc. Within the context of a computer program, it
shows the relationship between modules (or functions). Detail
logic of the program is not presented. It does represent the
organization of the functions used within the program
showing which functions are calling on a subordinate function.
Those above are calling those on the next level down.

Hierarchy charts are created by the programmer to help
document a program. They convey the big picture of the
modules (or functions) used in a program.

Hierarchy or Structure Chart | 191

Hierarchy or Structure chart for a program that has five
functions.

Key Terms

hierarchy chart
Convey the relationship or big picture of the various
functions in a program.

structure chart
Another name for a hierarchy chart.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

192 | Hierarchy or Structure Chart

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Function Examples
DAVE BRAUNSCHWEIG

Overview

The following pseudocode and flowchart examples take the
Temperature program from the previous chapter and separate
the functionality into independent functions for input,
processing, and output, as GetFahrenheit, CalculateCelsius,
and DisplayResult, respectively.

Discussion

As independent functions, each function acts as a miniature
program, with its own input, processing, and output. As you
review the following code, note which functions have
parameters (input) and which functions have return values
(output). Parameters and return values will be discussed in the
next few pages.

Function Purpose Parameters
(input)

Return Value
(output)

 Main main
program none none

 GetFahrenheit input none fahrenheit

CalculateCelsius processing fahrenheit celsius

DisplayResult output fahrenheit,
celsius none

Function Examples | 193

Pseudocode

Function Main

 ... This program asks the user for a Fahrenheit temperature,

 ... converts the given temperature to Celsius,

 ... and displays the results.

 Declare Real fahrenheit

 Declare Real celsius

 Assign fahrenheit = GetFahrenheit()

 Assign celsius = CalculateCelsius(fahrenheit)

 Call DisplayResult(fahrenheit, celsius)

End

Function GetFahrenheit

 Declare Real fahrenheit

 Output "Enter Fahrenheit temperature:"

 Input fahrenheit

Return Real fahrenheit

Function CalculateCelsius (Real fahrenheit)

 Declare Real celsius

 Assign celsius = (fahrenheit - 32) * 5 / 9

Return Real celsius

Function DisplayResult (Real fahrenheit, Real celsius)

 Output fahrenheit & "° Fahrenheit is " & celsius & "° Celsius"

End

194 | Function Examples

Output

Enter Fahrenheit temperature:

 100

100° Fahrenheit is 37.7777777777778° Celsius

Function Examples | 195

Flowchart

196 | Function Examples

References

• Wikiversity: Computer Programming
• Flowgorithm – Flowchart Programming Language

Function Examples | 197

https://en.wikiversity.org/wiki/Computer_Programming
http://www.flowgorithm.org/

Parameters and
Arguments
DAVE BRAUNSCHWEIG

Overview

A parameter is a special kind of variable used in a function
to refer to one of the pieces of data provided as input to the
function. These pieces of data are the values of the arguments
with which the function is going to be called/invoked. An
ordered list of parameters is usually included in the definition
of a function, so that, each time the function is called, its
arguments for that call are evaluated, and the resulting values
can be assigned to the corresponding parameters.1

Discussion

Recall that the modular programming approach separates the
functionality of a program into independent modules. To
separate the functionality of one function from another, each
function is given its own unique input variables, called
parameters. The parameter values, called arguments, are
passed to the function when the function is called. Consider
the following function pseudocode:

Function CalculateCelsius (Real fahrenheit)

1. Wikipedia: Parameter (computer programming)

198 | Parameters and Arguments

https://en.wikipedia.org/wiki/Parameter_(computer_programming)

 Declare Real celsius

 Assign celsius = (fahrenheit - 32) * 5 / 9

Return Real celsius

If the CalculateCelsius function is called passing in the value
100, as in CalculateCelsius(100), the parameter is

fahrenheit and the argument is 100. The terms parameter

and argument are often used interchangeably. However,
parameter refers to the variable identifier (fahrenheit) while
argument refers to the variable value (100).

Functions may have no parameters or multiple parameters.
Consider the following function pseudocode:

Function DisplayResult (Real fahrenheit, Real celsius)

 Output fahrenheit & "° Fahrenheit is " & celsius & "° Celsius"

End

If the DisplayResult function is called passing in the values 98.6
and 37.0, as in DisplayResults(98.6, 37.0), the argument or

value for the fahrenheit parameter is 98.6 and the argument or
value for the celsius parameter is 37.0. Note that the arguments
are passed positionally. Calling DisplayResults(37.0,

98.6)would result in incorrect output, as the value of

fahrenheit would be 37.0 and the value of celsius would be 98.6.

Some programming languages, such as Python, support
named parameters. When calling functions using named
parameters, parameter names and values are used, and
positions are ignored. When names are not used, arguments
are identified by position. For example, any of the following
function calls would be valid:

CalculateCelsius(98.6, 37.0)

CalculateCelsius(fahrenheit=98.6, celsius=37.0)

CalculateCelsius(celsius=37.0, fahrenheit=98.6)

Parameters and Arguments | 199

Key Terms

argument
A value provided as input to a function.

parameter
A variable identifier provided as input to a function.

References

• Wikiversity: Computer Programming

200 | Parameters and Arguments

https://en.wikiversity.org/wiki/Computer_Programming

Call-by-valu
e vs.
call-by-refer
ence

Call by Value vs. Call by
Reference
DAVE BRAUNSCHWEIG

Overview

In call by value, a parameter acts within the function as a
new local variable initialized to the value of the argument (a
local (isolated) copy of the argument). In call by reference, the
argument variable supplied by the caller can be affected by
actions within the called function.1

1. Wikipedia: Parameter (computer programming)

Call by Value vs. Call by
Reference | 201

https://en.wikipedia.org/wiki/Parameter_(computer_programming)

Discussion

Call by Value

Within most current programming languages, parameters are
passed by value by default, with the argument as a copy of the
calling value. Arguments are isolated, and functions are free to
make changes to parameter values without any risk of impact
to the calling function. Consider the following pseudocode:

Function Main

 Declare Real fahrenheit

 Assign fahrenheit = 100

 Output "Main fahrenheit = " & fahrenheit

 Call ChangeFahrenheit(fahrenheit)

 Output "Main fahrenheit = " & fahrenheit

End

Function ChangeFahrenheit (Real fahrenheit)

 Output "ChangeFahrenheit fahrenheit = " & fahrenheit

 Assign fahrenheit = 0

 Output "ChangeFahrenheit fahrenheit = " & fahrenheit

End

Output

Main fahrenheit = 100

ChangeFahrenheit fahrenheit = 100

ChangeFahrenheit fahrenheit = 0

Main fahrenheit = 100

In English, the Main function assigns the value 100 to the

202 | Call by Value vs. Call by Reference

variable fahrenheit, displays that value, and then calls
ChangeFahrenheit passing a copy of that value. The called
function displays the argument, changes it, and displays it
again. Execution returns to the calling function, and Main
displays the value of the original variable. With call by value, the
variable fahrenheit in the calling function and the parameter
fahrenheit in the called function refer to different memory
addresses, and the called function cannot change the value of
the variable in the calling function.

Call by Reference

If a programming language uses or supports call by reference,
the variable in the calling function and the parameter in the
called function refer to the same memory address, and the
called function may change the value of the variable in the
calling function. Using the same code example as above, call by
reference output would change to:

Main fahrenheit = 100

ChangeFahrenheit fahrenheit = 100

ChangeFahrenheit fahrenheit = 0

Main fahrenheit = 0

Programming languages that support both call by value and
call by reference use some type of key word or symbol to
indicate which parameter passing method is being used.

Call by Value vs. Call by Reference | 203

Language Call By
Value Call by Reference

C++ default use ¶meter in called function

C# default use ref parameter in calling and called
functions

Java default applies to arrays and objects

JavaScript default applies to arrays and objects

Python default applies to arrays (lists) and mutable
objects

Arrays and objects are covered in later chapters.

Key Terms

call by reference
Parameters passed by calling functions may be modified
by called functions.

call by value
Parameters passed by calling functions cannot be
modified by called functions.

References

• Wikiversity: Computer Programming

204 | Call by Value vs. Call by Reference

https://en.wikiversity.org/wiki/Computer_Programming

Return Statement
DAVE BRAUNSCHWEIG AND KENNETH LEROY BUSBEE

Overview

A return statement causes execution to leave the current
function and resume at the point in the code immediately after
where the function was called. Return statements in many
languages allow a function to specify a return value to be
passed back to the code that called the function.1

Discussion

The return statement exits a function and returns to the
statement where the function was called. Most programming
languages support optionally returning a single value to the
calling function. Consider the following pseudocode:

Function Main

 ...

 Assign fahrenheit = GetFahrenheit()

 ...

End

Function GetFahrenheit

 Declare Real fahrenheit

 Output "Enter Fahrenheit temperature:"

1. Wikipedia: Return statement

Return Statement | 205

https://en.wikipedia.org/wiki/Return_statement

 Input fahrenheit

Return Real fahrenheit

In English, the Main function calls the GetFahrenheit function,
passing in no parameters. The GetFahrenheit function retrieves
input from the user and returns that input back to the main
function, where it is assigned to the variable fahrenheit. In this
example, the Main function has no return value.

Note that functions are independent, and each function must
declare its own variables. While both functions have a variable
named fahrenheit, they are not the same variable. Each
variable refers to a different location in memory. Just as
parameters by default are passed by position rather than by
name, return values are also passed by position rather than by
name. The following code would generate the same results.

Function Main

 ...

 Assign fahrenheit = GetTemperature()

 ...

End

Function GetTemperature

 Declare Real temperature

 Output "Enter Fahrenheit temperature:"

 Input temperature

Return Real temperature

Most programming languages support either zero or one
return value from a function. There are some older
programming languages where return values are not
supported. In those languages, the modules are often referred
to as subroutines rather than functions. There are also
programming languages that support multiple return values

206 | Return Statement

in a single return statement, however, only single return values
or no return value will be used in this book.

Key Terms

return
A branching control structure that causes a function to
jump back to the function that called it.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

• Wikiversity: Computer Programming

Return Statement | 207

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://en.wikiversity.org/wiki/Computer_Programming

Void Data Type

Overview

The void data type, similar to the Nothing data type described
earlier, is the data type for the result of a function that returns
normally, but does not provide a result value to its caller.1

Discussion

The void data type has no values and no operations. It’s a data
type that represents the lack of a data type.

Language Reserved Word

C++ void

C# void

Java void

JavaScript void

Python N/A

Swift Void

Many programming languages need a data type to define the
lack of return value to indicate that nothing is being returned.
The void data type is typically used in the definition and

1. Wikipedia: Void type

208 | Void Data Type

https://en.wikipedia.org/wiki/Void_type

prototyping of functions to indicate that either nothing is
being passed in and/or nothing is being returned.

Key Terms

void data type
A data type that has no values or operators and is used to
represent nothing.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

Void Data Type | 209

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Scope
KENNETH LEROY BUSBEE

Overview

The scope of an identifier name binding – an association of
a name to an entity, such as a variable – is the region of a
computer program where the binding is valid: where the name
can be used to refer to the entity. Such a region is referred to
as a scope block. In other parts of the program, the name may
refer to a different entity (it may have a different binding), or to
nothing at all (it may be unbound).1

Discussion

Scope is the area of the program where an item (be it variable,
constant, function, etc.) that has an identifier name is
recognized. In our discussion, we will use a variable and the
place within a program where the variable is defined
determines its scope.

Global scope (and by extension global data storage) occurs
when a variable is defined “outside of a function”. When
compiling the program it creates the storage area for the
variable within the program’s data area as part of the object
code. The object code has a machine code piece, a data area,
and linker resolution instructions. Because the variable has
global scope it is available to all of the functions within your

1. Wikipedia: Scope (computer science)

210 | Scope

https://en.wikipedia.org/wiki/Scope_(computer_science)

source code. It can even be made available to functions in other
object modules that will be linked to your code; however, we
will forgo that explanation now. A key wording change should
be learned at this point. Although the variable has global scope,
technically it is available only from the point of definition to
the end of the program source code. That is why most
variables with global scope are placed near the top of the
source code before any functions. This way they are available to
all of the functions.

Local scope (and by extension local data storage) occurs when
a variable is defined “inside of a function”. When compiling,
the compiler creates machine instructions that will direct the
creation of storage locations on an area known as the stack
which is part of the computer’s memory. These memory
locations exist until the function completes its task and returns
to its calling function. In assembly language, we talk about
items being pushed onto the stack and popped off the stack
when the function terminates. Thus, the stack is a reusable
area of memory being used by all functions and released as
functions terminate. Although the variable has local scope,
technically it is available only from the point of definition to
the end of the function. The parameter passing of data items
into a function establishes them as local variables. Additionally,
any other variables or constants needed by the function usually
occur near the top of the function definition so that they are
available during the entire execution of the function’s code.

Scope is an important concept for modularization. Program
control functions may use global scope for variables and
constants placing them near the top of the program before any
functions. Specific task functions use only local scope variables
by passing data as needed into the function with parameter
passing and creating local variables and constants as needed.
Any information that needs to be communicated back to the
calling function is again done via parameter passing.

Scope | 211

This closed communications model that passes all data into
and out of a function creates an important predecessor
concept for encapsulation which is used in object-oriented
programming.

Key Terms

data area
A part of an object code file used for storage of data.

global scope
Data storage defined outside of a function.

local scope
Data storage defined inside of a function.

scope
The area of a source code file where an identifier name is
recognized.

stack
A part of the computer’s memory used for storage of data.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

212 | Scope

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Programming Style

Overview

Programming style is a set of rules or guidelines used when
writing the source code for a computer program. Following a
particular programming style will help programmers read and
understand source code conforming to the style, and help to
avoid introducing errors.1

Discussion

Within the programming industry there is a desire to make
software programs easy to maintain. The desire centers on
money. Simply put, it costs less money to maintain a well
written program. One important aspect of program
maintenance is making source code listings clear and as easy
to read as possible. To that end we will consider the following:

1. Documentation
2. Vertical Alignment
3. Comments
4. Indentation
5. Meaningful Identifier Names Consistently Typed
6. Appropriate use of Typedef

The above items are not needed in order for the source code
to compile. Technically the compiler does not read the source

1. Wikipedia: Programming style

Programming Style | 213

https://en.wikipedia.org/wiki/Programming_style

code the way humans read the source code. But that is exactly
the point; the desire is to make the source code easier for
humans to read. You should not be confused between what
is possible (technically will run) and what is okay (acceptable
good programming practice that leads to readable code).

For each of these items, check style guides for your selected
programming language to determine standards and best
practices. The following are general guidelines to consider.

Documentation

Documentation is usually placed at the top of the program
using several comment lines. The amount of information
would vary based on the requirements or standards of the
company who is paying its employees or independent
contractors to write the code.

Vertical Alignment

You see this within the documentation area. All of the items
are aligned up within the same column. This vertical alignment
occurs again when variables are defined. When declaring
variables or constants many textbooks put several items on one
line; like this:

float length, width, height;

However common this is in textbooks, it would generally not be
acceptable to standards used in most companies. You should
declare each item on its own line; like this:

float length;

float width;

214 | Programming Style

float height;

This method of using one item per line is more readable by
humans. It is quicker to find an identifier name because you
can read the list vertically faster than searching horizontally.
Some programmers list them in alphabetic order.

The lines of code inside functions are also aligned vertically
and typically indented two or four spaces from the left. The
indentation helps set the block off visually.

Comments

Experts have varying viewpoints on whether, and when,
comments are appropriate in source code. Some assert that
source code should be written with few comments, on the
basis that the source code should be self-explanatory or self-
documenting. Others suggest code should be extensively
commented, with over 50% of the non-whitespace characters
in source code being contained within comments).2

In between these views is the assertion that comments are
neither beneficial nor harmful by themselves, and what
matters is that they are correct and kept in sync with the source
code, and omitted if they are superfluous, excessive, difficult to
maintain or otherwise unhelpful.3

2. Wikipedia: Comment (computer programming)
3. Wikipedia: Comment (computer programming)

Programming Style | 215

https://en.wikipedia.org/wiki/Comment_(computer_programming)
https://en.wikipedia.org/wiki/Comment_(computer_programming)

Indentation

For languages that use curly braces, there are two common
indentation styles:

function(parameters) {

 // code

}

function(parameters)

{

 // code

}

In either case, it is important to maintain vertical alignment
between the start of the code block and the closing curly brace.

The number of spaces used for indenting blocks of code is
typically two or four spaces. Care should be taken to ensure
that the IDE or code editor inserts spaces rather than tab
characters for indents.

Meaningful Identifier Names Consistently
Typed

As the name implies “identifier names” should clearly identify
who (or what) you are talking about. Calling your spouse
“Snooky” may be meaningful to only you. Others might need
to see her full name (Jane Mary Smith) to appropriately identify
who you are talking about. The same concept in programming
is true. Variables, constants, functions, and other identifiers
should use meaningful names. Additionally, those names
should be typed consistently in terms of upper and lower case

216 | Programming Style

as they are used in the program. Don’t define a variable as: Pig
and then type it later on in your program as: pig.

A good rule of thumb for identifiers in procedural programs
(as opposed to object-oriented programs) is to use verb-noun
combinations for function identifiers and use noun or
adjective-noun combinations for constant and variable
identifiers. If a function name requires two verbs or two nouns
to fully describe the function, it should probably be split into
separate functions.

Key Terms

braces
Used to identify a block of code in languages such as C++,
C#, Java, and JavaScript.

consistent
A rule that says to type identifier names in upper and
lower case consistently throughout your source code.

comments
Information inserted into a source code file for
documentation of the program.

documentation
A method of preserving information useful to others in
understanding an information system or part thereof.

indention
A method used to make sections of source code more
visible.

meaningful
A rule that says identifier names must be easily
understood by another reading the source code.

vertical alignment
A method of listing items vertically so that they are easier
to read quickly.

Programming Style | 217

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

218 | Programming Style

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Standard Libraries

Overview

Many common or standard functions, whose definitions have
already been written, are ready to be used in any program.
They are organized into a group of functions (think of them
as several books) and are collectively called a standard library.
There are many functions organized into several libraries For
example, within most programming languages many math
functions exist and have been coded (and placed into libraries).
These functions were written by programmers and tested to
ensure that they work properly. In most cases, the functions
were reviewed by several people to double and triple check
to ensure that they did what was expected. We have the
advantage of using these functions with confidence that they
will work properly in our programs, thus saving us time and
money.

Discussion

The main program must establish the existence of functions
used in that program. Depending on the programming
language, there is a formal way to:

1. define a function
2. declare a function (a prototype is a declaration to a

compiler)
3. call a function

Standard Libraries | 219

When we create functions in our program, we usually see them
in the following order in our source code listing:

1. declare the function (prototype)
2. call the function
3. define the function

When we use functions created by others that have been
organized into a library, we include a header file in our program
which contains the prototypes for the functions. Just like
functions that we create, we see them in the following order in
our source code listing:

1. declaring the function (prototype provided in the include
file)

2. call the function (with parameter passing of values)
3. define the function (it is either defined in the header file

or the linker program provides the actual object code
from a Standard Library object area)

In most cases, the user can look at the prototype and
understand exactly how the communications (parameter
passing) into and out of the function will occur when the
function is called. Let’s look at the math example of absolute
value.

220 | Standard Libraries

Language Example

C++
#include <cmath>

std::abs(number);

C# Math.Abs(number);

Java Java.lang.Math.abs(number)

JavaScript Math.abs(number);

Python abs(number)

Swift abs(number)

Not wanting to have a long function name the designers
named it: abs instead of “absolute”. This might seem to violate
the identifier naming rule of using meaningful names,
however, when identifier names are established for standard
libraries they are often shortened to a name that is easily
understood by all who would be using them. If I had two
integer variables named apple and banana; and I wanted to
store the absolute value of banana into apple; then a line of
code to call this function would be:

apple = abs(banana);

Let’s say it in English, pass the function absolute the value
stored in variable banana and assign the returning value from
the function to the variable apple. Thus, if you know the
prototype you can usually properly call the function and use its
returning value (if it has one) without ever seeing the definition
of the code (i.e. the source code that tells the function how
to get the answer; that is written by someone else; and either
included in the header file or compiled and placed into an
object library; and linked during the linking step of the
Integrated Development Environment (IDE).

Standard Libraries | 221

Key Terms

abs
A function within a standard library which stands for
absolute value.

confidence
The reliance that Standard Library functions work properly.

standard library
A set of specific task functions that have been added to
the programming language for universal use.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

222 | Standard Libraries

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Program Plan

This program converts an input Fahrenheit temperature to
Celsius.

Main Program

Get Fahrenheit

Calculate Celsius

Display Result

Get Fahrenheit

Parameters:

None

Process:

Display Prompt

Get Fahrenheit temperature

Return Value:

Fahrenheit temperature

Calculate Celsius

Parameters:

Fahrenheit temperature

Program Plan | 223

Process:

Convert Fahrenheit temperature to Celsius

Return Value:

Celsius temperature

Display Result

Parameters:

Fahrenheit temperature

Celsius temperature

Process:

Display Fahrenheit and Celsius temperatures

Return Value:

None

224 | Program Plan

C++ Examples
DAVE BRAUNSCHWEIG

Temperature

// This program asks the user for a Fahrenheit temperature,

// converts the given temperature to Celsius,

// and displays the results.

//

// References:

// https://www.mathsisfun.com/temperature-conversion.html

// https://en.wikibooks.org/wiki/C%2B%2B_Programming

#include <iostream>

using namespace std;

double getFahrenheit();

double calculateCelsius(double);

void displayResult(double, double);

int main() {

 double fahrenheit;

 double celsius;

 fahrenheit = getFahrenheit();

 celsius = calculateCelsius(fahrenheit);

 displayResult(fahrenheit, celsius);

 return 0;

}

C++ Examples | 225

double getFahrenheit() {

 double fahrenheit;

 cout << "Enter Fahrenheit temperature:" << endl;

 cin >> fahrenheit;

 return fahrenheit;

}

double calculateCelsius(double fahrenheit) {

 double celsius;

 celsius = (fahrenheit - 32) * 5 / 9;

 return celsius;

}

void displayResult(double fahrenheit, double celsius) {

 cout << fahrenheit << "° Fahrenheit is "

 << celsius << "° Celsius" << endl;

}

Output

Enter Fahrenheit temperature:

 100

100° Fahrenheit is 37.7778° Celsius

References

• Wikiversity: Computer Programming

226 | C++ Examples

https://en.wikiversity.org/wiki/Computer_Programming

C# Examples
DAVE BRAUNSCHWEIG

Temperature

// This program asks the user for a Fahrenheit temperature,

// converts the given temperature to Celsius,

// and displays the results.

//

// References:

// https://www.mathsisfun.com/temperature-conversion.html

// https://en.wikibooks.org/wiki/C_Sharp_Programming

using System;

class Temperature

{

 public static void Main (string[] args)

 {

 double fahrenheit;

 double celsius;

 fahrenheit = GetFahrenheit();

 celsius = CalculateCelsius(fahrenheit);

 DisplayResult(fahrenheit, celsius);

 }

 private static double GetFahrenheit()

 {

 string input;

 double fahrenheit;

C# Examples | 227

 Console.WriteLine("Enter Fahrenheit temperature:");

 input = Console.ReadLine();

 fahrenheit = Convert.ToDouble(input);

 return fahrenheit;

 }

 private static double CalculateCelsius(double fahrenheit)

 {

 double celsius;

 celsius = (fahrenheit - 32) * 5 / 9;

 return celsius;

 }

 private static void DisplayResult(double fahrenheit, double celsius)

 {

 Console.WriteLine(fahrenheit.ToString() + "° Fahrenheit is " +

 celsius.ToString() + "° Celsius");

 }

}

Output

Enter Fahrenheit temperature:

 100

100° Fahrenheit is 37.7777777777778° Celsius

References

• Wikiversity: Computer Programming

228 | C# Examples

https://en.wikiversity.org/wiki/Computer_Programming

Java Examples
DAVE BRAUNSCHWEIG

Temperature

// This program asks the user for a Fahrenheit temperature,

// converts the given temperature to Celsius,

// and displays the results.

//

// References:

// https://www.mathsisfun.com/temperature-conversion.html

// https://en.wikibooks.org/wiki/Java_Programming

import java.util.*;

class Main {

 private static Scanner input = new Scanner(System.in);

 public static void main(String[] args) {

 double fahrenheit;

 double celsius;

 fahrenheit = getFahrenheit();

 celsius = calculateCelsius(fahrenheit);

 displayResult(fahrenheit, celsius);

 }

 private static double getFahrenheit() {

 double fahrenheit;

 System.out.println("Enter Fahrenheit temperature:");

 fahrenheit = input.nextDouble();

Java Examples | 229

 return fahrenheit;

 }

 private static double calculateCelsius(double fahrenheit) {

 double celsius;

 celsius = (fahrenheit - 32) * 5 / 9;

 return celsius;

 }

 private static void displayResult(double fahrenheit, double celsius) {

 System.out.println(fahrenheit + "° Fahrenheit is " +

 celsius + "° Celsius");

 }

}

Output

Enter Fahrenheit temperature:

 100

100° Fahrenheit is 37.7777777777778° Celsius

References

• Wikiversity: Computer Programming

230 | Java Examples

https://en.wikiversity.org/wiki/Computer_Programming

JavaScript Examples
DAVE BRAUNSCHWEIG

Temperature

// This program asks the user for a Fahrenheit temperature,

// converts the given temperature to Celsius,

// and displays the results.

//

// References:

// https://www.mathsisfun.com/temperature-conversion.html

// https://en.wikibooks.org/wiki/JavaScript

main();

function main() {

 var fahrenheit = getFahrenheit();

 var celisus = calculateCelsius(fahrenheit);

 displayResult(fahrenheit, celisus);

}

function getFahrenheit() {

 var fahrenheit = input("Enter Fahrenheit temperature:");

 return fahrenheit;

}

function calculateCelsius(fahrenheit) {

 var celisus = (fahrenheit - 32) * 5 / 9;

 return celisus;

}

function displayResult(fahrenheit, celisus) {

JavaScript Examples | 231

 output(fahrenheit + "° Fahrenheit is " +

 celisus + "° Celsius");

}

function input(text) {

 if (typeof window === 'object') {

 return prompt(text)

 }

 else if (typeof console === 'object') {

 const rls = require('readline-sync');

 var value = rls.question(text);

 return value;

 }

 else {

 output(text);

 var isr = new java.io.InputStreamReader(java.lang.System.in);

 var br = new java.io.BufferedReader(isr);

 var line = br.readLine();

 return line.trim();

 }

}

function output(text) {

 if (typeof document === 'object') {

 document.write(text);

 }

 else if (typeof console === 'object') {

 console.log(text);

 }

 else {

 print(text);

 }

}

232 | JavaScript Examples

Output

Enter Fahrenheit temperature:

 100

100° Fahrenheit is 37.7777777777778° Celsius

References

• Wikiversity: Computer Programming

JavaScript Examples | 233

https://en.wikiversity.org/wiki/Computer_Programming

Python Examples
DAVE BRAUNSCHWEIG

Temperature

This program asks the user for a Fahrenheit temperature,

converts the given temperature to Celsius,

and displays the results.

References:

https://www.mathsisfun.com/temperature-conversion.html

https://en.wikibooks.org/wiki/Python_Programming

def get_fahrenheit():

 print("Enter Fahrenheit temperature:")

 fahrenheit = float(input())

 return fahrenheit

def calculate_celsius(fahrenheit):

 celsius = (fahrenheit - 32) * 5 / 9

 return celsius

def display_result(fahrenheit, celsius):

 print(str(fahrenheit) + "° Fahrenheit is " +

 str(celsius) + "° Celsius")

def main():

 fahrenheit = get_fahrenheit()

234 | Python Examples

 celsius = calculate_celsius(fahrenheit)

 display_result(fahrenheit, celsius)

main()

Output

Enter Fahrenheit temperature:

 100

100.0° Fahrenheit is 37.77777777777778° Celsius

References

• Wikiversity: Computer Programming

Python Examples | 235

https://en.wikiversity.org/wiki/Computer_Programming

Swift Examples
DAVE BRAUNSCHWEIG

Temperature

// This program asks the user for a Fahrenheit temperature,

// converts the given temperature to Celsius,

// and displays the results.

//

// References:

// https://www.mathsisfun.com/temperature-conversion.html

// https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html

func getFahrenheit() -> Double {

 var fahrenheit: Double

 print("Enter Fahrenheit temperature:")

 fahrenheit = Double(readLine(strippingNewline: true)!)!

 return fahrenheit

}

func calculateCelsius(fahrenheit: Double) -> Double {

 var celsius: Double

 celsius = (fahrenheit - 32) * 5 / 9

 return celsius

}

func displayResult(fahrenheit: Double, celsius: Double) {

 print(String(fahrenheit) + "° Fahrenheit is " + String(celsius) + "° Celsius")

236 | Swift Examples

}

func main() {

 var fahrenheit: Double

 var celsius: Double

 fahrenheit = getFahrenheit()

 celsius = calculateCelsius(fahrenheit:fahrenheit)

 displayResult(fahrenheit:fahrenheit, celsius:celsius)

}

main()

Output

Enter Fahrenheit temperature:

 100

100.0° Fahrenheit is 37.7777777777778° Celsius

References

• Wikiversity: Computer Programming

Swift Examples | 237

https://en.wikiversity.org/wiki/Computer_Programming

Practice: Functions

Review Questions

True / False

1. In addition to the term function as the name of a
subprogram, the computer industry also uses macro,
procedure and module.

2. Generally, functions fall into two categories: Program
Control and Specific Task.

3. Hierarchy Charts and Structure Charts are basically the
same thing.

4. Program Control functions are used to simply subdivide
and control the program.

5. The void data type is rarely used in C++.
6. Making source code readable is only used by beginning

programmers.
7. Scope refers to a brand of mouthwash.
8. User-defined specific task functions are usually placed

into a user-defined library.
9. Local and global data storage is associated with the

concept of scope.
10. Creating a header file for user-defined specific task

functions is a difficult task.
11. The stack is part of the computer’s memory used for

storage of data.
12. The standard library is a set of specific task functions that

have been added to the programming language for
universal use.

13. Programmers should not have confidence that standard

238 | Practice: Functions

library functions work properly.
14. It would be easier to write programs without using

specific task functions.

Answers:

1. true
2. true
3. true
4. true
5. false
6. false
7. false – Although Scope is a brand of mouthwash; we are

looking for the computer-related definition.
8. true
9. true

10. false – It may seem difficult at first, but with a little
practice it is really quite easy.

11. true
12. true
13. false
14. false

Short Answer

1. Create a hierarchy chart for the function example program
found in this chapter.

2. Review the programs you have already created for this
course. Based on coding standards for your selected
programming language, identify some problems that
make your code “undocumented”, “unreadable” or wrong
in some other way.

Practice: Functions | 239

Activities

Complete the following activities using pseudocode, a
flowcharting tool, or your selected programming language.
Use separate functions for input, each type of processing, and
output. Avoid global variables by passing parameters and
returning results. Create test data to validate the accuracy of
each program. Add comments at the top of the program and
include references to any resources used.

1. Create a program to prompt the user for hours worked per
week and rate per hour and then calculate and display
their weekly, monthly, and annual gross pay (hours * rate).
Base monthly and annual calculations on 12 months per
year and 52 weeks per year.1

2. Create a program that asks the user how old they are in
years, and then calculate and display their approximate
age in months, days, hours, and seconds. For example, a
person 1 year old is 12 months old, 365 days old, etc.

3. Review MathsIsFun: US Standard Lengths. Create a
program that asks the user for a distance in miles, and
then calculate and display the distance in yards, feet, and
inches, or ask the user for a distance in miles, and then
calculate and display the distance in kilometers, meters,
and centimeters.

4. Review MathsIsFun: Area of Plane Shapes. Create a
program that asks the user for the dimensions of different
shapes and then calculate and display the area of the
shapes. Do not include shape choices. That will come later.
For now, just include multiple shape calculations in
sequence.

5. Create a program that calculates the area of a room to

1. PythonLearn: Variables, expressions, and statements

240 | Practice: Functions

http://www.mathsisfun.com/measure/us-standard-length.html
http://www.mathsisfun.com/area.html
http://www.pythonlearn.com/html-270/book003.html

determine the amount of floor covering required. The
room is rectangular with the dimensions measured in feet
with decimal fractions. The output needs to be in square
yards. There are 3 linear feet (9 square feet) to a yard.

6. Create a program that helps the user determine how
much paint is required to paint a room and how much it
will cost. Ask the user for the length, width, and height of a
room, the price of a gallon of paint, and the number of
square feet that a gallon of paint will cover. Calculate the
total area of the four walls as 2 * length * height + 2

* width * height Calculate the number of gallons as:

total area / square feet per gallon Note: You must

round up to the next full gallon. To round up, add 0.9999

and then convert the resulting value to an integer.
Calculate the total cost of the paint as: gallons * price

per gallon.

7. Review Wikipedia: Aging in dogs. Create a program to
prompt the user for the name of their dog and its age in
human years. Calculate and display the age of their dog in
dog years, based on the popular myth that one human
year equals seven dog years. Be sure to include the dog’s
name in the output, such as:
Spike is 14 years old in dog years.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

• Wikiversity: Computer Programming

Practice: Functions | 241

https://en.wikipedia.org/wiki/Aging_in_dogs
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://en.wikiversity.org/wiki/Computer_Programming

CHAPTER IV

CONDITIONS

Overview

This chapter introduces conditions and selection control
structures.

Chapter Outline

• Structured Programming
• Selection Control Structures
• If Then Else
• Code Blocks
• Relational Operators
• Assignment vs. Equality
• Logical Operators
• Nested If Then Else
• Case Control Structure
• Code Examples

◦ Program Plan
◦ Condition Examples
◦ C++
◦ C#
◦ Java
◦ JavaScript
◦ Python
◦ Swift

• Practice

Conditions | 243

Learning Objectives

1. Understand key terms and definitions.
2. Given example pseudocode, flowcharts, and source code,

create a program that uses conditions and selection
control structures to solve a given problem.

244 | Conditions

Structured
Programming

Overview

Structured programming is a programming paradigm aimed
at improving the clarity, quality, and development time of a
computer program by making extensive use of the structured
control flow constructs of selection (if/then/else) and repetition
(while and for), block structures, and subroutines in contrast
to using simple tests and jumps such as the go to statement,
which can lead to “spaghetti code” that is potentially difficult
to follow and maintain.1

Discussion

One of the most important concepts of programming is the
ability to control a program so that different lines of code are
executed or that some lines of code are executed many times.
The mechanisms that allow us to control the flow of execution
are called control structures. Flowcharting is a method of
documenting (charting) the flow (or paths) that a program
would execute. There are three main categories of control
structures:

• Sequence – Very boring. Simply do one instruction then
the next and the next. Just do them in a given sequence

1. Wikipedia: Structured programming

Structured Programming | 245

https://en.wikipedia.org/wiki/Structured_programming

or in the order listed. Most lines of code are this.

• Selection – This is where you select or choose between
two or more flows. The choice is decided by asking some
sort of question. The answer determines the path (or
which lines of code) will be executed.

• Iteration – Also known as repetition, it allows some code
(one to many lines) to be executed (or repeated) several
times. The code might not be executed at all (repeat it
zero times), executed a fixed number of times or executed
indefinitely until some condition has been met. Also
known as looping because the flowcharting shows the
flow looping back to repeat the task.

A fourth category describes unstructured code.

• Branching – An uncontrolled structure that allows the
flow of execution to jump to a different part of the
program. This category is rarely used in modular
structured programming.

All high-level programming languages have control structures.
All languages have the first three categories of control
structures (sequence, selection, and iteration). Most have the if
then else structure (which belongs to the selection category)
and the while structure (which belongs to the iteration
category). After these two basic structures, there are usually
language variations.

The concept of structured programming started in the late
1960’s with an article by Edsger Dijkstra. He proposed a “go to
less” method of planning programming logic that eliminated
the need for the branching category of control structures. The
topic was debated for about 20 years. But ultimately – “By the
end of the 20th century nearly all computer scientists were

246 | Structured Programming

convinced that it is useful to learn and apply the concepts of
structured programming.”2

Key Terms

branching
An uncontrolled structure that allows the flow of
execution to jump to a different part of the program.

control structures
Mechanisms that allow us to control the flow of execution
within a program.

iteration
A control structure that allows some lines of code to be
executed many times.

selection
A control structure where the program chooses between
two or more options.

sequence
A control structure where the program executes the items
in the order listed.

spaghetti code
A pejorative phrase for unstructured and difficult to
maintain source code.3

structured programming
A method of planning programs that avoids the
branching category of control structures.

2. Wikipedia: Structured programming
3. Wikipedia: Spaghetti code

Structured Programming | 247

https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Spaghetti_code

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

248 | Structured Programming

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Selection Control
Structures

Overview

In selection control structures, conditional statements are
features of a programming language which perform different
computations or actions depending on whether a
programmer-specified Boolean condition evaluates to true or
false.1

Discussion

The basic attribute of a selection control structure is to be able
to select between two or more alternate paths. This is
described as either two-way selection or multi-way selection. A
question using Boolean concepts usually controls which path
is selected. All of the paths from a selection control structure
join back up at the end of the control structure, before moving
on to the next lines of code in a program.

If Then Else Control Structure

The if then else control structure is a two-way selection.

If age > 17

1. Wikipedia: Conditional (computer programming)

Selection Control Structures | 249

https://en.wikipedia.org/wiki/Conditional_(computer_programming)

 Output "You can vote."

False:

 Output "You can't vote."

End

Language Reserved Words

C++ if, else

C# if, else

Java if, else

JavaScript if, else

Python if, elif, else

Swift if, else

Case Control Structure

The case control structure is a multi-way selection. Case
control structures compare a given value with specified
constants and take action according to the first expression to
match.2

Case of age

 0 to 17 Display "You can't vote."

 18 to 64 Display "You're in your working years."

 65 + Display "You should be retired."

End

2. Wikipedia: Conditional (computer programming)

250 | Selection Control Structures

https://en.wikipedia.org/wiki/Conditional_(computer_programming)

Language Reserved Words

C++ switch, case, break, default

C# switch, case, break, default

Java switch, case, break, default

JavaScript switch, case, break, default

Python N/A

Swift switch, case, break (optional), default

Python does not support a case control structure. There are
workarounds, but they are beyond the scope of this book.

Key Terms

if then else
A two-way selection control structure.

case
A multi-way selection control structure.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

Selection Control Structures | 251

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

If Then Else
KENNETH LEROY BUSBEE

Overview

The if–then–else construct, sometimes called if-then, is a two-
way selection structure common across many programming
languages. Although the syntax varies from language to
language, the basic structure looks like:1

If (boolean condition) Then

 (consequent)

Else

 (alternative)

End If

Discussion

We are going to introduce the control structure from the
selection category that is available in every high level language.
It is called the if then else structure. Asking a question that has
a true or false answer controls the if then else structure. It looks
like this:

if the answer to the question is true

 then do this

else because it is false

 do this

1. Wikipedia: Conditional (computer programming)

252 | If Then Else

http://en.wikipedia.org/wiki/Conditional_(computer_programming)

In most languages, the question (called a test expression) is
a Boolean expression. The Boolean data type has two values –
true and false. Let’s rewrite the structure to consider this:

if expression is true

 then do this

else because it is false

 do this

Some languages use reserved words of: “if”, “then” and “else”.
Many eliminate the “then”. Additionally the “do this” can be tied
to true and false. You might see it as:

if expression is true

 action true

else

 action false

And most languages infer the “is true” you might see it as:

if expression

 action true

else

 action false

The above four forms of the control structure are saying the
same thing. The else word is often not used in our English
speaking today. However, consider the following conversation
between a mother and her child.

Child asks, “Mommy, may I go out side and play?”

Mother answers, “If your room is clean then you may go outside
and play or else you may go sit on a chair for five minutes as
punishment for asking me the question when you knew your
room was dirty.”

Let’s note that all of the elements are present to determine

If Then Else | 253

the action (or flow) that the child will be doing. Because the
question (your room is clean) has only two possible answers
(true or false) the actions are mutually exclusive. Either the
child 1) goes outside and plays or 2) sits on a chair for five
minutes. One of the actions is executed; never both of the
actions.

One Choice – Implied Two-Way Selection

Often the programmer will want to do something only if the
expression is true, that is with no false action. The lack of a false
action is also referred to as a “null else” and would be written
as:

if expression

 action true

else

 do nothing

Because the “else do nothing” is implied, it is usually written in
short form like:

if expression

 action true

Key Terms

if then else
A two-way selection control structure.

mutually exclusive
Items that do not overlap. Example: true or false.

254 | If Then Else

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

If Then Else | 255

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Code Blocks

Overview

A code block, sometimes referred to as a compound
statement, is a lexical structure of source code which is
grouped together. Blocks consist of one or more declarations
and statements. A programming language that permits the
creation of blocks, including blocks nested within other blocks,
is called a block-structured programming language. Blocks are
fundamental to structured programming, where control
structures are formed from blocks.1

Discussion

The Need for a Compound Statement

Within many programming languages, there can be only one
statement listed as the action part of a control structure:

if (expression)

 statement

else

 statement

Often, we will want to do more than one statement. This
problem is overcome by creating a code block or compound

1. Wikipedia: Block (programming)

256 | Code Blocks

https://en.wikipedia.org/wiki/Block_(programming)

statement. For programming languages that use curly braces
{} to designate code blocks, a compound if-then-else statement
would be similar to:

if(expression)

{

 statement;

 statement;

}

else

{

 statement;

 statement;

}

Because programmers often forget that they can have only
one statement listed as the action part of a control structure;
the programming industry encourages the use of indentation
(to see the action parts clearly) and the use of compound
statements (braces) always, even when there is only one
statement. Thus:

if(expression)

{

 statement;

}

else

{

 statement;

}

By writing code in this manner, if the programmer modifies
the code by adding more statements to either the action true
or the action false; they will not introduce either compiler or
logic errors. Using indentation and braces should become

Code Blocks | 257

standard practice in any language that requires the use of
compound statements with control structures.

Indentation and End Block

Other programming languages require explicit designation of
code blocks through either indentation or some type of end
block statement. For example, Python uses indentation to
indicate the statements in a code block:

if expression:

 statement

 statement

else:

 statement

 statement

Lua uses an end block reserved word:

if expression then

 statement

 statement

else

 statement

 statement

end

The general if-then-else structure in each of these
programming languages is similar, as is the required or
expected indentation. The difference is in the syntax used to
designate the code blocks.

258 | Code Blocks

Key Terms

block
Another name for a compound statement.

compound statement
A unit of code consisting of zero or more statements.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

Code Blocks | 259

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Relational Operators
KENNETH LEROY BUSBEE

Overview

A relational operator is a programming language construct or
operator that tests or defines some kind of relation between
two entities. These include numerical equality (e.g., 5 = 5) and
inequalities (e.g., 4 ≥ 3).1

Discussion

The relational operators are often used to create a test
expression that controls program flow. This type of expression
is also known as a Boolean expression because they create a
Boolean answer or value when evaluated. There are six
common relational operators that give a Boolean value by
comparing (showing the relationship) between two operands.
If the operands are of different data types, implicit promotion
occurs to convert the operands to the same data type.

Operator symbols and/or names can vary with different
programming languages. Most programming languages use
relational operators similar to the following:

1. Wikipedia: Relational operator

260 | Relational Operators

https://en.wikipedia.org/wiki/Relational_operator

Operator Meaning

< less than

> greater than

<= less than or equal to

>= greater than or equal to

== equality (equal to)

!= or <> inequality (not equal to)

Examples:

• 9 < 25
• 9 < 3
• 9 > 14
• 9 <= 17
• 9 >= 25
• 9 == 13
• 9 != 13
• 9 !< 25
• 9 <> 25

Note: Be careful. In math you are familiar with using
the symbol = to mean equal and ≠ to mean not
equal. In many programming languages the ≠ is not
used and the = symbol means assignment.

Relational Operators | 261

Key Terms

relational operator
An operator that gives a Boolean value by evaluating the
relationship between two operands.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

262 | Relational Operators

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Assignment vs Equality
KENNETH LEROY BUSBEE

Overview

Assignment sets and/or re-sets the value stored in the storage
location denoted by a variable name.1 Equality is a relational
operator that tests or defines the relationship between two
entities.2

Discussion

Most control structures use a test expression that executes
either selection (as in the: if then else) or iteration (as in the
while; do while; or for loops) based on the truthfulness or
falseness of the expression. Thus, we often talk about
the Boolean expression that is controlling the structure. Within
many programming languages, this expression must be a
Boolean expression and is governed by a tight set of rules.
However, in many programming languages, each data type
can be used as a Boolean expression because each data type
can be demoted into a Boolean value by using the rule/concept
that zero and nothing represent false and all non-zero values
represent true.

Within various languages, we have the potential added
confusion of the equals symbol = as an operator that does

1. Wikipedia: Assignment (computer science)
2. Wikipedia: Relational operator

Assignment vs Equality | 263

https://en.wikipedia.org/wiki/Assignment_(computer_science)
https://en.wikipedia.org/wiki/Relational_operator

not represent the normal math meaning of equality that we
have used for most of our life. The equals symbol typically
means: assignment. To get the equality concept of math we
often use two equal symbols to represent the relational
operator of equality. Let’s consider:

If (pig = 'y')

 Output "Pigs are good"

Else

 Output "Pigs are bad."

The test expression of the control structure will always be true
because the expression is an assignment (not the relational
operator of ==). It assigns the ‘y’ to the variable pig, then looks

at the value in pig and determines that it is not zero; therefore
the expression is true. And it will always be true and the else
part will never be executed. This is not what the programmer
had intended. The correct syntax for a Boolean expression is:

If (pig == 'y')

 Output "Pigs are good"

Else

 Output "Pigs are bad."

This example reminds you that you must be careful in creating
your test expressions so that they are indeed a question, usually
involving the relational operators. Some programming
languages will generate a warning or an error when an
assignment is used in a Boolean expression, and some do not.

Don’t get caught using assignment for equality.

References

• cnx.org: Programming Fundamentals – A Modular

264 | Assignment vs Equality

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Structured Approach using C++

Assignment vs Equality | 265

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Logical Operators

Overview

A logical operator is a symbol or word used to connect two
or more expressions such that the value of the compound
expression produced depends only on that of the original
expressions and on the meaning of the operator.1 Common
logical operators include AND, OR, and NOT.

Discussion

Within most languages, expressions that yield Boolean data
type values are divided into two groups. One group uses the
relational operators within their expressions and the other
group uses logical operators within their expressions.

The logical operators are often used to help create a test
expression that controls program flow. This type of expression
is also known as a Boolean expression because they create a
Boolean answer or value when evaluated. There are three
common logical operators that give a Boolean value by
manipulating other Boolean operand(s). Operator symbols
and/or names vary with different programming languages:

1. Wikipedia: Logical connective

266 | Logical Operators

https://en.wikipedia.org/wiki/Logical_connective
https://en.wikipedia.org/wiki/Logical_connective
https://en.wikipedia.org/wiki/Logical_connective
https://en.wikipedia.org/wiki/Logical_connective

Language AND OR NOT

C++ && || !

C# && || !

Java && || !

JavaScript && || !

Python and or not

Swift && || !

The vertical dashes or piping symbol is found on the same
key as the backslash \ . You use the SHIFT key to get it. It is
just above the Enter key on most keyboards. It may be a solid
vertical line on some keyboards and show as a solid vertical line
on some print fonts.

In most languages there are strict rules for forming proper
logical expressions. An example is:

6 > 4 && 2 <= 14

6 > 4 and 2 <= 14

This expression has two relational operators and one logical
operator. Using the precedence of operator rules the two
“relational comparison” operators will be done before the
“logical and” operator. Thus:

true && true

True and True

The final evaluation of the expression is: true.

We can say this in English as: It is true that six is greater than
four and that two is less than or equal to fourteen.

When forming logical expressions programmers often use

Logical Operators | 267

parentheses (even when not technically needed) to make the
logic of the expression very clear. Consider the above complex
Boolean expression rewritten:

(6 > 4) && (2 <= 14)

(6 > 4) and (2 <= 14)

Most programming languages recognize any non-zero value as
true. This makes the following a valid expression:

6 > 4 && 8

6 > 4 and 8

But remember the order of operations. In English, this is six is
greater than four and eight is not zero. Thus,

true && true

True and True

To compare 6 to both 4 and 8 would instead be written as:

6 > 4 && 6 > 8

6 > 4 and 6 > 8

This would evaluate to false as:

true && false

True and False

Truth Tables

A common way to show logical relationships is in truth tables.

268 | Logical Operators

Logical and (&&)

x y x and y

false false false

false true false

true false false

true true true

Logical or (||)

x y x or y

false false false

false true true

true false true

true true true

Logical not
(!)

x not x

false true

true false

Examples

I call this example of why I hate “and” and love “or”.

Every day as I came home from school on Monday through
Thursday; I would ask my mother, “May I go outside and play?”
She would answer, “If your room is clean and your homework is
done then you may go outside and play.” I learned to hate the
word “and”. I could manage to get one of the tasks done and

Logical Operators | 269

have some time to play before dinner, but both of them… well, I
hated “and”.

On Friday my mother took a more relaxed viewpoint and when
asked if I could go outside and play she responded, “If your
room is clean or your homework is done then you may go
outside and play.” I learned to clean my room quickly on Friday
afternoon. Well, needless to say, I loved “or”.

For the next example, just imagine a teenager talking to their
mother. During the conversation, mom says, “After all, your Dad
is reasonable!” The teenager says, “Reasonable. (short pause)
Not.”

Maybe college professors will think that all their students
studied for the exam. Ha ha! Not. Well, I hope you get the point.

Examples:

• 25 < 7 || 15 > 36
• 15 > 36 || 3 < 7
• 14 > 7 && 5 <= 5
• 4 > 3 && 17 <= 7
• ! false
• ! (13 != 7)
• 9 != 7 && ! 0
• 5 > 1 && 7

More examples:

• 25 < 7 or 15 > 36
• 15 > 36 or 3 < 7
• 14 > 7 and 5 <= 5
• 4 > 3 and 17 <= 7
• not False
• not (13 != 7)
• 9 != 7 and not 0

270 | Logical Operators

• 5 > 1 and 7

Key Terms

logical operator
An operator used to create complex Boolean expressions.

truth tables
A common way to show logical relationships.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

Logical Operators | 271

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Nested If Then Else
KENNETH LEROY BUSBEE

Overview

Two-way selection structures may be nested inside other two-
way selection structures, resulting in multi-way selection.

Discussion

We are going to first introduce the concept of nested control
structures. Nesting is a concept that places one item inside of
another. Consider:

if expression

 true action

else

 false action

This is the basic form of the if then else control structure. Now
consider:

if age is less than 18

 you can't vote

 if age is less than 16

 you can't drive

 else

 you can drive

else

 you can vote

 if age is less than 21

272 | Nested If Then Else

 you can't drink

 else

 you can drink

As you can see we simply included as part of the “true action”
a statement and another if then else control structure. We did
the same (nested another if then else) for the “false action”. In
our example, we nested if then else control structures. Nesting
could have an if then else within a while loop. Thus, the concept
of nesting allows the mixing of the different categories of
control structures.

Multiway Selection

One of the drawbacks of two-way selection is that we can only
consider two choices. But what do you do if you have more
than two choices? Consider the following which has four
choices:

if age equal to 18

 you can now vote

else

 if age equal to 39

 you are middle-aged

 else

 if age equal to 65

 you can consider retirement

 else

 your age is unimportant

You get an appropriate message depending on the value of
age. The last item is referred to as the default. If the age is not
equal to 18, 39 or 65 you get the default message. To simplify
the code structure, this is most often written as:

Nested If Then Else | 273

if age equal to 18

 you can now vote

else if age equal to 39

 you are middle-aged

else if age equal to 65

 you can consider retirement

else

 your age is unimportant

Key Terms

multiway selection
Using control structures to be able to select from more
than two choices.

nested control structures
Placing one control structure inside of another.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

274 | Nested If Then Else

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Case Control Structure
KENNETH LEROY BUSBEE

Overview

A case or switch statement is a type of selection control
mechanism used to allow the value of a variable or expression
to change the control flow of program execution via a multiway
branch.1

Discussion

One of the drawbacks of two-way selection is that we can only
consider two choices. But what do you do if you have more
than two choices? Consider the following which has four
choices:

if age equal to 18

 you can vote

else if age equal to 39

 you're middle-aged

else if age equal to 65

 consider retirement

else

 age is unimportant

You get an appropriate message depending on the value of
age. The last item is referred to as the default. If the age is

1. Wikipedia: Switch statement

Case Control Structure | 275

https://en.wikipedia.org/wiki/Switch_statement

not equal to 18, 39 or 65 you get the default message. In some
situations there is no default action. Consider this flowchart
example:

This flowchart is of the case control structure and is used for
multiway selection. The decision box holds the variable age.
The logic of the case is one of equality wherein the value in the
variable age is compared to the listed values in order from left
to right. Thus, the value stored in age is compared to 18 or is
“age equal to 18”. If it is true, the logic flows down through the
action and drops out at the bottom of the case structure. If the
value of the test expression is false, it moves to the next listed
value to the right and makes another comparison. It works
exactly the same as our nested if then else structure.

Code to Accomplish Multiway Selection

Python does not support a case control structure. But using

276 | Case Control Structure

the same example as above, here is C++ / C# / Java / JavaScript
/ Swift code to accomplish the case control structure.

switch (age)

{

 case 18:

 message = "You can vote.";

 break;

 case 39:

 message = "You're middle-aged.";

 break;

 case 65:

 message = "Consider retirement.";

 break;

 default:

 message = "Age is unimportant.";

 break;

}

The value in the variable age is compared to the first
“case”, which is the value 18 (also called the listed value) using
an equality comparison or is “age equal to 18”. If it is true, the
message is assigned the value “You can vote.” and the next line
of code (the break) is done (which jumps us to the end of the
control structure). If it is false, it moves on to the next case for
comparison.

Many programming languages require the listed values for the
case control structure be of the integer family of data types.
This basically means either an integer or character data type.
Consider this example that uses character data type (choice is
a character variable):

switch (choice)

{

 case 'A':

Case Control Structure | 277

 message = "You are an A student.";

 break;

 case 'B':

 message = "You are a B student.";

 break;

 case 'C':

 message = "You are a C student.";

 break;

 default:

 message = "Maybe you should study harder.";

 break;

}

Limitations of the Case Control Structure

Most programming languages do not allow ranges of values for
case-like structures. Consider this flowcharting example that
used ranges:

278 | Case Control Structure

Consider also the following pseudocode for the same logic:

Case of age

 0 to 17 Display "You can't vote."

 18 to 64 Display "You’re in your working years."

 65 + Display "You should be retired."

End

Using the case control structure when using non-integer
family or ranges of values is allowed when designing a program
and documenting that design with pseudocode or
flowcharting. However, the implementation in most languages
would follow a nested if then else approach with complex
Boolean expressions. The logic of the above examples would
look like this:

if age > 0 and age <= to 17

 display You can’t vote.

else if age is >= 18 and age <= 64

 display You’re in your working years.

else

 display You should be retired.

Good Structured Programming Methods

Most textbook authors confirm that good structured
programming techniques and habits are more important than
concentrating on the technical possibilities and capabilities of
the language that you are using to learn programming skills.
Remember, this module is concentrating on programming
fundamentals and concepts to build our initial programming
skills. It is not a created with the intent to cover programming
languages in detail, despite the fact that at times we have to
cover language mechanics.

Case Control Structure | 279

Key Terms

case
A control structure that does multiway selection.

switch
A control structure that can be made to act like a case
control structure.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

280 | Case Control Structure

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Program Plan

This program asks the user to select Fahrenheit or Celsius
conversion and input a given temperature. Then the program
converts the given temperature and displays the result.

Main Program

Get Choice

Either:

Get Fahrenheit temperature

Calculate Celsius

Display Result

Or:

Get Celsius temperature

Calculate Fahrenheit

Display Result

Get Choice

Parameters:

None

Process:

Display prompt

Program Plan | 281

Get choice of Fahrenheit or Celsius conversion

Return Value:

Choice

Get Temperature

Parameters:

Label (Fahrenheit or Celsius)

Process:

Display prompt with label

Get temperature

Return Value:

Temperature

Calculate Celsius

Parameters:

Fahrenheit temperature

Process:

Convert Fahrenheit temperature to Celsius

Return Value:

Celsius temperature

Calculate Fahrenheit

282 | Program Plan

Parameters:

Celsius temperature

Process:

Convert Celsius temperature to Fahrenheit

Return Value:

Fahrenheit temperature

Display Result

Parameters:

Input temperature

From label (Fahrenheit or Celsius)

Output temperature

To label (Fahrenheit or Celsius)

Process:

Display temperatures and labels

Return Value:

None

Program Plan | 283

Condition Examples
DAVE BRAUNSCHWEIG

Temperature

Pseudocode

Function Main

 Declare String choice

 Declare Real temperature

 Declare Real result

 Assign choice = GetChoice()

 If Choice = "C" Or Choice = "c"

 Assign temperature = GetTemperature("Fahrenheit")

 Assign result = CalculateCelsius(temperature)

 Call DisplayResult(temperature, "Fahrenheit", result, "Celsius")

 False:

 If Choice = "F" Or Choice = "f"

 Assign temperature = GetTemperature("Celsius")

 Assign result = CalculateFahrenheit(temperature)

 Call DisplayResult(temperature, "Celsius", result, "Fahrenheit")

 False:

 Output "You must enter C to convert to Celsius or F to convert to Fahrenheit!"

 End

 End

End

Function CalculateCelsius (Real fahrenheit)

 Declare Real celsius

284 | Condition Examples

 Assign celsius = (fahrenheit - 32) * 5 / 9

Return Real celsius

Function CalculateFahrenheit (Real celsius)

 Declare Real fahrenheit

 Assign fahrenheit = celsius * 9 / 5 + 32

Return Real fahrenheit

Function DisplayResult (Real temperature, String fromLabel, Real result, String toLabel)

 Output temperature & "° " & fromLabel & " is " & result & "° " & toLabel

End

Function GetChoice

 Declare String choice

 Output "Enter F to convert to Fahrenheit or C to convert to Celsius:"

 Input Choice

Return String choice

Function GetTemperature (String label)

 Declare Real temperature

 Output "Enter " & label & " temperature:"

 Input temperature

Return Real temperature

Output

Enter C to convert to Celsius or F to convert to Fahrenheit:

 c

Enter Fahrenheit temperature:

 100

100° Fahrenheit is 37.7777777777778° Celsius

Condition Examples | 285

Enter C to convert to Celsius or F to convert to Fahrenheit:

 f

Enter Celsius temperature:

 100

100° Celsius is 212° Fahrenheit

Enter C to convert to Celsius or F to convert to Fahrenheit:

 x

You must enter C to convert to Celsius or F to convert to Fahrenheit.

Flowchart

Main

End

String choice

choice = GetChoice()

Choice = "C" Or Choice =
"c"

ProcessCelsius()

Choice = "F" Or Choice = "f"

ProcessFahrenheit()Output "You must enter C to
convert to Celsius or F to

convert to Fahrenheit!"

TrueFalse

TrueFalse

286 | Condition Examples

ProcessCelsius

End

Real temperature

Real result

temperature =
GetTemperature("Celsius")

result = CalculateCelsius
(temperature)

DisplayResult(temperature,
"Fahrenheit", result,

"Celsius")

 ProcessFahrenheit

End

Real temperature

Real result

temperature =
GetTemperature

("Fahrenheit")

result = CalculateFahrenheit
(temperature)

DisplayResult(temperature,
"Celsius", result,

"Fahrenheit")

GetChoice

Return String choice

String choice

Output "Enter F to convert
to Fahrenheit or C to
convert to Celsius:"

Input Choice

 GetTemperature
(String scale)

Return Real temperature

Real temperature

Output "Enter " & scale &
" temperature:"

Input temperature

CalculateCelsius
(Real fahrenheit)

Return Real celsius

Real celsius

celsius = (fahrenheit - 32) *
5 / 9

 CalculateFahrenheit
(Real celsius)

Return Real fahrenheit

Real fahrenheit

fahrenheit = celsius * 9 / 5 +
32

DisplayResult
(Real temperature, String fromScale, Real result, String

toScale)

End

Output temperature & "° " &
fromScale & " is " & result & "° " &

toScale

Condition Examples | 287

References

• Wikiversity: Computer Programming

288 | Condition Examples

https://en.wikiversity.org/wiki/Computer_Programming

C++ Examples
DAVE BRAUNSCHWEIG

Temperature

// This program asks the user to select Fahrenheit or Celsius conversion

// and input a given temperature. Then the program converts the given

// temperature and displays the result.

//

// References:

// https://www.mathsisfun.com/temperature-conversion.html

// https://en.wikibooks.org/wiki/C%2B%2B_Programming

#include <iostream>

using namespace std;

double getTemperature(string label);

double calculateCelsius(double fahrenheit);

double calculateFahrenheit(double celsius);

void displayResult(double temperature, string fromLabel, double result, string toLabel);

int main() {

 // main could either be an if-else structure or a switch-case structure

 char choice;

 double temperature;

 double result;

 cout << "Enter F to convert to Fahrenheit or C to convert to Celsius:" <> choice;

 // if-else approach

C++ Examples | 289

 if (choice == 'C' || choice == 'c') {

 temperature = getTemperature("Fahrenheit");

 result = calculateCelsius(temperature);

 displayResult(temperature, "Fahrenheit", result, "Celsius");

 }

 else if (choice == 'F' || choice == 'f') {

 temperature = getTemperature("Celsius");

 result = calculateFahrenheit(temperature);

 displayResult(temperature, "Celsius", result, "Fahrenheit");

 }

 else {

 cout << "You must enter C to convert to Celsius or F to convert to Fahrenheit!" << endl;

 }

 // switch-case approach

 switch(choice) {

 case 'C':

 case 'c':

 temperature = getTemperature("Fahrenheit");

 result = calculateCelsius(temperature);

 displayResult(temperature, "Fahrenheit", result, "Celsius");

 break;

 case 'F':

 case 'f':

 temperature = getTemperature("Celsius");

 result = calculateFahrenheit(temperature);

 displayResult(temperature, "Celsius", result, "Fahrenheit");

 break;

 default:

 cout << "You must enter C to convert to Celsius or F to convert to Fahrenheit!" << endl;

 }

}

double getTemperature(string label) {

 double temperature;

290 | C++ Examples

 cout << "Enter " << label << " temperature:" <> temperature;

 return temperature;

}

double calculateCelsius(double fahrenheit) {

 double celsius;

 celsius = (fahrenheit - 32) * 5 / 9;

 return celsius;

}

double calculateFahrenheit(double celsius) {

 double fahrenheit;

 fahrenheit = celsius * 9 / 5 + 32;

 return fahrenheit;

}

void displayResult(double temperature, string fromLabel, double result, string toLabel) {

 cout << temperature << "° " << fromLabel << " is " << result << "° " << toLabel << endl;

}

Output

Enter C to convert to Celsius or F to convert to Fahrenheit:

 c

Enter Fahrenheit temperature:

 100

100° Fahrenheit is 37.7778° Celsius

C++ Examples | 291

Enter C to convert to Celsius or F to convert to Fahrenheit:

 f

Enter Celsius temperature:

 100

100° Celsius is 212° Fahrenheit

Enter C to convert to Celsius or F to convert to Fahrenheit:

 x

You must enter C to convert to Celsius or F to convert to Fahrenheit.

References

• Wikiversity: Computer Programming

292 | C++ Examples

https://en.wikiversity.org/wiki/Computer_Programming

C# Examples
DAVE BRAUNSCHWEIG

Temperature

// This program asks the user to select Fahrenheit or Celsius conversion

// and input a given temperature. Then the program converts the given

// temperature and displays the result.

//

// References:

// https://www.mathsisfun.com/temperature-conversion.html

// https://en.wikibooks.org/wiki/C_Sharp_Programming

using System;

public class MainClass

{

 public static void Main(String[] args)

 {

 // main could either be an if-else structure or a switch-case structure

 string choice;

 double temperature;

 double result;

 Console.WriteLine("Enter F to convert to Fahrenheit or C to convert to Celsius:");

 choice = Console.ReadLine();

 // if-else approach

 if (choice == "C" || choice == "c")

 {

 temperature = GetTemperature("Fahrenheit");

C# Examples | 293

 result = CalculateCelsius(temperature);

 DisplayResult(temperature, "Fahrenheit", result, "Celsius");

 }

 else if (choice == "F" || choice == "f")

 {

 temperature = GetTemperature("Celsius");

 result = CalculateFahrenheit(temperature);

 DisplayResult(temperature, "Celsius", result, "Fahrenheit");

 }

 else

 {

 Console.WriteLine("You must enter C to convert to Celsius or F to convert to Fahrenheit!");

 }

 // switch-case approach

 switch(choice)

 {

 case "C":

 case "c":

 temperature = GetTemperature("Fahrenheit");

 result = CalculateCelsius(temperature);

 DisplayResult(temperature, "Fahrenheit", result, "Celsius");

 break;

 case "F":

 case "f":

 temperature = GetTemperature("Celsius");

 result = CalculateFahrenheit(temperature);

 DisplayResult(temperature, "Celsius", result, "Fahrenheit");

 break;

 default:

 Console.WriteLine("You must enter C to convert to Celsius or F to convert to Fahrenheit!");

 break;

 }

 }

294 | C# Examples

 private static double GetTemperature(string label)

 {

 string input;

 double temperature;

 Console.WriteLine("Enter " + label + " temperature:");

 input = Console.ReadLine();

 temperature = Convert.ToDouble(input);

 return temperature;

 }

 private static double CalculateCelsius(double fahrenheit)

 {

 double celsius;

 celsius = (fahrenheit - 32) * 5 / 9;

 return celsius;

 }

 private static double CalculateFahrenheit(double celsius)

 {

 double fahrenheit;

 fahrenheit = celsius * 9 / 5 + 32;

 return fahrenheit;

 }

 private static void DisplayResult(double fahrenheit, string fromLabel, double celsius, string toLabel)

 {

 Console.WriteLine(fahrenheit.ToString() + "° " + fromLabel + " is " + celsius.ToString() + "° " + toLabel);

 }

}

C# Examples | 295

Output

Enter C to convert to Celsius or F to convert to Fahrenheit:

 c

Enter Fahrenheit temperature:

 100

100° Fahrenheit is 37.7777777777778° Celsius

Enter C to convert to Celsius or F to convert to Fahrenheit:

 f

Enter Celsius temperature:

 100

100° Celsius is 212° Fahrenheit

Enter C to convert to Celsius or F to convert to Fahrenheit:

 x

You must enter C to convert to Celsius or F to convert to Fahrenheit.

References

• Wikiversity: Computer Programming

296 | C# Examples

https://en.wikiversity.org/wiki/Computer_Programming

Java Examples
DAVE BRAUNSCHWEIG

Temperature

// This program asks the user to select Fahrenheit or Celsius conversion

// and input a given temperature. Then the program converts the given

// temperature and displays the result.

//

// References:

// https://www.mathsisfun.com/temperature-conversion.html

// https://en.wikibooks.org/wiki/Java_Programming

import java.util.*;

class Main {

 private static Scanner input = new Scanner(System.in);

 public static void main(String[] args) {

 // main could either be an if-else structure or a switch-case structure

 String choice;

 double temperature;

 double result;

 choice = getChoice();

 // if-else approach

 if (choice.equals("C") || choice.equals("c")) {

 temperature = getTemperature("Fahrenheit");

 result = calculateCelsius(temperature);

 displayResult(temperature, "Fahrenheit", result, "Celsius");

Java Examples | 297

 } else if (choice.equals("F") || choice.equals("f")) {

 temperature = getTemperature("Celsius");

 result = calculateFahrenheit(temperature);

 displayResult(temperature, "Celsius", result, "Fahrenheit");

 } else {

 System.out.println("You must enter C to convert to Celsius or F to convert to Fahrenheit!");

 }

 // switch-case approach

 switch (choice) {

 case "C":

 case "c":

 temperature = getTemperature("Fahrenheit");

 result = calculateCelsius(temperature);

 displayResult(temperature, "Fahrenheit", result, "Celsius");

 break;

 case "F":

 case "f":

 temperature = getTemperature("Celsius");

 result = calculateFahrenheit(temperature);

 displayResult(temperature, "Celsius", result, "Fahrenheit");

 break;

 default:

 System.out.println("You must enter C to convert to Celsius or F to convert to Fahrenheit!");

 }

 }

 public static String getChoice() {

 String choice;

 System.out.println("Enter C to convert to Celsius or F to convert to Fahrenheit:");

 choice = input.nextLine();

 return choice;

 }

298 | Java Examples

 public static double getTemperature(String label) {

 double temperature;

 System.out.println("Enter " + label + " temperature:");

 temperature = input.nextDouble();

 return temperature;

 }

 public static double calculateCelsius(double fahrenheit) {

 double celsius;

 celsius = (fahrenheit - 32) * 5 / 9;

 return celsius;

 }

 public static double calculateFahrenheit(double celsius) {

 double fahrenheit;

 fahrenheit = celsius * 9 / 5 + 32;

 return fahrenheit;

 }

 public static void displayResult(double temperature, String fromLabel, double result, String toLabel) {

 System.out.println(Double.toString(temperature) + "° " + fromLabel + " is " + result + "° " + toLabel);

 }

}

Output

Enter C to convert to Celsius or F to convert to Fahrenheit:

Java Examples | 299

 c

Enter Fahrenheit temperature:

 100

100.0° Fahrenheit is 37.77777777777778° Celsius

Enter C to convert to Celsius or F to convert to Fahrenheit:

 f

Enter Celsius temperature:

 100

100.0° Celsius is 212.0° Fahrenheit

Enter C to convert to Celsius or F to convert to Fahrenheit:

 x

You must enter C to convert to Celsius or F to convert to Fahrenheit.

References

• Wikiversity: Computer Programming

300 | Java Examples

https://en.wikiversity.org/wiki/Computer_Programming

JavaScript Examples
DAVE BRAUNSCHWEIG

Temperature

// This program asks the user to select Fahrenheit or Celsius conversion

// and input a given temperature. Then the program converts the given

// temperature and displays the result.

//

// References:

// https://www.mathsisfun.com/temperature-conversion.html

// https://en.wikibooks.org/wiki/JavaScript

main();

function main()

{

 // main could either be an if-else structure or a switch-case structure

 var choice;

 var temperature;

 var result;

 choice = getChoice();

 // if-else approach

 if (choice == "C" || choice == "c") {

 temperature = getTemperature("Fahrenheit");

 result = calculateCelsius(temperature);

 displayResult(temperature, "Fahrenheit", result, "Celsius");

 }

 else if (choice == "F" || choice == "f") {

JavaScript Examples | 301

 temperature = getTemperature("Celsius");

 result = calculateFahrenheit(temperature);

 displayResult(temperature, "Celsius", result, "Fahrenheit");

 }

 else {

 output("You must enter C to convert to Celsius or F to convert to Fahrenheit!");

 }

 // switch-case approach

 switch(choice) {

 case 'C':

 case 'c':

 temperature = getTemperature("Fahrenheit");

 result = calculateCelsius(temperature);

 displayResult(temperature, "Fahrenheit", result, "Celsius");

 break;

 case 'F':

 case 'f':

 temperature = getTemperature("Celsius");

 result = calculateFahrenheit(temperature);

 displayResult(temperature, "Celsius", result, "Fahrenheit");

 break;

 default:

 output("You must enter C to convert to Celsius or F to convert to Fahrenheit!");

 }

}

function getChoice() {

 var choice;

 output("Enter C to convert to Celsius or F to convert to Fahrenheit:");

 choice = input();

 return choice;

}

302 | JavaScript Examples

function getTemperature(label) {

 var temperature;

 output("Enter " + label + " temperature:");

 temperature = input();

 return temperature;

}

function calculateCelsius(fahrenheit) {

 var celsius;

 celsius = (fahrenheit - 32) * 5 / 9;

 return celsius;

}

function calculateFahrenheit(celsius) {

 var fahrenheit;

 fahrenheit = celsius * 9 / 5 + 32;

 return fahrenheit;

}

function displayResult(temperature, fromLabel, result, toLabel) {

 output(temperature.toString() + "° " + fromLabel + " is " + result + "° " + toLabel);

}

function input(text) {

 if (typeof window === 'object') {

 return prompt(text)

 }

 else if (typeof console === 'object') {

JavaScript Examples | 303

 const rls = require('readline-sync');

 var value = rls.question(text);

 return value;

 }

 else {

 output(text);

 var isr = new java.io.InputStreamReader(java.lang.System.in);

 var br = new java.io.BufferedReader(isr);

 var line = br.readLine();

 return line.trim();

 }

}

function output(text) {

 if (typeof document === 'object') {

 document.write(text);

 }

 else if (typeof console === 'object') {

 console.log(text);

 }

 else {

 print(text);

 }

}

Output

Enter C to convert to Celsius or F to convert to Fahrenheit:

 c

Enter Fahrenheit temperature:

 100

100° Fahrenheit is 37.77777777777778° Celsius

Enter C to convert to Celsius or F to convert to Fahrenheit:

304 | JavaScript Examples

 f

Enter Celsius temperature:

 100

100° Celsius is 212° Fahrenheit

Enter C to convert to Celsius or F to convert to Fahrenheit:

 x

You must enter C to convert to Celsius or F to convert to Fahrenheit.

References

• Wikiversity: Computer Programming

JavaScript Examples | 305

https://en.wikiversity.org/wiki/Computer_Programming

Python Examples
DAVE BRAUNSCHWEIG

Temperature

This program asks the user to select Fahrenheit or Celsius conversion

and input a given temperature. Then the program converts the given

temperature and displays the result.

References:

https://www.mathsisfun.com/temperature-conversion.html

https://en.wikibooks.org/wiki/Python_Programming

def get_choice():

 print("Enter C to convert to Celsius or F to convert to Fahrenheit:")

 choice = input()

 return choice

def get_temperature(label):

 print(f"Enter {label} temperature:")

 temperature = float(input())

 return temperature

def calculate_celsius(fahrenheit):

 celsius = (fahrenheit - 32) * 5 / 9

 return celsius

def calculate_fahrenheit(celsius):

306 | Python Examples

 fahrenheit = celsius * 9 / 5 + 32

 return fahrenheit

def display_result(temperature, from_label, result, to_label):

 print(f"{temperature}° {from_label} is {result}° {to_label}")

def main():

 choice = get_choice()

 if choice == "C" or choice == "c":

 temperature = get_temperature("Fahrenheit")

 result = calculate_celsius(temperature)

 display_result (temperature, "Fahrenheit", result, "Celsius")

 elif choice == "F" or choice == "f":

 temperature = get_temperature("Celsius")

 result = calculate_fahrenheit(temperature)

 display_result (temperature, "Celsius", result, "Fahrenheit")

 else:

 print("You must enter C to convert to Celsius or F to convert to Fahrenheit.")

main()

Output

Enter C to convert to Celsius or F to convert to Fahrenheit:

 c

Enter Fahrenheit temperature:

 100

100.0° Fahrenheit is 37.77777777777778° Celsius

Enter C to convert to Celsius or F to convert to Fahrenheit:

 f

Python Examples | 307

Enter Celsius temperature:

 100

100.0° Celsius is 212.0° Fahrenheit

Enter C to convert to Celsius or F to convert to Fahrenheit:

 x

You must enter C to convert to Celsius or F to convert to Fahrenheit.

References

• Wikiversity: Computer Programming

308 | Python Examples

https://en.wikiversity.org/wiki/Computer_Programming

Swift Examples
DAVE BRAUNSCHWEIG

Temperature

// This program asks the user for a Fahrenheit temperature,

// converts the given temperature to Celsius,

// and displays the results.

//

// References:

// https://www.mathsisfun.com/temperature-conversion.html

// https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html

func getChoice() -> String {

 var choice: String

 print("Enter C to convert to Celsius or F to convert to Fahrenheit:")

 choice = readLine(strippingNewline: true)!

 return choice

}

func getTemperature(label: String) -> Double {

 var temperature: Double

 print("Enter " + label + " temperature:")

 temperature = Double(readLine(strippingNewline: true)!)!

 return temperature

}

func calculateCelsius(fahrenheit: Double) -> Double {

Swift Examples | 309

 var celsius: Double

 celsius = (fahrenheit - 32) * 5 / 9

 return celsius

}

func calculateFahrenheit(celsius: Double) -> Double {

 var fahrenheit: Double

 fahrenheit = celsius * 9 / 5 + 32

 return fahrenheit

}

func displayResult(temperature: Double, fromLabel: String, result: Double, toLabel: String) {

 print(String(temperature) + "° " + fromLabel + " is " + String(result) + "° " + toLabel)

}

func main() {

 // main could either be an if-else structure or a switch-case structure

 var choice: String

 var temperature: Double

 var result: Double

 choice = getChoice()

 // if-else approach

 if choice == "C" || choice == "c" {

 temperature = getTemperature(label:"Fahrenheit")

 result = calculateCelsius(fahrenheit:temperature)

 displayResult(temperature:temperature, fromLabel:"Fahrenheit", result:result, toLabel:"Celsius") }

 else if choice == "F" || choice == "f" {

 temperature = getTemperature(label:"Celsius")

310 | Swift Examples

 result = calculateFahrenheit(celsius:temperature)

 displayResult(temperature:temperature, fromLabel:"Celsius", result:result, toLabel:"Fahrenheit")

 }

 else {

 print("You must enter C to convert to Celsius or F to convert to Fahrenheit.")

 }

 // switch-case approach

 switch choice {

 case "C", "c":

 temperature = getTemperature(label:"Fahrenheit")

 result = calculateCelsius(fahrenheit:temperature)

 displayResult(temperature:temperature, fromLabel:"Fahrenheit", result:result, toLabel:"Celsius")

 case "F", "f":

 temperature = getTemperature(label:"Celsius")

 result = calculateFahrenheit(celsius:temperature)

 displayResult(temperature:temperature, fromLabel:"Celsius", result:result, toLabel:"Fahrenheit")

 default:

 print("You must enter C to convert to Celsius or F to convert to Fahrenheit.")

 }

}

main()

Output

Enter C to convert to Celsius or F to convert to Fahrenheit:

 c

Enter Fahrenheit temperature:

 100

100.0° Fahrenheit is 37.77777777777778° Celsius

Enter C to convert to Celsius or F to convert to Fahrenheit:

 f

Swift Examples | 311

Enter Celsius temperature:

 100

100.0° Celsius is 212.0° Fahrenheit

Enter C to convert to Celsius or F to convert to Fahrenheit:

 x

You must enter C to convert to Celsius or F to convert to Fahrenheit.

References

• Wikiversity: Computer Programming

312 | Swift Examples

https://en.wikiversity.org/wiki/Computer_Programming

Practice: Conditions
KENNETH LEROY BUSBEE

Review Questions

True / False

1. There are only two categories of control structures.
2. Branching control structures are rarely used in good

structured programming.
3. If then else is a multiway selection control structure.
4. The while control structure is part of the branching

category.
5. Pseudocode is better than flowcharting.

Answers:

1. false
2. true
3. false
4. false
5. false

Expressions

Evaluate the following Boolean expressions:

1. 25 < 7
2. 3 < 7

Practice: Conditions | 313

3. 14 > 7
4. 17 <= 7
5. 25 >= 7
6. 13 == 7
7. 9 != 7
8. 5 !> 7
9. 25 > 39 || 15 > 36

10. 19 > 26 || 13 < 17
11. 14 < 7 && 6 <= 6
12. 4 > 3 && 17 >= 7
13. ! true
14. ! (13 == 7)
15. 9 != 7 && ! 1
16. 6 < && 8

Answers:

1. 0
2. 1
3. 1
4. 0
5. 1
6. 0
7. 1
8. Error, the “not greater than” is not a valid operator.
9. 0

10. 1
11. 0
12. 1
13. 0
14. 1
15. 0
16. Error, there needs to be an operand between the

operators < and &&.

314 | Practice: Conditions

Short Answer

1. List the four categories of control structures and provide a
brief description of each category.

2. Create a table with the six relational operators and their
meanings.

Activities

Complete the following activities using pseudocode, a
flowcharting tool, or your selected programming language.
Use separate functions for input, each type of processing, and
output. Avoid global variables by passing parameters and
returning results. Create test data to validate the accuracy of
each program. Add comments at the top of the program and
include references to any resources used.

1. Create a program to prompt the user for hours and rate
per hour and then compute gross pay (hours * rate).
Include a calculation to give 1.5 times the hourly rate for
any overtime (hours worked above 40 hours).1 For
example, 50 hours worked at $10 per hour with overtime is
$550.

2. Create a program that asks the user how old they are in
years. Then ask the user if they would like to know how old
they are in (M)onths, (D)ays, (H)ours, or (S)econds. Use if/
else conditional statements to calculate and display their
approximate age in the selected timeframe. Do not
perform any unnecessary calculations.

3. Review MathsIsFun: US Standard Lengths. Create a

1. PythonLearn: Variables, expressions, and statements

Practice: Conditions | 315

http://www.mathsisfun.com/measure/us-standard-length.html
http://www.pythonlearn.com/html-270/book003.html

program that asks the user for a distance in miles, and
then ask the user if they want the distance in US
measurements (yards, feet, and inches) or in metric
measurements (kilometers, meters, and centimeters). Use
if/else conditional statements to determine their selection
and then calculate and display the results.

4. Review MathsIsFun: Area of Plane Shapes. Create a
program that asks the user what shape they would like to
calculate the area for. Use if/else conditional statements to
determine their selection and then gather the appropriate
input and calculate and display the area of the shape.

5. Review Wikipedia: Aging in dogs. Create a program to
prompt the user for the name of their dog and its age in
human years. Calculate and display the age of their dog in
dog years, assuming the first two years equal 10.5 years
each, with subsequent years equaling four human years.
Be sure to include the dog’s name in the output, such as:
Spike is 25.0 years old in dog years.

6. Create a program that helps the user determine what
sock size to order based on their shoe size:
< 4 = extra small

4 to 6 = small

7 to 9 = medium

10 to 12 = large

13+ = extra large

Use if/else conditional statements to determine their
selection and then display the results. Round half-sizes up
to the next whole size. One option for rounding is to add
0.5 and then convert to an integer.

7. If your programming language supports it, update one or
more of the programs above to replace the if/else
conditional statements with case/select conditional
statements.

8. Review Wikipedia: Is functions. If your programming
language supports it, update one or more of the programs

316 | Practice: Conditions

http://www.mathsisfun.com/area.html
https://en.wikipedia.org/wiki/Aging_in_dogs
https://en.wikipedia.org/wiki/Is_functions

above to include input validation for all numeric input.
9. If your programming language supports it, extend one or

more of the programs above by adding structured
exception handling statements (try-catch, try-except, etc.)
to handle any runtime errors caused by the user entering
invalid values for the input.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

• Wikiversity: Computer Programming

Practice: Conditions | 317

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://en.wikiversity.org/wiki/Computer_Programming

CHAPTER V

LOOPS

Overview

This chapter introduces loops and iteration control structures.

Chapter Outline

• Iteration Control Structures
• While Loop
• Do While Loop
• Flag Concept
• For Loop
• Branching Statements
• Increment and Decrement Operators
• Integer Overflow
• Nested For Loops
• Code Examples

◦ Program Plan
◦ Loop Examples
◦ C++
◦ C#
◦ Java
◦ JavaScript
◦ Python
◦ Swift

• Practice

Loops | 319

Learning Objectives

1. Understand key terms and definitions.
2. Identify control structures based on test before iteration,

test after iteration, and counting, and when to use each
type.

3. Given example pseudocode, flowcharts, and source code,
create a program that uses loops and iteration control
structures to solve a given problem.

320 | Loops

Iteration Control
Structures

Overview

In iteration control structures, a statement or block is
executed until the program reaches a certain state, or
operations have been applied to every element of a collection.
This is usually expressed with keywords such as while, repeat,

for, or do..until.1

Discussion

The basic attribute of an iteration control structure is to be
able to repeat some lines of code. The visual display of iteration
creates a circular loop pattern when flowcharted, thus the word
“loop” is associated with iteration control structures. Iteration
can be accomplished with test before loops, test after loops,
and counting loops. A question using Boolean concepts usually
controls how often the loop will execute.

Iteration (Repetition) Control Structures

pseudocode: While

1. Wikipedia: Structured programming

Iteration Control Structures | 321

https://en.wikipedia.org/wiki/Structured_programming

count assigned zero

While count < 5

 Display "I love computers!"

 Increment count

End

pseudocode: Do While

count assigned five

Do

 Display "Blast off is soon!"

 Decrement count

While count > zero

pseudocode: Repeat Until

count assigned five

Repeat

 Display "Blast off is soon!"

 Decrement count

Until count < one

pseudocode: For

For x starts at 0, x < 5, increment x

 Display "Are we having fun?"

End

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

322 | Iteration Control Structures

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

While Loop
KENNETH LEROY BUSBEE

Overview

A while loop is a control flow statement that allows code to be
executed repeatedly based on a given Boolean condition. The
while loop can be thought of as a repeating if statement.1

Discussion

Introduction to Test Before Loops

There are two commonly used test before loops in the iteration
(or repetition) category of control structures. They are: while
and for. This module covers the: while.

Understanding Iteration in General – while

The concept of iteration is connected to possibly wanting to
repeat an action. Like all control structures we ask a question
to control the execution of the loop. The term loop comes from
the circular looping motion that occurs when using
flowcharting. The basic form of the while loop is as follows:

1. Wikipedia: While loop

While Loop | 323

https://en.wikipedia.org/wiki/While_loop

initialization of the flag

while the answer to the question is true then do

 some statements or action

 some statements or action

 some statements or action

 update the flag

In most programming languages the question (called a test
expression) is a Boolean expression. The Boolean data type has
two values – true and false. Let’s rewrite the structure to
consider this:

initialization of the flag

while the expression is true then do

 some statements or action

 some statements or action

 some statements or action

 update the flag

Within the while control structure there are four attributes to a
properly working loop. They are:

• Initializing the flag
• Test expression
• Action or actions
• Update of the flag

The initialization of the flag is not technically part of the control
structure, but a necessary item to occur before the loop is
started. The English phrasing is, “While the expression is true,
do the following actions”. This is looping on the true. When
the test expression is false, you stop the loop and go on with
the next item in the program. Notice, because this is a test
before loop the action might not happen. It is called a test
before loop because the test comes before the action. It is also

324 | While Loop

sometimes called a pre-test loop, meaning the test is pre (or
Latin for before) the action and update.

Human Example of the while Loop

Consider the following one-way conversation from a mother to
her child.

Child: The child says nothing, but mother knows the child had
Cheerios for breakfast and history tells us that the child most
likely spilled some Cheerios on the floor.

Mother says: “While it is true that you see (As long as you can
see) a Cheerio on the floor, pick it up and put it in the garbage.”

Note: All of the elements are present to determine the action
(or flow) that the child will be doing (in this case repeating).
Because the question (can you see a Cheerios) has only two
possible answers (true or false) the action will continue while
there are Cheerios on the floor. Either the child 1) never picks
up a Cheerio because they never spilled any or 2) picks up a
Cheerio and keeps picking up Cheerios one at a time while he
can see a Cheerio on the floor (that is until they are all picked
up).

Infinite Loops

At this point, it is worth mentioning that good programming
always provides for a method to ensure that the loop question
will eventually be false so that the loop will stop executing and
the program continues with the next line of code. However, if
this does not happen, then the program is in an infinite loop.
Infinite loops are a bad thing. Consider the following code:

Pseudocode infinite loop

While Loop | 325

loop_response = 'y'

While loop_response == 'y'

 Output "What is your age? "

 Input user_age

 Output "What is your friend's age? "

 Input friend_age

 Output "Together your ages add up to: "

 Output user_age + friend_age

The programmer assigned a value to the flag before the loop
which is correct. However, they forgot to update the flag. Every
time the test expression is asked it will always be true. Thus, an
infinite loop because the programmer did not provide a way
to exit the loop (he forgot to update the flag). Consider the
following code:

loop_response = 'y';

While loop_response = 'y'

 Output "What is your age? "

 Input user_age

 Output "What is your friend's age? "

 Input friend_age

 Output "Together your ages add up to: "

 Output user_age + friend_age

 Output "Do you want to try again? y or n "

 Input loop_response

No matter what the user replies during the flag update, the
test expression does not do a relational comparison but does
an assignment. It assigns ‘y’ to the variable and asks if ‘y’ is true?
Since all non-zero values are treated as representing true, the
answer to the test expression is true. Viola, you have an infinite
loop.

326 | While Loop

Counting Loops

The examples above are for an event controlled loop. The flag
updating is an event where someone decides if they want the
loop to execute again. Often the initialization sets the flag so
that the loop will execute at least once.

Another common usage of the while loop is as a counting loop.
Consider:

counter = 0

While counter < 5

 Output "I love ice cream!"

 counter += 1

The variable counter is said to be controlling the loop. It is
set to zero (called initialization) before entering the while loop
structure and as long as it is less than 5 (five); the loop action
will be executed. But part of the loop action uses the
increment operator to increase counter’s value by one. After
executing the loop five times (once for counter’s values of: 0, 1,
2, 3 and 4) the expression will be false and the next line of code
in the program will execute. A counting loop is designed to
execute the action (which could be more than one statement)
a set of given number of times. In our example, the message
is displayed five times on the monitor. It is accomplished by
making sure all four attributes of the while control structure are
present and working properly. The attributes are:

• Initializing the flag
• Test expression
• Action or actions
• Update of the flag

Missing an attribute might cause an infinite loop or give
undesired results (does not work properly).

While Loop | 327

Infinite Loops

Consider:

counter = 0;

while counter < 5

 Output "I love ice cream!"

Missing the flag update usually causes an infinite loop.

Variations on Counting

In the following example, the integer variable age is said to be
controlling the loop (that is the flag). We can assume that age
has a value provided earlier in the program. Because the while
structure is a test before loop; it is possible that the person’s
age is 0 (zero) and the first time we test the expression it will be
false and the action part of the loop would never be executed.

While 0 < age

 Output "I love candy!"

 age -= 1

Consider the following variation assuming that age and
counter are both integer data type and that age has a value:

counter = 0;

While counter < age

 Output "I love corn chips!"

 counter += 1

This loop is a counting loop similar to our first counting loop
example. The only difference is instead of using a literal
constant (in other words 5) in our expression, we used the
variable age (and thus the value stored in age) to determine
how many times to execute the loop. However, unlike our first

328 | While Loop

counting loop example which will always execute exactly 5
times; it is possible that the person’s age is 0 (zero) and the first
time we test the expression it will be false and the action part
of the loop would never be executed.

Key Terms

counting controlled
Using a variable to count up or down to control a loop.

event controlled
Using user input to control a loop.

infinite loop
A sequence of instructions which loops endlessly, either
due to the loop having no terminating condition, having
one that can never be met, or one that causes the loop to
start over.2

initialize item
An attribute of iteration control structures.

loop attributes
Items associated with iteration or looping control
structures.

might not happen
Indicating that test before loops might not execute the
action.

while
A test before iteration control structure.

2. Wikipedia: Infinite loop

While Loop | 329

https://en.wikipedia.org/wiki/Infinite_loop

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

330 | While Loop

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Do While Loop

Overview

A do while loop is a control flow statement that executes a
block of code at least once, and then repeatedly executes the
block, or not, depending on a given boolean condition at the
end of the block.1

Some languages may use a different naming convention for
this type of loop. For example, the Pascal language has a repeat
until loop, which continues to run until the control expression
is true (and then terminates) — whereas a “while” loop runs
while the control expression is true (and terminates once the
expression becomes false).2

Discussion

Introduction to Test After Loops

There are two commonly used test after loops in the iteration
(or repetition) category of control structures. They are: do while
and repeat until. This module covers both.

1. Wikipedia: Do while loop
2. Wikipedia: Do while loop

Do While Loop | 331

https://en.wikipedia.org/wiki/Do_while_loop
https://en.wikipedia.org/wiki/Do_while_loop

Understanding Iteration in General – do while

The concept of iteration is connected to possibly wanting to
repeat an action. Like all control structures, we ask a question
to control the execution of the loop. The term loop comes from
the circular looping motion that occurs when using
flowcharting. The basic form of the do while loop is as follows:

do

 some statements or action

 some statements or action

 some statements or action

 update the flag

while the answer to the question is true

In most programming languages the question (called a test
expression) is a Boolean expression. The Boolean data type has
two values – true and false. Let’s rewrite the structure to
consider this:

do

 some statements or action

 some statements or action

 some statements or action

 update the flag

while expression is true

Within the do while control structure there are three attributes
of a properly working loop. They are:

• Action or actions
• Update of the flag
• Test expression

The English phrasing is, “You do the action while the expression
is true”. This is looping on the true. When the test expression

332 | Do While Loop

is false, you stop the loop and go on with the next item in the
program. Notice, because this is a test after loop the action
will always happen at least once. It is called a test after
loop because the test comes after the action. It is also
sometimes called a post-test loop, meaning the test is post (or
Latin for after) the action and update.

Understanding Iteration in General – repeat until

The concept of iteration is connected to possibly wanting to
repeat an action. Like all control structures, we ask a question
to control the execution of the loop. The term loop comes from
the circular looping motion that occurs when using
flowcharting. The basic form of the repeat until loop is as
follows:

repeat

 some statements or action

 some statements or action

 some statements or action

 update the flag

until the answer to the question becomes true

In most programming languages the question (called a test
expression) is a Boolean expression. The Boolean data type has
two values – true and false. Let’s rewrite the structure to
consider this:

repeat

 some statements or action

 some statements or action

 some statements or action

 update the flag

until expression becomes true

Do While Loop | 333

Within the repeat until control structure, there are three
attributes of a properly working loop. They are:

• Action or actions
• Update of the flag
• Test expression

The English phrasing is, “You repeat the action until the
expression becomes true”. This is looping on the false. When
the test expression becomes true, you stop the loop and go
on with the next item in the program. Notice, because this is
a test after loop the action will always happen at least once.
It is called a “test after loop” because the test comes after the
action. It is also sometimes called a post-test loop, meaning the
test is post (or Latin for after) the action and update.

An Example

Do

 Output "What is your age? "

 Input user_age

 Output "What is your friend's age? "

 Input friend_age

 Output "Together your ages add up to: "

 Output age_user + friend_age

 Output "Do you want to try it again? y or n "

 Input loop_response

While loop_response == 'y'

The three attributes of a test after loop are present. The action
part consists of the 6 lines that prompt for data and then
displays the total of the two ages. The update of the flag is the
displaying the question and getting the answer for the variable
loop_response. The test is the equality relational comparison of
the value in the flag variable to the lower case character of y.

334 | Do While Loop

This type of loop control is called an event controlled loop. The
flag updating is an event where someone decides if they want
the loop to execute again.

Using indentation with the alignment of the loop actions and
flag update is the normal industry practice.

Infinite Loops

At this point, it is worth mentioning that good programming
always provides for a method to ensure that the loop question
will eventually be false so that the loop will stop executing and
the program continues with the next line of code. However, if
this does not happen, then the program is in an infinite loop.
Infinite loops are a bad thing. Consider the following code:

loop_response = 'y'

Do

 Output "What is your age? "

 Input user_age

 Output "What is your friend's age? "

 Input friend_age

 Output "Together your ages add up to: "

 Output user_age + friend_age

While loop_response == 'y'

The programmer assigned a value to the flag before the loop
and forgot to update the flag. Every time the test expression is
asked it will always be true. Thus, an infinite loop because the
programmer did not provide a way to exit the loop (he forgot to
update the flag).

Consider the following code:

do

 Output "What is your age? "

Do While Loop | 335

 Input user_age

 Output "What is your friend's age? "

 Input friend_age

 Output "Together your ages add up to: "

 Output age_user + friend_age

 Output "Do you want to try it again? y or n "

 Input loop_response

While loop_response = 'y'

No matter what the user replies during the flag update, the
test expression does not do a relational comparison but does
an assignment. It assigns ‘y’ to the variable and asks if ‘y’ is true?
Since all non-zero values are treated as representing true, the
answer to the text question is true. Viola, you have an infinite
loop.

Key Terms

action item
An attribute of iteration control structures.

at least once
Indicating that test after loops execute the action at least
once.

do while
A test after iteration control structure.

infinite loop
A sequence of instructions which loops endlessly, either
due to the loop having no terminating condition, having
one that can never be met, or one that causes the loop to
start over.3

3. Wikipedia: Infinite loop

336 | Do While Loop

https://en.wikipedia.org/wiki/Infinite_loop

repeat until
A test after iteration control structure alternative available
in some programming languages.

test item
An attribute of iteration control structures.

update item
An attribute of iteration control structures.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

Do While Loop | 337

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Flag Concept
KENNETH LEROY BUSBEE

Overview

Flags are commonly used to control or to indicate the
intermediate state or outcome of particular operations.1

Discussion

For centuries flags have been used as a signal to let others
know something about the group or individual that is
displaying, flying or waving the flag. There are country flags and
state flags. Ships at sea flew the flag of their country. Pirates
flew the skull and crossbones. A yellow flag was used for
quarantine, usually the plague. Even pirates stayed away.
Today, some people might recognize the flag used by scuba
divers. The Presidents of most countries have a flag. At a race
car event, they use the checkered flag to indicate the race is
over.

1. Wikipedia: Bit field

338 | Flag Concept

https://en.wikipedia.org/wiki/Bit_field

Computer programming uses the concept of a flag in the same
way that physical flags are used. A flag is anything that signals
some information to the person looking at it.

Computer Implementation

Any variable or constant that holds data can be used as a flag.
You can think of the storage location as a flagpole. The value
stored within the variable conveys some meaning and you can
think of it as being the flag. An example might be a variable
named: gender which is of the character data type. The two
values commonly stored in the variable are: ‘F’ and ‘M’,
meaning female and male. Then, somewhere within a program
we might look at the variable to make a decision:

flag controlling an if then control structure

if gender equals 'F'

Flag Concept | 339

 display "Are you pregnant?"

 get answer from user store in pregnant variable

Looking at the flag implies comparing the value in the variable
to another value (a constant or the value in another variable)
using a relational operator (in our above example: equality).

Control structures are “controlled” by using a test
expression which is usually a Boolean expression. Thus, the
flag concept of “looking” at the value in the variable and
comparing it to another value is fundamental to
understanding how all control structures work.

Two Flags with the Same Meaning

Sometimes we will use an iteration control structure of do
while to allow us to decide if we want to do the loop action
again. A variable might be named “loop_response” with the
user prompted for their answer of ‘y’ for yes or ‘n’ for no. Once
the answer is retrieved from the keyboard and stored in our
flag variable of “loop_response” the test expression to control
the loop might be:

simple flag comparison

loop_response equals 'y'

This is fine but what if the user accidentally has on the caps
lock. Then the response of ‘Y’ would not have the control
structure loop and perform the action again. The solution lies
in looking at the flag twice. Consider:

complex flag comparison

loop_response equals 'y' or loop_response equals 'Y'

340 | Flag Concept

We look to see if the flag is either a lower case y or an upper
case Y by using a more complex Boolean expression with both
relational and logical operators.

Multiple Flags in One Byte

Within assembly language programming and in many
technical programs that control special devices; the use of a
single byte to represent several flags is common. This is
accomplished by having each one of the 8 bits that make up
the byte represent a flag. Each bit has a value of either 1 or 0
and can represent true and false, on or off, yes or no, etc.

Key Terms

flag
A variable used to store information that will normally be
used to control the program.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

Flag Concept | 341

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

For Loop
KENNETH LEROY BUSBEE

Overview

A for loop is a control flow statement for specifying iteration,
which allows code to be executed repeatedly. A for loop has
two parts: a header specifying the iteration, and a body which
is executed once per iteration. The header often declares an
explicit loop counter or loop variable, which allows the body to
know which iteration is being executed. For loops are typically
used when the number of iterations is known before entering
the loop. For loops can be thought of as shorthands for while
loops which increment and test a loop variable.1

Discussion

Introduction to Test Before Loops

There are two commonly used test before loops in the iteration
(or repetition) category of control structures. They are: while
and for. This module covers the: for.

1. Wikipedia: For loop

342 | For Loop

https://en.wikipedia.org/wiki/For_loop

Understanding Iteration in General – for

In many programming languages, the for loop is used
exclusively for counting; that is to repeat a loop action as it
either counts up or counts down. There is a starting value and
a stopping value. The question that controls the loop is a test
expression that compares the starting value to the stopping
value. This expression is a Boolean expression and is usually
using the relational operators of either less than (for counting
up) or greater than (for counting down). The term loop comes
from the circular looping motion that occurs when using
flowcharting. The basic form of the for loop (counting up) is as
follows:

for

 initialization of the starting value

 starting value is less than the stopping value

 some statements or action

 some statements or action

 some statements or action

 increment the starting value

It might be best to understand the for loop by understanding a
while loop acting like a counting loop. Let’s consider;

initialization of the starting value

while the starting value is less than the stopping value

 some statements or action

 some statements or action

 some statements or action

 increment the starting value

Within the for control structure, there are four attributes to a
properly working loop. They are:

• Initializing the flag – done once

For Loop | 343

• Test expression
• Action or actions
• Update of the flag

The initialization of the flag is not technically part of the while
control structure, but it is usually part of the for control
structure. The English phrasing is, “For x is 1; x less than 3;
do the following actions; increment x; loop back to the test
expression”. This is doing the action on the true. When the
test expression is false, you stop the loop and go on with the
next item in the program. Notice, because this is a test before
loop the action might not happen. It is called a test before
loop because the test comes before the action. It is also
sometimes called a pre-test loop, meaning the test is pre (or
Latin for before) the action and update.

An Example

For counter = 0, counter < 5, counter += 1

 Output "I love ice cream!"

The four attributes of a test before loop (remember the for loop
is one example of a test before loop) are present.

• The initialization of the flag to a value of 0.
• The test is the less than relational comparison of the value

in the flag variable to the constant value of 5.
• The action part consists of the 1 line of output.
• The update of the flag is done with the increment

operator.

Using indentation with the alignment of the loop actions is the
normal industry practice.

344 | For Loop

Infinite Loops

At this point, it is worth mentioning that good programming
always provides for a method to ensure that the loop question
will eventually be false so that the loop will stop executing and
the program continues with the next line of code. However, if
this does not happen, then the program is in an infinite loop.
Infinite loops are a bad thing. Consider the following code:

For counter = 0, counter < 5

 Output "I love ice cream!"

The programmer assigned a value to the flag during the
initialization step which is correct. However, they forgot to
update the flag (the update step is missing). Every time the test
expression is asked it will always be true. Thus, an infinite loop
because the programmer did not provide a way to exit the loop
(he forgot to update the flag).

Key Terms

for
A test before iteration control structure typically used for
counting.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

For Loop | 345

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Branching Statements
KENNETH LEROY BUSBEE

Overview

A branch is an instruction in a computer program that can
cause a computer to begin executing a different instruction
sequence and thus deviate from its default behavior of
executing instructions in order.1 Common branching
statements include break, continue, return, and goto.

Discussion

Branching statements allow the flow of execution to jump to
a different part of the program. The common branching
statements used within other control structures include: break,

continue, return, and goto. The goto is rarely used in modular

structured programming. Additionally, we will add to our list
of branching items a pre-defined function commonly used in
programming languages of: exit.

1. Wikipedia: Branch (computer science)

346 | Branching Statements

https://en.wikipedia.org/wiki/Branch_(computer_science)

Examples

break

The break is used in one of two ways; with a switch to make it
act like a case structure or as part of a looping process to break
out of the loop. The following gives the appearance that the
loop will execute 8 times, but the break statement causes it to
stop during the fifth iteration.

counter = 0;

While counter < 8

 Output counter

 If counter == 4

 break

 counter += 1

continue

The following gives the appearance that the loop will print to
the monitor 8 times, but the continue statement causes it not
to print number 4.

For counter = 0, counter < 8, counter += 1

 If counter == 4

 continue

 Output counter

return

The return statement exits a function and returns to the
statement where the function was called.

Branching Statements | 347

Function DoSometing

 statements

Return <optional return value>

goto

The goto structure is typically not accepted in good structured
programming. However, some programming languages allow
you to create a label with an identifier name followed by a
colon. You use the command word goto followed by the label.

some lines of code;

goto label; // jumps to the label

some lines of code;

some lines of code;

some lines of code;

label: some statement; // Declared label

some lines of code;

exit

Although exit is technically a pre-defined function, it is covered
here because of its common usage in programming. A good
example is the opening a file and then testing to see if the
file was actually opened. If not, we have an error that usually
indicates that we want to prematurely stop the execution of
the program. The exit function terminates the running of the
program and in the process returns an integer value back to
the operating system. It fits the definition of branching which
is to jump to some other place in the program.

348 | Branching Statements

Key Terms

branching statements
Allow the flow of execution to jump to a different part of
the program.

break
A branching statement that terminates the existing
structure.

continue
A branching statement that causes a loop to stop its
current iteration and begin the next one.

exit
A predefined function used to prematurely stop a
program and return to the operating system.

goto
An unstructured branching statement that causes the
logic to jump to a different place in the program.

return
A branching statement that causes a function to jump
back to the function that called it.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

Branching Statements | 349

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Increment and
Decrement Operators
KENNETH LEROY BUSBEE

Overview

Increment and decrement operators are unary operators that
add or subtract one from their operand, respectively. They are
commonly implemented in imperative programming
languages.1

Discussion

The idea of increment or decrement is to either add or subtract
1 from a variable that is usually acting as a flag. Using a variable
named counter; in generic terms, for example:

increment the counter

The concept is:

counter is assigned counter + 1

That is you fetch the existing value of the counter and add
one then store the answer back into the variable counter. Many
programming languages allow their increment and
decrement operators to only be used with the integer data

1. Wikipedia: Increment and decrement operators

350 | Increment and Decrement
Operators

https://en.wikipedia.org/wiki/Increment_and_decrement_operators

type. Programmers will sometimes use inc and dec as
abbreviations for increment and decrement respectively.

Operator symbols and/or names vary with different
programming languages. Several programming languages
support increment and decrement operators:

Operator Meaning

++ increment, two plus signs

-- decrement, two minus signs

Code Examples

Basic Concept

Within C++, C#, Java, and JavaScript programming languages,
the increment and decrement operators are often used in this
simple generic way. The increment operator is represented by
two plus signs in a row. Examples:

counter = counter + 1;

counter += 1;

counter++;

++counter;

As statements, the four examples all do the same thing. They
add 1 to the value of whatever is stored in counter. The
decrement operator is represented by two minus signs in a row.
They would subtract 1 from the value of whatever was in the
variable being decremented. The precedence of increment and
decrement depends on if the operator is attached to the right

Increment and Decrement Operators | 351

of the operand (postfix) or to the left of the operand (prefix).
Note that postfix and prefix do not have the same precedence.

Postfix Increment

Postfix increment says to use my existing value then when you
are done with the other operators; increment me. An example:

int oldest = 44;

age = oldest++;

The first use of the oldest variable is an Rvalue context where
the existing value of 44 is pulled or fetched and then assigned
to the variable age; then the variable oldest is incremented
with its value changing from 44 to 45. This seems to be a
violation of precedence because increment is higher
precedence than assignment. But that is how postfix
increment works.

Prefix Increment

Prefix increment says to increment me now and use my new
value in any calculation. An example:

int oldest = 44;

age = ++oldest;

The variable oldest is incremented with the new value
changing it from 44 to 45; then the new value is assigned to
age.

In postfix age is assigned 44 in prefix age is assigned 45. One
way to help remember the difference is to think of postfix as
being polite (use my existing value and return to increment me
after the other operators are done) whereas prefix has an ego (I

352 | Increment and Decrement Operators

am important so increment me first and use my new value for
the rest of the evaluations).

Allowable Data Types

Within some programming languages, increment and
decrement can be used only on the integer data type. Other
languages expand this not only to all of the integer family
but also to the floating-point family (float and double).
Incrementing 3.87 will change the value to 4.87. Decrementing
‘C’ will change the value to ‘B’. Remember the ASCII character
values are really one-byte unsigned integers (domain from 0 to
255).

Exercises

Evaluate the following items using increment or decrement:

1. True or false: x = x +1 and x+=1 and x++ all accomplish
increment?

2. Given: int y = 19; and int z; what values will y and z have
after: z = y–;

3. Given: double x = 7.77; and int y; what values will x and y
have after: y = ++x;

4. Is this ok? Why or why not? 6 * ++(age -3)

Key Terms

decrement
Subtracting one from the value of a variable.

increment
Adding one to the value of a variable.

Increment and Decrement Operators | 353

postfix
Placing the increment or decrement operator to the right
of the operand.

prefix
Placing the increment or decrement operator to the left of
the operand.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

354 | Increment and Decrement Operators

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Integer Overflow
KENNETH LEROY BUSBEE

Overview

Integer overflow occurs when an arithmetic operation
attempts to create a numeric value that is outside of the range
that can be represented with a given number of bits – either
larger than the maximum or lower than the minimum
representable value.1

The most common result of an overflow is that the least
significant representable bits of the result are stored; the result
is said to wrap around the maximum (i.e. modulo power of
two). An overflow condition may give results leading to
unintended behavior. In particular, if the possibility has not
been anticipated, overflow can compromise a program’s
reliability and security.2

Discussion

There are times when character and integer data types are
lumped together because they both act the same (often called
the integer family). Maybe we should say they act differently
than the floating-point data types. The integer family values
jump from one value to another. There is nothing between
6 and 7 nor between ‘A’ and ‘B’. It could be asked why not

1. Wikipedia: Integer overflow
2. Wikipedia: Integer overflow

Integer Overflow | 355

https://en.wikipedia.org/wiki/Integer_overflow
https://en.wikipedia.org/wiki/Integer_overflow

make all your numbers floating-point data types. The reason is
twofold. First, some things in the real world are not fractional.
A dog, even with only 3 legs, is still one dog not three-fourths
of a dog. Second, the integer data type is often used to control
program flow by counting (counting loops). The integer family
has a circular wrap-around feature. Using a two-byte integer,
the next number bigger than 32767 is negative 32768
(character acts the same way going from 255 to 0. We could
also reverse that to be the next smaller number than negative
32768 is positive 32767. This can be shown by using a normal
math line, limiting the domain and then connecting the two
ends to form a circle.

This circular nature of the integer family works for both integer
and character data types. In theory, it should work for the
Boolean data type as well; but in most programming
languages it does not for various technical reasons.

“In mathematics, modular arithmetic (sometimes called clock
arithmetic) is a system of arithmetic for integers where

356 | Integer Overflow

numbers “wrap around” after they reach a certain value — the
modulus. …

A familiar use of modular arithmetic is its use in the 12-hour
clock the arithmetic of time-keeping in which the day is
divided into two 12 hour periods. If the time is 7:00 now, then 8
hours later it will be 3:00. Regular addition would suggest that
the later time should be 7 + 8 = 15, but this is not the answer
because clock time “wraps around” every 12 hours; there is no
“15 o’clock”. Likewise, if the clock starts at 12:00 (noon) and 21
hours elapse, then the time will be 9:00 the next day, rather
than 33:00. Since the hour number starts over when it reaches
12, this is arithmetic modulo 12.

Time-keeping on a clock gives an example of modular
arithmetic.” (Modular arithmetic from Wikipedia)

The use of the modulus operator in integer division is tied to
the concepts used in modular arithmetic.

Implications When Executing Loops

If a programmer sets up a counting loop incorrectly, usually
one of three things happen:

• Infinite loop – usually caused by missing update attribute.
• Loop never executes – usually, the text expression is wrong

with the direction of the less than or greater than
relationship needing to be switched.

• Loop executes more times than desired – update not

Integer Overflow | 357

properly handled. Usually, the direction of counting
(increment or decrement) need to be switched.

Let’s give an example of the loop executing for what appears to
be for infinity (the third item on our list).

for int x = 0, x < 10, x--

 Output x

The above code accidentally decrements and the value of x
goes in a negative way towards -2147483648 (the largest
negative value in a normal four-byte signed integer data type).
It might take a while (thus it might appear to be in an infinite
loop) for it to reach the negative 2 billion-plus value, before
finally decrementing to positive 2147483647 which would,
incidentally, stop the loop execution.

Key Terms

circular nature
Connecting the negative and positive ends of the domain
of an integer family data type.

loop control
Making sure the attributes of a loop are properly handled.

modular arithmetic
A system of arithmetic for integers where numbers “wrap
around”.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

358 | Integer Overflow

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Nested For Loops
KENNETH LEROY BUSBEE

Overview

Nested for loops places one for loop inside another for loop.
The inner loop is repeated for each iteration of the outer loop.

Discussion

Nested Control Structures

We are going to first introduce the concept of nested control
structures. Nesting is a concept that places one item inside of
another. Consider:

if expression

 true action

else

 false action

This is the basic form of the if then else control structure. Now
consider:

if age is less than 18

 you can't vote

 if age is less than 16

 you can't drive

 else

 you can drive

else

Nested For Loops | 359

 you can vote

 if age is less than 21

 you can't drink

 else

 you can drink

As you can see we simply included as part of the “true action”
a statement and another if then else control structure. We did
the same (nested another if then else) for the “false action”. In
our example, we nested if then else control structures. Nesting
could have an if then else within a while loop. Thus, the concept
of nesting allows the mixing of the different categories of
control structures.

Many complex logic problems require using nested control
structures. By nesting control structures (or placing one inside
another) we can accomplish almost any complex
logic problem.

An Example – Nested for loops

Here is an example of a 10 by 10 multiplication table:

 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

 1 ! 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |

 2 ! 2 | 4 | 6 | 8 | 10 | 12 | 14 | 16 | 18 | 20 |

 3 ! 3 | 6 | 9 | 12 | 15 | 18 | 21 | 24 | 27 | 30 |

 4 ! 4 | 8 | 12 | 16 | 20 | 24 | 28 | 32 | 36 | 40 |

 5 ! 5 | 10 | 15 | 20 | 25 | 30 | 35 | 40 | 45 | 50 |

 6 ! 6 | 12 | 18 | 24 | 30 | 36 | 42 | 48 | 54 | 60 |

 7 ! 7 | 14 | 21 | 28 | 35 | 42 | 49 | 56 | 63 | 70 |

 8 ! 8 | 16 | 24 | 32 | 40 | 48 | 56 | 64 | 72 | 80 |

 9 ! 9 | 18 | 27 | 36 | 45 | 54 | 63 | 72 | 81 | 90 |

 10 ! 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |

360 | Nested For Loops

We might also see that the answers could be designed as a
collection of cells (each cell being exactly six spaces wide). The
pseudocode to produce part of the table is:

For row = 1, row <= 3, row += 1

 For column = 1, column <= 3, column += 1

 Output row * column

 Output "\t"

 Output "\n"

Key Terms

complex logic
Often solved with nested control structures.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

Nested For Loops | 361

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Program Plan

This program demonstrates While, Do, and For loop counting
using user-designated start, stop, and increment values.

Main Program

Get Starting value

Get Ending value

Get Increment value

Demonstrate While Loop

Demonstrate Do Loop

Demonstrate For Loop

Get Value

Parameters:

Label

Process:

Display prompt with label

Get value

Return Value:

Value

362 | Program Plan

Demonstrate While Loop

Parameters:

Start

Stop

Increment

Process:

Initialize count

Loop while count < stop

Display count

Increment count

Return Value:

None

Demonstrate Do Loop

Parameters:

Start

Stop

Increment

Process:

Initialize count

Loop

Display count

Program Plan | 363

Increment count

While count <= stop

Return Value:

None

Demonstrate For Loop

Parameters:

Start

Stop

Increment

Process:

Initialize count

Loop for count from start to stop by increment

Display count

Return Value:

None

364 | Program Plan

Loop Examples
DAVE BRAUNSCHWEIG

Counting

Pseudocode

... This program demonstrates While, Do, and For loop counting using user-designated start, stop, and increment values.

Function Main

 Declare Integer start

 Declare Integer stop

 Declare Integer increment

 Assign start = GetValue("starting")

 Assign stop = GetValue("ending")

 Assign increment = GetValue("increment")

 Call DemonstrateWhileLoop(start, stop, increment)

 Call DemonstrateDoLoop(start, stop, increment)

 Call DemonstrateForLoop(start, stop, increment)

End

Function GetValue (String name)

 Declare Integer value

 Output "Enter " & name & " value:"

 Input value

Return Integer value

Function DemonstrateWhileLoop (Integer start, Integer stop, Integer increment)

 Output "While loop counting from " & start & " to " & stop & " by " & increment & ":"

Loop Examples | 365

 Declare Integer count

 Assign count = start

 While count <= stop

 Output count

 Assign count = count + increment

 End

End

Function DemonstrateDoLoop (Integer start, Integer stop, Integer increment)

 Output "Do loop counting from " & start & " to " & stop & " by " & increment & ":"

 Declare Integer count

 Assign count = start

 Loop

 Output count

 Assign count = count + increment

 Do count <= stop

End

Function DemonstrateForLoop (Integer start, Integer stop, Integer increment)

 Output "For loop counting from " & start & " to " & stop & " by " & increment & ":"

 Declare Integer count

 For count = start to stop step increment

 Output count

 End

End

Output

Enter starting value:

1

Enter ending value:

366 | Loop Examples

3

Enter increment value:

1

While loop counting from 1 to 3 by 1:

1

2

3

Do loop counting from 1 to 3 by 1:

1

2

3

For loop counting from 1 to 3 by 1:

1

2

3

Flowchart

Main

End

This program demonstrates While,
Do, and For loop counting using user-
designated start, stop, and increment

values.

Integer start

Integer stop

Integer increment

start = GetValue("starting")

stop = GetValue("ending")

increment = GetValue
("increment")

WhileLoop(start, stop,
increment)

DoLoop(start, stop,
increment)

ForLoop(start, stop,
increment)

 GetValue
(String name)

Return Integer value

Integer value

Output "Enter " & name &
" value:"

Input value

Loop Examples | 367

WhileLoop
(Integer start, Integer stop, Integer increment)

End

Output "While loop counting
from " & start & " to " & stop &

" by " & increment & ":"

Integer count

count = start

Output count

count = count + increment

count <= stop
True

False

 DoLoop
(Integer start, Integer stop, Integer increment)

End

Output "Do loop counting
from " & start & " to " & stop &

" by " & increment & ":"

Integer count

count = start

True

False

Output count

count = count + increment

count <= stop

ForLoop
(Integer start, Integer stop, Integer increment)

End

Output "For loop counting
from " & start & " to " & stop &

" by " & increment & ":"

Integer count

Output count

count = start to stop step
increment

Next

Done

References

• Wikiversity: Computer Programming

368 | Loop Examples

https://en.wikiversity.org/wiki/Computer_Programming

C++ Examples
DAVE BRAUNSCHWEIG

Counting

// This program demonstrates While, Do, and For loop counting using

// user-designated start, stop, and increment values.

//

// References:

// https://en.wikibooks.org/wiki/C%2B%2B_Programming

#include

using namespace std;

int getValue(string name);

void demonstrateWhileLoop(int start, int stop, int increment);

void demonstrateDoLoop(int start, int stop, int increment);

void demonstrateForLoop(int start, int stop, int increment);

int main() {

 int start = getValue("starting");

 int stop = getValue("ending");

 int increment = getValue("increment");

 demonstrateWhileLoop(start, stop, increment);

 demonstrateDoLoop(start, stop, increment);

 demonstrateForLoop(start, stop, increment);

 return 0;

}

C++ Examples | 369

int getValue(string name) {

 int value;

 cout << "Enter " << name << " value:" <> value;

 return value;

}

void demonstrateWhileLoop(int start, int stop, int increment) {

 cout << "While loop counting from " << start << " to " <<

 stop << " by " << increment << ":" << endl;

 int count = start;

 while (count <= stop) {

 cout << count << endl;

 count = count + increment;

 }

}

void demonstrateDoLoop(int start, int stop, int increment) {

 cout << "Do loop counting from " << start << " to " <<

 stop << " by " << increment << ":" << endl;

 int count = start;

 do {

 cout << count << endl;

 count = count + increment;

 } while (count <= stop);

}

void demonstrateForLoop(int start, int stop, int increment) {

 cout << "For loop counting from " << start << " to " <<

 stop << " by " << increment << ":" << endl;

 for (int count = start; count <= stop; count += increment) {

370 | C++ Examples

 cout << count << endl;

 }

}

Output

Enter starting value:

1

Enter ending value:

3

Enter increment value:

1

While loop counting from 1 to 3 by 1:

1

2

3

Do loop counting from 1 to 3 by 1:

1

2

3

For loop counting from 1 to 3 by 1:

1

2

3

References

• Wikiversity: Computer Programming

C++ Examples | 371

https://en.wikiversity.org/wiki/Computer_Programming

C# Examples
DAVE BRAUNSCHWEIG

Counting

// This program demonstrates While, Do, and For loop counting using

// user-designated start, stop, and increment values.

//

// References:

// https://en.wikibooks.org/wiki/C_Sharp_Programming

using System;

public class Loops

{

 public static void Main(string[] args)

 {

 int start = GetValue("starting");

 int stop = GetValue("ending");

 int increment = GetValue("increment");

 DemonstrateWhileLoop(start, stop, increment);

 DemonstrateDoLoop(start, stop, increment);

 DemonstrateForLoop(start, stop, increment);

 }

 public static int GetValue(string name)

 {

 Console.WriteLine("Enter " + name + " value:");

 string input = Console.ReadLine();

 int value = Convert.ToInt32(input);

372 | C# Examples

 return value;

 }

 public static void DemonstrateWhileLoop(int start, int stop, int increment)

 {

 Console.WriteLine("While loop counting from " + start + " to " +

 stop + " by " + increment + ":");

 int count = start;

 while (count <= stop)

 {

 Console.WriteLine(count);

 count = count + increment;

 }

 }

 public static void DemonstrateDoLoop(int start, int stop, int increment)

 {

 Console.WriteLine("Do loop counting from " + start + " to " +

 stop + " by " + increment + ":");

 int count = start;

 do

 {

 Console.WriteLine(count);

 count = count + increment;

 }

 while (count <= stop);

 }

 public static void DemonstrateForLoop(int start, int stop, int increment)

 {

 Console.WriteLine("For loop counting from " + start + " to " +

 stop + " by " + increment + ":");

C# Examples | 373

 for (int count = start; count <= stop; count += increment)

 {

 Console.WriteLine(count);

 }

 }

}

Output

Enter starting value:

1

Enter ending value:

3

Enter increment value:

1

While loop counting from 1 to 3 by 1:

1

2

3

Do loop counting from 1 to 3 by 1:

1

2

3

For loop counting from 1 to 3 by 1:

1

2

3

References

• Wikiversity: Computer Programming

374 | C# Examples

https://en.wikiversity.org/wiki/Computer_Programming

Java Examples
DAVE BRAUNSCHWEIG

Counting

// This program demonstrates While, Do, and For loop counting using

// user-designated start, stop, and increment values.

//

// References:

// https://en.wikibooks.org/wiki/Java_Programming

import java.util.*;

public class Main {

 private static Scanner input = new Scanner(System.in);

 public static void main(String[] args) {

 int start = getValue("starting");

 int stop = getValue("ending");

 int increment = getValue("increment");

 demonstrateWhileLoop(start, stop, increment);

 demonstrateDoLoop(start, stop, increment);

 demonstrateForLoop(start, stop, increment);

 }

 public static int getValue(String name) {

 System.out.println("Enter " + name + " value:");

 int value = input.nextInt();

 return value;

 }

Java Examples | 375

 public static void demonstrateWhileLoop(int start, int stop, int increment) {

 System.out.println("While loop counting from " + start + " to " +

 stop + " by " + increment + ":");

 int count = start;

 while (count <= stop) {

 System.out.println(count);

 count = count + increment;

 }

 }

 public static void demonstrateDoLoop(int start, int stop, int increment) {

 System.out.println("Do loop counting from " + start + " to " +

 stop + " by " + increment + ":");

 int count = start;

 do {

 System.out.println(count);

 count = count + increment;

 } while (count <= stop);

 }

 public static void demonstrateForLoop(int start, int stop, int increment) {

 System.out.println("For loop counting from " + start + " to " +

 stop + " by " + increment + ":");

 for (int count = start; count <= stop; count += increment) {

 System.out.println(count);

 }

 }

}

376 | Java Examples

Output

Enter starting value:

1

Enter ending value:

3

Enter increment value:

1

While loop counting from 1 to 3 by 1:

1

2

3

Do loop counting from 1 to 3 by 1:

1

2

3

For loop counting from 1 to 3 by 1:

1

2

3

References

• Wikiversity: Computer Programming

Java Examples | 377

https://en.wikiversity.org/wiki/Computer_Programming

JavaScript Examples
DAVE BRAUNSCHWEIG

Counting

// This program demonstrates While, Do, and For loop counting using

// user-designated start, stop, and increment values.

//

// References:

// https://en.wikibooks.org/wiki/JavaScript

main()

function main() {

 var start = getValue("starting");

 var stop = getValue("ending");

 var increment = getValue("increment");

 demonstrateWhileLoop(start, stop, increment);

 demonstrateDoLoop(start, stop, increment);

 demonstrateForLoop(start, stop, increment);

}

function getValue(name) {

 output("Enter " + name + " value:");

 var value = Number(input());

 return value;

}

function demonstrateWhileLoop(start, stop, increment) {

 output("While loop counting from " + start + " to " + stop +

 " by " + increment + ":");

378 | JavaScript Examples

 var count = start;

 while (count <= stop) {

 output(count);

 count = count + increment;

 }

}

function demonstrateDoLoop(start, stop, increment) {

 output("Do loop counting from " + start + " to " + stop +

 " by " + increment + ":");

 var count = start;

 do {

 output(count);

 count = count + increment;

 } while (count <= stop);

}

function demonstrateForLoop(start, stop, increment) {

 output("For loop counting from " + start + " to " + stop +

 " by " + increment + ":");

 for (var count = start; count <= stop; count += increment) {

 output(count);

 }

}

function input(text) {

 if (typeof window === 'object') {

 return prompt(text)

 }

 else if (typeof console === 'object') {

 const rls = require('readline-sync');

 var value = rls.question(text);

JavaScript Examples | 379

 return value;

 }

 else {

 output(text);

 var isr = new java.io.InputStreamReader(java.lang.System.in);

 var br = new java.io.BufferedReader(isr);

 var line = br.readLine();

 return line.trim();

 }

}

function output(text) {

 if (typeof document === 'object') {

 document.write(text);

 }

 else if (typeof console === 'object') {

 console.log(text);

 }

 else {

 print(text);

 }

}

Output

Enter starting value:

1

Enter ending value:

3

Enter increment value:

1

While loop counting from 1 to 3 by 1:

1

2

380 | JavaScript Examples

3

Do loop counting from 1 to 3 by 1:

1

2

3

For loop counting from 1 to 3 by 1:

1

2

3

References

• Wikiversity: Computer Programming

JavaScript Examples | 381

https://en.wikiversity.org/wiki/Computer_Programming

Python Examples
DAVE BRAUNSCHWEIG

Counting

This program demonstrates While, Do, and For loop counting using

user-designated start, stop, and increment values.

References:

https://en.wikibooks.org/wiki/Python_Programming

def get_value(name):

 print("Enter " + name + " value:")

 value = int(input())

 return value

def demonstrate_while_loop(start, stop, increment):

 print("While loop counting from " + str(start) + " to " +

 str(stop) + " by " + str(increment) + ":")

 count = start

 while count <= stop:

 print(count)

 count = count + increment

def demonstrate_do_loop(start, stop, increment):

 print("Do loop counting from " + str(start) + " to " +

 str(stop) + " by " + str(increment) + ":")

 count = start

 while True:

382 | Python Examples

 print(count)

 count = count + increment

 if not(count <= stop):

 break

def demonstrate_for_loop(start, stop, increment):

 print("For loop counting from " + str(start) + " to " +

 str(stop) + " by " + str(increment) + ":")

 for count in range(start, stop + increment, increment):

 print(count)

def main():

 start = get_value("starting")

 stop = get_value("ending")

 increment = get_value("increment")

 demonstrate_while_loop(start, stop, increment)

 demonstrate_do_loop(start, stop, increment)

 demonstrate_for_loop(start, stop, increment)

main()

Output

Enter starting value:

1

Enter ending value:

3

Enter increment value:

1

While loop counting from 1 to 3 by 1:

1

2

Python Examples | 383

3

Do loop counting from 1 to 3 by 1:

1

2

3

For loop counting from 1 to 3 by 1:

1

2

3

References

• Wikiversity: Computer Programming

384 | Python Examples

https://en.wikiversity.org/wiki/Computer_Programming

Swift Examples
DAVE BRAUNSCHWEIG

Counting

// This program demonstrates While, Do, and For loop counting using

// user-designated start, stop, and increment values.

//

// References:

// https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html

import Foundation

func getValue(name: String) -> Int {

 var value : Int

 print("Enter " + name + " value:")

 value = Int(readLine()!)!

 return value

}

func demonstrateWhileLoop(start: Int, stop: Int, increment: Int) {

 print("While loop counting from " + String(start) + " to " +

 String(stop) + " by " + String(increment) + ":")

 var count : Int

 count = start

 while count <= stop {

 print(count)

 count = count + increment

 }

Swift Examples | 385

}

func demonstrateDoLoop(start: Int, stop: Int, increment: Int) {

 print("Do loop counting from " + String(start) + " to " +

 String(stop) + " by " + String(increment) + ":")

 var count : Int

 count = start

 repeat {

 print(count)

 count = count + increment

 } while count <= stop

}

func demonstrateForLoop(start: Int, stop: Int, increment: Int) {

 print("For loop counting from " + String(start) + " to " +

 String(stop) + " by " + String(increment) + ":")

 for count in stride(from: start, through: stop, by: increment) {

 print(count)

 }

}

func main() {

 var start : Int

 var stop : Int

 var increment : Int

 start = getValue(name: "starting")

 stop = getValue(name: "ending")

 increment = getValue(name: "increment")

 demonstrateWhileLoop(start: start, stop: stop, increment: increment)

 demonstrateDoLoop(start: start, stop: stop, increment: increment)

386 | Swift Examples

 demonstrateForLoop(start: start, stop: stop, increment: increment)

}

main()

Output

Enter starting value:

1

Enter ending value:

3

Enter increment value:

1

While loop counting from 1 to 3 by 1:

1

2

3

Do loop counting from 1 to 3 by 1:

1

2

3

For loop counting from 1 to 3 by 1:

1

2

3

References

• Wikiversity: Computer Programming

Swift Examples | 387

https://en.wikiversity.org/wiki/Computer_Programming

Practice: Loops
KENNETH LEROY BUSBEE

Review Questions

True / False

1. The do while and repeat until structure act exactly the
same.

2. Students sometimes confuse assignment and equality.
3. The repeat until looping control structure is available in all

programming languages.
4. Because flags are often used, they are usually a special

data type.
5. The do while is a test before loop.
6. Only for loops can be counting loops.
7. The integer data type has modular arithmetic attributes.
8. The escape code of \n is part of formatting output.
9. Nested for loops is not allowed in the C++ programming

language.
10. Counting loops use all four of the loop attributes.

Answers:

1. false
2. true
3. false
4. false
5. false
6. false
7. true

388 | Practice: Loops

8. true
9. false

10. true

Activities

Complete the following activities using pseudocode, a
flowcharting tool, or your selected programming language.
Use separate functions for input, each type of processing, and
output. Avoid global variables by passing parameters and
returning results. Create test data to validate the accuracy of
each program. Add comments at the top of the program and
include references to any resources used.

While Loops

Complete the following using a while loop structure.

1. Create a program that uses a loop to generate a list of
multiplication expressions for a given value. Ask the user
to enter the value and the number of expressions to be
displayed. For example, a list of three expressions for the
value 1 would be:
1 * 1 = 1

1 * 2 = 2

1 * 3 = 3

A list of five expressions for the value 3 would be:
3 * 1 = 3

3 * 2 = 6

3 * 3 = 9

3 * 4 = 12

3 * 5 = 15

Practice: Loops | 389

2. Review MathsIsFun: Definition of Average. Create a
program that asks the user to enter grade scores. Start by
asking the user how many scores they would like to enter.
Then use a loop to request each score and add it to a total.
Finally, calculate and display the average for the entered
scores.

3. Review MathsIsFun: Pi. Write a program that uses the
Nilakantha series to calculate Pi based on a given number
of iterations entered by the user.

4. Review MathsIsFun: Fibonacci Sequence. Write a program
that displays the Fibonacci sequence based on a given
number of iterations entered by the user.

Do While / Repeat Until Loops

Complete the following using a do while / repeat until loop
structure.

1. Review MathsIsFun: Definition of Average. Create a
program that asks the user to enter grade scores. Use a
loop to request each score and add it to a total. Continue
accepting scores until the user enters either a negative
value or no value (your choice). Finally, calculate and
display the average for the entered scores.

2. Review Khan Academy: A guessing game. Write a
program that allows the user to think of a number
between 0 and 100, inclusive. Then have the program try
to guess the user’s number. Start at the midpoint (50) and
ask the user if their number is (h)igher, (l)ower, or (e)qual
to the guess. If they indicate lower, guess the new
midpoint (25). If they indicate higher, guess the new
midpoint (75). Continue efficiently guessing higher or
lower until they indicate equal, then print the number of
guesses required to guess their number and end the

390 | Practice: Loops

https://www.mathsisfun.com/definitions/average.html
http://www.mathsisfun.com/numbers/pi.html
https://www.mathsisfun.com/numbers/fibonacci-sequence.html
https://www.mathsisfun.com/definitions/average.html
https://www.khanacademy.org/computing/computer-science/algorithms/intro-to-algorithms/a/a-guessing-game

program.
3. Add a do while / repeat until loop to any activity from a

previous chapter. Continue running the program while the
user wants to continue or until the user wants to stop.

4. Add an input validation loop to any activity from a
previous chapter. Verify that the input is valid before
returning the value. Ask the user to input the value again
while the input is invalid.

For Loops

Complete the following using a for loop structure.

1. Create a program that uses a loop to generate a list of
multiplication expressions for a given value. Ask the user
to enter the value and the number of expressions to be
displayed. For example, a list of three expressions for the
value 1 would be:
1 * 1 = 1

1 * 2 = 2

1 * 3 = 3

A list of five expressions for the value 3 would be:
3 * 1 = 3

3 * 2 = 6

3 * 3 = 9

3 * 4 = 12

3 * 5 = 15

2. Review MathsIsFun: Definition of Average. Create a
program that asks the user to enter grade scores. Start by
asking the user how many scores they would like to enter.
Then use a loop to request each score and add it to a total.
Finally, calculate and display the average for the entered
scores.

Practice: Loops | 391

https://www.mathsisfun.com/definitions/average.html

3. Review MathsIsFun: Pi. Write a program that uses the
Nilakantha series to calculate Pi based on a given number
of iterations entered by the user.

4. Review MathsIsFun: Fibonacci Sequence. Write a program
that displays the Fibonacci sequence based on a given
number of iterations entered by the user.

Nested Loops

Complete the following using a nested loop structure.

1. Review MathsIsFun: 10x Printable Multiplication Table.
Create a program that uses nested loops to generate a
multiplication table. Rather than simply creating a 10 by 10
table, ask the user to enter the starting and ending values.
Include row and column labels. For example, the output
from 1 to 3 might look like:
 1 2 3

1 1 2 3

2 2 4 6

3 3 6 9

The output from 3 to 5 might look like:
 3 4 5

3 9 12 15

4 12 16 20

5 15 20 25

2. Add a do while / repeat until loop to any activity from this
chapter. Continue running the program while the user
wants to continue or until the user wants to stop.

392 | Practice: Loops

http://www.mathsisfun.com/numbers/pi.html
https://www.mathsisfun.com/numbers/fibonacci-sequence.html
http://www.mathsisfun.com/multiplication-table-10-bw.html

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

• Wikiversity: Computer Programming

Practice: Loops | 393

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://en.wikiversity.org/wiki/Computer_Programming

CHAPTER VI

ARRAYS

Overview

This chapter introduces arrays, which may be referred to as lists
in some programming languages.

Chapter Outline

• Arrays and Lists
• Index Notation
• Displaying Array Members
• Arrays and Functions
• Math Statistics with Arrays
• Searching Arrays
• Sorting Arrays
• Parallel Arrays
• Multidimensional Arrays
• Fixed and Dynamic Arrays
• Code Examples

◦ Program Plan
◦ C++
◦ C#
◦ Java
◦ JavaScript
◦ Python
◦ Swift

• Practice

Arrays | 395

Learning Objectives

1. Understand key terms and definitions.
2. Identify static and dynamic arrays and the code structures

necessary to process each type.
3. Identify single-dimension arrays and multi-dimensional

arrays and the code structures necessary to process each
type.

4. Given example pseudocode, flowcharts, and source code,
create a program that uses arrays or lists to solve a given
problem.

396 | Arrays

Arrays and Lists

Overview

An array is a data structure consisting of a collection of
elements (values or variables), each identified by at least one
array index or key.1

Depending on the language, array types may overlap (or be
identified with) other data types that describe aggregates of
values, such as lists and strings. Array types are often
implemented by array data structures, but sometimes by other
means, such as hash tables, linked lists, or search trees.2 In
Python, the built-in array data structure is a list.

Discussion

An array is a sequenced collection of elements of the same
data type with a single identifier name. Python lists are similar
to arrays in other languages but are not restricted to a single
data type. The term ‘array’ as used in this chapter will generally
also apply to Python lists unless otherwise noted.

Arrays can have multiple axes (more than one axis). Each axis
is a dimension. Thus a single-dimension array is also known as
a list. A two-dimension array is commonly known as a table (a
spreadsheet like Excel is a two dimension array). In real life,
there are occasions to have data organized into multiple-

1. Wikipedia: Array data structure
2. Wikipedia: Array data type

Arrays and Lists | 397

https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/Array_data_type

dimension arrays. Consider a theater ticket with section, row,
and seat (three dimensions). Most single-dimension arrays are
visualized vertically.

Most programmers are familiar with a special type of array
called a string. Strings are basically a single dimension array
of characters. Unlike other single dimension arrays, we usually
envision a string as a horizontal stream of characters and not
vertically as a list.

We refer to the individual values as members (or elements)
of the array. Programming languages implement the details
of arrays differently. Because there is only one identifier name
assigned to the array, we have operators that allow us to
reference or access the individual members of an array. The
operator commonly associated with referencing array
members is the index operator. It is important to learn how to
define an array and initialize its members.

Defining an Array

Language Example

C++ int ages[] = {49, 48, 26, 19, 16};

C# int[] ages = {49, 48, 26, 19, 16};

Java int[] ages = {49, 48, 26, 19, 16};

JavaScript var ages = [49, 48, 26, 19, 16];

Python ages = [49, 48, 26, 19, 16]

Swift var ages:[Int] = [49, 48, 26, 19, 16]

This is the defining of storage space. The square brackets
[] are used here to create the array with five integer members

398 | Arrays and Lists

and the identifier name of ages. The assignment with braces
(that is a block) establishes the initial values assigned to the
members of the array. Note the use of the sequence or comma
operator. We could have also done something similar to:

Language Example Initial Values

C++ int ages[5]; undefined

C# int[] ages = new int[5]; 0

Java int[] ages = new int[5]; 0

JavaScript var ages = Array(5); undefined

Python ages = [None] * 5 None

This would have declared the storage space of five integers
with the identifier name of ages but their initial values would
have been unknown values or initialized as indicated,
depending on the programming language. We could assign
values later in our program by doing the following (leaving off
the semicolons in Python):

ages[0] = 49;

ages[1] = 48;

ages[2] = 26;

ages[3] = 19;

ages[4] = 16;

Note: The members of the array go from 0 to
4; NOT 1 to 5. This is explained in more detail on the
next page.

Arrays and Lists | 399

Key Terms

dimension
An axis of an array.

list
A single dimension array.

table
A two-dimension array.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

400 | Arrays and Lists

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Index Notation

Overview

Index notation is used to specify the elements of an array.1

Most current programming languages use square brackets []

as the array index operator. Older programming languages,
such as FORTRAN, COBOL, and BASIC, often use parentheses
() as the array index operator.

Discussion

Example:

1. Wikipedia: Index notation

Index Notation | 401

https://en.wikipedia.org/wiki/Index_notation

Language Example

C++
int ages[] = {49, 48, 26, 19, 16};

int myAge = ages[2];

C#
int[] ages = {49, 48, 26, 19, 16};

int myAge = ages[2];

Java
int[] ages = {49, 48, 26, 19, 16};

int myAge = ages[2];

JavaScript
var ages = [49, 48, 26, 19, 16];

int myAge = ages[2];

Python
ages = [49, 48, 26, 19, 16]

my_age = ages[2]

Swift
var ages:[Int] = [49, 48, 26, 19, 16]

var my_age = ages[2]

As an operator, square brackets either provide the value held
by the member of the array (Rvalue) or change the value of
member (Lvalue). In the above example, the member that is
two offsets from the front of the array (the value 26) is assigned
to the variable named myAge. The dereference operator of [2]
means to go the 2nd offset from the front of the ages array and
get the value stored there. In this case, the value would be 26. In
most current programming languages, the array members (or
elements) are referenced starting at zero. The more common
way for people to reference a list is by starting with position
one. Consider:

402 | Index Notation

Position Index Miss
America

Other
Contests

zero offsets from the
front ages[0] Winner 1st Place

one offset from the front ages[1] 1st Runner
Up 2nd Place

two offsets from the
front ages[2] 2nd Runner

Up 3rd Place

three offsets from the
front ages[3] 3rd Runner

Up 4th Place

four offsets from the
front ages[4] 4th Runner

Up 5th Place

Saying that my cousin is the 2nd Runner-Up in the Miss
America contest sounds so much better than saying that she
was in 3rd Place. We would be talking about the same position
in the array of the five finalists.

ages[3] = 20;

This is an example of changing an array’s value by assigning 20
to the 4th member of the array and replacing the value 19 with
20. This is an Lvalue context because the array is on the left side
of the assignment operator.

Key Terms

array member
An element or value in an array.

index
An operator that allows us to reference a member of an
array.

offset
The method of referencing array members by starting at
zero.

Index Notation | 403

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

404 | Index Notation

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Displaying Array
Members

Overview

To display all array members, visit each element using a for

loop and output the element using index notation and the loop
control variable.

Discussion

Accessing Array Members

Assume an integer array named ages with five values of 49, 48,
26, 19, and 16, respectively. In pseudocode, this might be written
as:

Declare Integer Array ages[5]

Assign ages = [49, 48, 26, 19, 16]

To display all elements of the array in order, we might write:

Output ages[0]

Output ages[1]

Output ages[2]

Output ages[3]

Output ages[4]

While this works for short arrays, it is not very efficient, and
quickly becomes overwhelming for longer arrays. One of the

Displaying Array Members | 405

principles of software development is don’t repeat yourself
(DRY). Violations of the DRY principle are typically referred to
as WET solutions, which is commonly taken to stand for either
“write everything twice”, “we enjoy typing” or “waste everyone’s
time”.1

Rather than repeating ourselves, we can use a for loop to visit
each element of the array and use the loop control variable as
the array index. Consider the following pseudocode:

Declare Integer Array ages[5]

Declare Integer index

Assign ages = [49, 48, 26, 19, 16]

For index = 0 to 4

 Output ages[index]

End

This approach is much more efficient from a programming
perspective, and also results in a smaller program. But there
is still one more opportunity for improvement. Most
programming languages support a built-in method for
determining the size of an array. To reduce potential errors and
required maintenance, the loop control should be based on the
size of the array rather than a hard-coded value. Consider:

Declare Integer Array ages[5]

Declare Integer index

Assign ages = [49, 48, 26, 19, 16]

For index = 0 to Size(ages) - 1

1. Wikipedia: Don't repeat yourself

406 | Displaying Array Members

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

 Output ages[index]

End

This method allows for flexible coding. By writing the for loop
in this fashion, we can change the declaration of the array by
adding or subtracting members and we don’t need to change
our for loop code.

Key Terms

don’t repeat yourself
A principle of software development aimed at reducing
repetition of software patterns, replacing it with
abstractions, or repetition of the same data, using data
normalization to avoid redundancy.2

flexible coding
Using the size of an array to determine the number of loop
iterations required.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

• Wikiversity: Computer Programming

2. Wikipedia: Don't repeat yourself

Displaying Array Members | 407

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://en.wikiversity.org/wiki/Computer_Programming
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

Arrays and Functions

Overview

In modular programming, specific task functions are often
created and used or reused for array processing. Array
processing functions are usually passed the array and any data
necessary to process the array for the given task.

It should be noted that arrays are passed by reference in most
current programming languages. Array processing functions
must take care not to alter the array unless intended.

Discussion

Arrays are an important complex data type used in almost
all programming. We continue to concentrate on simple one
dimension arrays also called a list. Most programmers develop
a series of user-defined specific task functions that can be
used with an array for normal processing. These functions are
usually passed the array along with the number of elements
within the array. Some functions also pass another piece of
data needed for that particular function’s task.

This module covers the displaying the array members on the
monitor via calling an array function dedicated to that task.

Pseudocode

Function Main

408 | Arrays and Functions

 Declare Integer Array ages[5]

 Assign ages = [49, 48, 26, 19, 16]

 Call DisplayArray(ages)

End

Function DisplayArray (Integer Array array)

 Declare Integer index

 For index = 0 to Size(array) - 1

 Output array[index]

 End

End

Output

49

48

26

19

16

Key Terms

array function
A user-defined specific task function designed to process
an array.

References

• cnx.org: Programming Fundamentals – A Modular

Arrays and Functions | 409

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Structured Approach using C++
• Wikiversity: Computer Programming

410 | Arrays and Functions

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://en.wikiversity.org/wiki/Computer_Programming

Math Statistics with
Arrays

Overview

Statistics is a branch of mathematics dealing with the
collection, organization, analysis, interpretation, and
presentation of data. Common statistical methods include
mean (or average) and standard deviation.1

Discussion

Arrays are an important complex data type used in almost
all programming. We continue to concentrate on simple one
dimension arrays also called a list. Most programmers develop
a series of user-defined specific task functions that can be
used with an array for normal processing. These functions are
usually passed the array along with the number of elements
within the array. Some functions also pass another piece of
data needed for that particular functions task.

This module covers the totaling of the members of an integer
array member. The Latin name for totaling is summa,
sometimes shortened to the word sum. In the example below,
the sum function totals the array passed to it. Other
mathematical functions often associated with statistics such

1. Wikipedia: Statistics

Math Statistics with Arrays | 411

https://en.wikipedia.org/wiki/Statistics

as: average, count, minimum, maximum, standard deviation,
etc. are often developed for processing arrays.

Pseudocode

Function Main

 Declare Integer Array ages[5]

 Declare Integer total

 Assign ages = [49, 48, 26, 19, 16]

 Assign total = sum(ages)

 Output "Total age is: " & total

End

Function sum (Integer Array array)

 Declare Integer total

 Declare Integer index

 Assign total = 0

 For index = 0 to Size(array) - 1

 Assign total = total + array[index]

 End

Return Integer total

Output

Total age is: 158

412 | Math Statistics with Arrays

Key Terms

sum
Latin for summa or a total.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

Math Statistics with Arrays | 413

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Searching Arrays

Overview

Linear search or sequential search is a method for finding a
target value within a list. It sequentially checks each element of
the list for the target value until a match is found or until all the
elements have been searched.1

Discussion

Finding a specific member of an array means searching the
array until the member is found. It’s possible that the member
does not exist and the programmer must handle that
possibility within the logic of his or her algorithm.

“The linear search is a very simple algorithm. Sometimes called
a sequential search, it uses a loop to sequentially step through
an array, starting with the first element. It compares each
element with the value being searched for, and stops when
either the value is found or the end of the array is encountered.
If the value being searched for is not in the array, the algorithm
will search to the end of the array.”2

Two specific linear searches can be made for the maximum
(largest) value in the array or the minimum (smallest) value in

1. Wikipedia: Linear search
2. Tony Gaddis, Judy Walters, and Godfrey Muganda, Starting

Out with C++ Early Objects Sixth Edition (United States of
America: Pearson – Addison Wesley, 2008) 559.

414 | Searching Arrays

https://en.wikipedia.org/wiki/Linear_search

the array. Maximum and minimum are also known as max and
min. Note that the following max and min functions assume an
array size >= 1.

Pseudocode

Function Main

 Declare Integer Array ages[5]

 Declare Integer maximum

 Declare Integer minimum

 Assign ages = [49, 48, 26, 19, 16]

 Assign maximum = max(ages)

 Assign minimum = min(ages)

 Output "Maximum age is: " & maximum

 Output "Minimum age is: " & minimum

End

Function max (Integer Array array)

 Declare Integer maximum

 Declare Integer index

 Assign maximum = array[0]

 For index = 1 to Size(array) - 1

 If maximum < array[index]

 Assign maximum = array[index]

 End

 End

Return Integer maximum

Function min (Integer Array array)

 Declare Integer minimum

Searching Arrays | 415

 Declare Integer index

 Assign minimum = array[0]

 For index = 1 to Size(array) - 1

 If minimum > array[index]

 Assign minimum = array[index]

 End

 End

Return Integer minimum

Output

Maximum age is: 49

Minimum age is: 16

Key Terms

linear search
Using a loop to sequentially step through an array.

maximum
Aka max or the largest member of an array.

minimum
Aka min or the smallest member of an array.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

• Wikiversity: Computer Programming

416 | Searching Arrays

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://en.wikiversity.org/wiki/Computer_Programming

Sorting Arrays

Overview

A sorting algorithm is an algorithm that puts elements of a
list in a certain order. The most frequently used orders are
numerical order and lexicographical order.1 Most current
programming languages include built-in or standard library
functions for sorting arrays.

Discussion

Sorting is the process through which data are arranged
according to their values. The following examples show
standard library and/or built-in array sorting methods for
different programming languages.

1. Wikipedia: Sorting algorithm

Sorting Arrays | 417

https://en.wikipedia.org/wiki/Sorting_algorithm

Language Sort Example

C++

#include <algorithm>

sort(array, array + sizeof(array) /

sizeof(int));

C# System.Array.Sort(array)

Java
import java.util.Arrays;

Arrays.sort(array);

JavaScript array.sort();

Python array.sort()

Swift array.sort()

Key Terms

sorting
Arranging data according to their values.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

418 | Sorting Arrays

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Parallel Arrays
DAVE BRAUNSCHWEIG

Overview

A group of parallel arrays is a form of implicit data structure
that uses multiple arrays to represent a singular array of
records. It keeps a separate, homogeneous data array for each
field of the record, each having the same number of elements.
Then, objects located at the same index in each array are
implicitly the fields of a single record.1

Discussion

A data structure is a data organization and storage format that
enables efficient access and modification. More precisely, a
data structure is a collection of data values, the relationships
among them, and the functions or operations that can be
applied to the data. Data structure options include arrays,
linked lists, records, and classes.2

Parallel arrays use two or more arrays to represent a collection
of data where each corresponding array index is a matching
field for a given record. For example, if there are two arrays, one
for names and one for ages, the array elements at names[2]
and ages[2] would describe the name and age of the third
person.

1. Wikipedia: Parallel array
2. Wikipedia: Data structure

Parallel Arrays | 419

https://en.wikipedia.org/wiki/Parallel_array
https://en.wikipedia.org/wiki/Data_structure

Pseudocode

Function Main

 Declare String Array names[5]

 Declare Integer Array ages[5]

 Assign names = ["Lisa", "Michael", "Ashley", "Jacob", "Emily"]

 Assign ages = [49, 48, 26, 19, 16]

 DisplayArrays(names, ages)

End

Function DisplayArrays (String Array names, Integer Array ages)

 Declare Integer index

 For index = 0 to Size(array) - 1

 Output names[index] & " is " & ages[index] & " years old"

 End

End

Output

Lisa is 49 years old

Michael is 48 years old

Ashley is 26 years old

Jacob is 19 years old

Emily is 16 years old

Key Terms

parallel array
An implicit data structure that uses multiple arrays to

420 | Parallel Arrays

represent a singular array of records.

References

Parallel Arrays | 421

Multidimensional
Arrays
KENNETH LEROY BUSBEE

Overview

The number of indices needed to specify an element is called
the dimension or dimensionality of the array. A two-
dimensional array, or table, may be stored as a one-
dimensional array of one-dimensional arrays (rows of columns)
and accessed with double indexing (array[row][column] in

typical notation).1

Discussion

An array is a sequenced collection of elements of the same
data type with a single identifier name. As such, the array data
type belongs to the “Complex” category or family of data types.
Arrays can have multiple axes (more than one axis). Each axis
is a dimension. Thus a single dimension array is also known as
a list. A two-dimension array is commonly known as a table (a
spreadsheet like Excel is a two dimension array). In real life,
there are occasions to have data organized into multiple
dimensioned arrays. Consider a theater ticket with section, row,
and seat (three dimensions).

1. Wikipedia: Array data type

422 | Multidimensional Arrays

https://en.wikipedia.org/wiki/Array_data_type

We refer to the individual values as members (or elements)
of the array. Multidimensional arrays use one set of square
brackets per dimension or axis of the array. For example, a
table which has two dimensions would use two sets of square
brackets to define the array variable and two sets of square
brackets for the index operators to access the members of the
array. Programming languages implement the details of arrays
differently. The total number of dimensions allowed in an array
is language-specific and also limited by available memory.

Pseudocode

Function Main

 Declare String Array game[3][3]

 Assign game = [["X", "O", "X"], ["O", "O", "O"], ["X", "O", "X"]]

 DisplayGame(game)

End

Function DisplayGame (String Array game)

 Declare Integer row

 Declare Integer column

 Output "Tic-Tac-Toe"

 For row = 0 to 2

 For column = 0 to 2

 Output game[row][column]

 If column < 2 Then

 Output " | "

 End

 End

 End

End

Multidimensional Arrays | 423

Output

Tic-Tac-Toe

X | O | X

O | O | O

X | O | X

Key Terms

array member
An element or value in an array.

dimension
An axis of an array.

index
An operator that allows us to reference a member of an
array.

list
A single dimension array.

offset
The method of referencing array members by starting at
zero.

table
A two-dimension array.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

424 | Multidimensional Arrays

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Fixed and Dynamic
Arrays
DAVE BRAUNSCHWEIG

Overview

A fixed array is an array for which the size or length is
determined when the array is created and/or allocated.1

A dynamic array is a random access, variable-size list data
structure that allows elements to be added or removed. It is
supplied with standard libraries in many modern
programming languages. Dynamic arrays overcome a limit of
static arrays, which have a fixed capacity that needs to be
specified at allocation.2

Discussion

Static arrays have their size or length determined when the
array is created and/or allocated. For this reason, they may also
be referred to as fixed-length arrays or fixed arrays. Array values
may be specified when the array is defined, or the array size
may be defined without specifying array contents. Depending
on the programming language, an uninitialized array may

1. Wikipedia: Array data type
2. Wikipedia: Dynamic array

Fixed and Dynamic Arrays | 425

https://en.wikipedia.org/wiki/Array_data_type
https://en.wikipedia.org/wiki/Dynamic_array

contain default values, or it may contain whatever values were
left in memory from previous allocation.

Language Defined Values Fixed-Length with Undefined or
Default Values

C++
int values[] =

{0, 1, 2};
int values[3];

C#
int[] values =

{0, 1, 2};

int[] values = = new

int[3];

Java
int[] values =

{0, 1, 2};

int[] values = = new

int[3];

JavaScript
var values =

[0, 1, 2];

var values = new

Array(3);

Python
values = [0,

1, 2]
values = [None] * 3

Swift

var

values:[Int] =

[0, 1, 2]

var values: [Int] =

[Int](repeating: 0,

count: 3)

Dynamic arrays allow elements to be added and removed at
runtime. Most current programming languages include built-
in or standard library functions for creating and managing
dynamic arrays.

426 | Fixed and Dynamic Arrays

Language Class Add Remove

C++
#include <list>

std::list
insert erase

C# System.Collections.Generic.List Add Remove

Java java.util.ArrayList add remove

JavaScript Array
push,

splice

pop,

splice

Python List append remove

Swift Array append remove

Key Terms

dynamic array
A data structure consisting of a collection of elements that
allows individual elements to be added or removed.

fixed array
A data structure consisting of a collection of elements for
which the size or length is determined when the data
structure is defined or allocated.

References

Fixed and Dynamic Arrays | 427

Program Plan

This program demonstrates array processing, including:
display, total, max, min, parallel arrays, sort, fixed arrays,
dynamic arrays, and multidimensional arrays.

Main Program

Create name and age arrays

Display arrays

Calculate sum of ages

Calculate maximum age

Calculate minimum age

Display sum, maximum, and minimum

Sort and display ages

Display parallel arrays

Demonstrate fixed array

Demonstrate dynamic array

Demonstrate multidimensional array

Calculate Sum

Parameters:

Array

428 | Program Plan

Process:

Initialize total

Loop for index from 0 to array length by 1

Add array index value to total

Return Value:

Sum

Calculate Maximum

Parameters:

Array

Process:

Initialize maximum to first array value

Loop for index from 1 to array length by 1

If maximum < array index value

maximum = array index value

Return Value:

Maximum

Calculate Minimum

Parameters:

Array

Process:

Program Plan | 429

Initialize minimum to first array value

Loop for index from 1 to array length by 1

If minimum > array index value

minimum = array index value

Return Value:

Minimum

Demonstrate Parallel Arrays

Parameters:

Name Array

Age Array

Process:

Loop for index from 0 to array length by 1

Display array index name and age

Return Value:

None

Demonstrate Fixed Array

Parameters:

None

Process:

Initialize array with 5 null values

430 | Program Plan

For index from 0 to array length by 1

Set array index value to a random number

Display array

Return Value:

None

Demonstrate Dynamic Array

Parameters:

None

Process:

Initialize empty array

For index from 0 to 5 by 1

Append a random number to the array

Display array

Return Value:

None

Demonstrate Multidimensional Array

Parameters:

None

Process:

Program Plan | 431

Initialize multidimensional array as a tic-tac-toe
game

For row from 0 to 2 by 1

For column from 0 to 2 by 1

Display array element

If column < 2

Display separator

Go to next output line

Return Value:

None

432 | Program Plan

C++ Examples
DAVE BRAUNSCHWEIG

Arrays

// This program demonstrates array processing, including:

// display, total, max, min, parallel arrays, sort,

// fixed arrays, dynamic arrays, and multidimensional arrays.

#include <iostream>

#include <list>

#include <algorithm>

using namespace std;

void displayArray(int [], int);

int calculateSum(int [], int);

int calculateMaximum(int [], int);

int calculateMinimum(int [], int);

void demonstrateParallelArrays(string [], int [], int);

void demonstrateFixedArray();

void demonstrateDynamicArray();

void demonstrateMultidimensionalArray();

int main() {

 string names[] = {"Lisa", "Michael", "Ashley", "Jacob", "Emily"};

 int ages[] = {49, 48, 26, 19, 16};

 displayArray(ages, sizeof(ages) / sizeof(int));

 int total = calculateSum(ages, sizeof(ages) / sizeof(int));

 int maximum = calculateMaximum(ages, sizeof(ages) / sizeof(int));

C++ Examples | 433

 int minimum = calculateMinimum(ages, sizeof(ages) / sizeof(int));

 cout << "total: " << total << endl;

 cout << "maximum: " << maximum << endl;

 cout << "minimum: " << minimum << endl;

 demonstrateParallelArrays(names, ages, sizeof(ages) / sizeof(int));

 sort(ages, ages + sizeof(ages) / sizeof(int));

 displayArray(ages, sizeof(ages) / sizeof(int));

 demonstrateFixedArray();

 demonstrateDynamicArray();

 demonstrateMultidimensionalArray();

 return 0;

}

void displayArray(int arry[], int size) {

 for (int index = 0; index < size; index++) {

 cout << "array[" << index << "] = " << arry[index] << endl;

 }

}

int calculateSum(int arry[], int size) {

 int total = 0;

 for (int index = 0; index < size; index++) {

 total += arry[index];

 }

 return total;

}

int calculateMaximum(int arry[], int size) {

 int maximum = arry[0];

 for (int index = 1; index < size; index++) {

434 | C++ Examples

 if (maximum < arry[index]) {

 maximum = arry[index];

 }

 }

 return maximum;

}

int calculateMinimum(int arry[], int size) {

 int minimum = arry[0];

 for (int index = 1; index arry[index]) {

 minimum = arry[index];

 }

 }

 return minimum;

}

void demonstrateParallelArrays(string names[], int ages[], int size) {

 for (int index = 0; index < size; index++) {

 cout << names[index] << " is " << ages[index] << " years old" << endl;

 }

}

void demonstrateFixedArray() {

 int arry[5];

 srand (time(NULL));

 for (int index = 0; index < 5; index++) {

 int number = rand() % 100;

 arry[index] = number;

 }

 displayArray(arry, 5);

}

void demonstrateDynamicArray() {

 list arry;

C++ Examples | 435

 srand (time(NULL));

 for (int index = 0; index < 5; index++) {

 int number = rand() % 100;

 arry.push_back(number);

 }

 for (list::iterator it = arry.begin(); it != arry.end(); it++) {

 cout << *it << endl;

 }

}

void demonstrateMultidimensionalArray() {

 string game[3][3] = {

 {"X", "O", "X"},

 {"O", "O", "O"},

 {"X", "O", "X"} };

 for (int row = 0; row < 3; row++) {

 for (int column = 0; column < 3; column++) {

 cout << (game[row][column]);

 if (column < 2) {

 cout << " | ";

 }

 }

 cout << endl;

 }

}

Output

array[0] = 49

array[1] = 48

array[2] = 26

array[3] = 19

436 | C++ Examples

array[4] = 16

total: 158

maximum: 49

minimum: 16

Lisa is 49 years old

Michael is 48 years old

Ashley is 26 years old

Jacob is 19 years old

Emily is 16 years old

array[0] = 16

array[1] = 19

array[2] = 26

array[3] = 48

array[4] = 49

array[0] = 30

array[1] = 14

array[2] = 67

array[3] = 59

array[4] = 96

30

14

67

59

96

X | O | X

O | O | O

X | O | X

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

C++ Examples | 437

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

C# Examples
DAVE BRAUNSCHWEIG

Arrays

// This program demonstrates array processing, including:

// display, total, max, min, parallel arrays, sort,

// fixed arrays, dynamic arrays, and multidimensional arrays.

using System;

using System.Collections.Generic;

class Arrays {

 public static void Main (string[] args)

 {

 String[] names = {"Lisa", "Michael", "Ashley", "Jacob", "Emily"};

 int[] ages = {49, 48, 26, 19, 16};

 DisplayArray(ages);

 int total = CalculateSum(ages);

 int maximum = CalculateMaximum(ages);

 int minimum = CalculateMinimum(ages);

 Console.WriteLine("total: " + total);

 Console.WriteLine("maximum: " + maximum);

 Console.WriteLine("minimum: " + minimum);

 DemonstrateParallelArrays(names, ages);

 System.Array.Sort(ages);

 DisplayArray(ages);

438 | C# Examples

 DemonstrateFixedArray();

 DemonstrateDynamicArray();

 DemonstrateMultidimensionalArray();

 }

 public static void DisplayArray(int[] array)

 {

 for (int index = 0; index < array.Length; index++)

 {

 Console.WriteLine("array[" + index + "] = " + array[index]);

 }

 }

 public static int CalculateSum(int[] array)

 {

 int total = 0;

 for (int index = 0; index < array.Length; index++)

 {

 total += array[index];

 }

 return total;

 }

 public static int CalculateMaximum(int[] array)

 {

 int maximum = array[0];

 for (int index = 1; index < array.Length; index++)

 {

 if (maximum < array[index])

 {

 maximum = array[index];

 }

 }

 return maximum;

C# Examples | 439

 }

 public static int CalculateMinimum(int[] array)

 {

 int minimum = array[0];

 for (int index = 1; index < array.Length; index++)

 {

 if (minimum > array[index])

 {

 minimum = array[index];

 }

 }

 return minimum;

 }

 public static void DemonstrateParallelArrays(String[] names, int[] ages)

 {

 for (int index = 0; index < names.Length; index++)

 {

 Console.WriteLine(names[index] + " is " +

 ages[index] + " years old");

 }

 }

 public static void DemonstrateFixedArray()

 {

 int[] array = new int[5];

 Random random = new Random();

 for (int index = 0; index < array.Length; index++)

 {

 int number = random.Next(0, 100);

 array[index] = number;

 }

 DisplayArray(array);

440 | C# Examples

 }

 public static void DemonstrateDynamicArray()

 {

 List<int> array = new List<int>();

 Random random = new Random();

 for (int index = 0; index < 5; index++)

 {

 int number = random.Next(0, 100);

 array.Add(number);

 }

 for (int index = 0; index < array.Count; index++)

 {

 Console.WriteLine("array[" + index + "] = " + array[index]);

 }

 }

 public static void DemonstrateMultidimensionalArray()

 {

 String[,] game = new String[,]

 {

 {"X", "O", "X"},

 {"O", "O", "O"},

 {"X", "O", "X"}

 };

 for (int row = 0; row < 3; row++)

 {

 for (int column = 0; column < 3; column++)

 {

 Console.Write(game[row, column]);

 if (column < 2)

 {

 Console.Write(" | ");

C# Examples | 441

 }

 }

 Console.WriteLine();

 }

 }

}

Output

array[0] = 49

array[1] = 48

array[2] = 26

array[3] = 19

array[4] = 16

total: 158

maximum: 49

minimum: 16

Lisa is 49 years old

Michael is 48 years old

Ashley is 26 years old

Jacob is 19 years old

Emily is 16 years old

array[0] = 16

array[1] = 19

array[2] = 26

array[3] = 48

array[4] = 49

array[0] = 65

array[1] = 45

array[2] = 78

array[3] = 32

array[4] = 4

array[0] = 24

array[1] = 62

442 | C# Examples

array[2] = 97

array[3] = 40

array[4] = 82

X | O | X

O | O | O

X | O | X

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

C# Examples | 443

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Java Examples
DAVE BRAUNSCHWEIG

Arrays

// This program demonstrates array processing, including:

// display, total, max, min, parallel arrays, sort,

// fixed arrays, dynamic arrays, and multidimensional arrays.

import java.util.*;

class Main {

 public static void main(String[] args) {

 String[] names = {"Lisa", "Michael", "Ashley", "Jacob", "Emily"};

 int[] ages = {49, 48, 26, 19, 16};

 displayArray(ages);

 int total = calculateSum(ages);

 int maximum = calculateMaximum(ages);

 int minimum = calculateMinimum(ages);

 System.out.println("total: " + total);

 System.out.println("maximum: " + maximum);

 System.out.println("minimum: " + minimum);

 demonstrateParallelArrays(names, ages);

 Arrays.sort(ages);

 displayArray(ages);

 demonstrateFixedArray();

444 | Java Examples

 demonstrateDynamicArray();

 demonstrateMultidimensionalArray();

 }

 public static void displayArray(int[] array) {

 for (int index = 0; index < array.length; index++) {

 System.out.println("array[" + index + "] = " + array[index]);

 }

 }

 public static int calculateSum(int[] array) {

 int total = 0;

 for (int index = 0; index < array.length; index++) {

 total += array[index];

 }

 return total;

 }

 public static int calculateMaximum(int[] array) {

 int maximum = array[0];

 for (int index = 1; index < array.length; index++) {

 if (maximum < array[index]) {

 maximum = array[index];

 }

 }

 return maximum;

 }

 public static int calculateMinimum(int[] array) {

 int minimum = array[0];

 for (int index = 1; index array[index]) {

 minimum = array[index];

 }

 }

 return minimum;

Java Examples | 445

 }

 public static void demonstrateParallelArrays(String[] names, int[] ages) {

 for (int index = 0; index < names.length; index++) {

 System.out.println(names[index] + " is " +

 ages[index] + " years old");

 }

 }

 public static void demonstrateFixedArray() {

 int[] array = new int[5];

 for (int index = 0; index < array.length; index++) {

 int number = (int) Math.floor(Math.random() * 100);

 array[index] = number;

 }

 displayArray(array);

 }

 public static void demonstrateDynamicArray() {

 ArrayList array = new ArrayList();

 for (int index = 0; index < 5; index++) {

 int number = (int) Math.floor(Math.random() * 100);

 array.add(number);

 }

 System.out.println(array);

 }

 public static void demonstrateMultidimensionalArray() {

 String[][] game = {

 {"X", "O", "X"},

 {"O", "O", "O"},

 {"X", "O", "X"} };

446 | Java Examples

 for (int row = 0; row < 3; row++) {

 for (int column = 0; column < 3; column++) {

 System.out.print(game[row][column]);

 if (column < 2) {

 System.out.print(" | ");

 }

 }

 System.out.println();

 }

 }

}

Output

array[0] = 49

array[1] = 48

array[2] = 26

array[3] = 19

array[4] = 16

total: 158

maximum: 49

minimum: 16

Lisa is 49 years old

Michael is 48 years old

Ashley is 26 years old

Jacob is 19 years old

Emily is 16 years old

array[0] = 16

array[1] = 19

array[2] = 26

array[3] = 48

array[4] = 49

array[0] = 28

array[1] = 30

Java Examples | 447

array[2] = 28

array[3] = 75

array[4] = 21

[56, 50, 63, 82, 15]

X | O | X

O | O | O

X | O | X

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

448 | Java Examples

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

JavaScript Examples
DAVE BRAUNSCHWEIG

Arrays

// This program demonstrates array processing, including:

// display, total, max, min, parallel arrays, sort,

// fixed arrays, dynamic arrays, and multidimensional arrays.

main()

function main() {

 var names = ['Lisa', 'Michael', 'Ashley', 'Jacob', 'Emily'];

 var ages = [49, 48, 26, 19, 16];

 displayArray(names);

 displayArray(ages);

 var total = calculateSum(ages);

 var maximum = calciulateMaximum(ages);

 var minimum = calculateMinimum(ages);

 output('total: ' + total);

 output('maximum: ' + maximum);

 output('minimum: ' + minimum);

 demonstrateParallelArrays(names, ages);

 ages.sort();

 displayArray(ages);

 demonstrateFixedArray();

JavaScript Examples | 449

 demonstrateDynamicArray();

 demonstrateMultidimensionalArray();

}

function displayArray(array) {

 for (var index = 0; index < array.length; index++) {

 output('array[' + index + '] = ' + array[index]);

 }

}

function calculateSum(array) {

 var total = 0;

 for (var index = 0; index < array.length; index++) {

 total += array[index];

 }

 return total;

}

function calculateMaximum(array) {

 var maximum = array[0];

 for (var index = 1; index < array.length; index++) {

 if (maximum < array[index]) {

 maximum = array[index];

 }

 }

 return maximum;

}

function calculateMinimum(array) {

 var minimum = array[0];

 for (var index = 1; index < array.length; index++) {

 if (minimum > array[index]) {

 minimum = array[index];

 }

 }

450 | JavaScript Examples

 return minimum;

}

function demonstrateParallelArrays(names, ages) {

 for (var index = 0; index < names.length; index++) {

 output(names[index] + ' is ' + ages[index] + ' years old');

 }

}

function demonstrateFixedArray() {

 var array = new Array(5);

 for (var index = 0; index < array.length; index++) {

 var number = Math.floor(Math.random() * 100);

 array[index] = number;

 }

 displayArray(array);

}

function demonstrateDynamicArray() {

 var array = [];

 for (var index = 0; index < 5; index++) {

 var number = Math.floor(Math.random() * 100);

 array.push(number);

 }

 displayArray(array);

}

function demonstrateMultidimensionalArray() {

 var game = [

 ['X', 'O', 'X'],

 ['O', 'O', 'O'],

 ['X', 'O', 'X']];

JavaScript Examples | 451

 for (var row = 0; row < 3; row++) {

 var line = '';

 for (var column = 0; column < 3; column++) {

 line += game[row][column];

 if (column < 2) {

 line += ' | ';

 }

 }

 output(line);

 }

}

function output(text) {

 if (typeof document === 'object') {

 document.write(text);

 }

 else if (typeof console === 'object') {

 console.log(text);

 }

 else {

 print(text);

 }

}

Output

array[0] = Lisa

array[1] = Michael

array[2] = Ashley

array[3] = Jacob

array[4] = Emily

array[0] = 49

array[1] = 48

array[2] = 26

452 | JavaScript Examples

array[3] = 19

array[4] = 16

total: 158

maximum: 49

minimum: 16

Lisa is 49 years old

Michael is 48 years old

Ashley is 26 years old

Jacob is 19 years old

Emily is 16 years old

array[0] = 16

array[1] = 19

array[2] = 26

array[3] = 48

array[4] = 49

array[0] = 55

array[1] = 4

array[2] = 46

array[3] = 88

array[4] = 49

array[0] = 28

array[1] = 95

array[2] = 13

array[3] = 60

array[4] = 60

X | O | X

O | O | O

X | O | X

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

JavaScript Examples | 453

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Python Examples
DAVE BRAUNSCHWEIG

Arrays

This program demonstrates array processing, including:

display, total, max, min, parallel arrays, sort,

fixed arrays, dynamic arrays, and multidimensional arrays.

import random

def display_array(array):

 for index in range(len(array)):

 print('array[' + str(index) + '] = ' +

 str(array[index]))

def calculate_sum(array):

 total = 0

 for index in range(len(array)):

 total += array[index]

 return total

def calculate_maximum(array):

 maximum = array[0]

 for index in range(1, len(array)):

 if maximum < array[index]:

 maximum = array[index]

 return maximum

454 | Python Examples

def calculate_minimum(array):

 minimum = array[0]

 for index in range(1, len(array)):

 if minimum > array[index]:

 minimum = array[index]

 return minimum

def demonstrate_parallel_arrays(names, ages):

 for index in range(len(names)):

 print(names[index] + ' is ' +

 str(ages[index]) + ' years old')

def demonstrate_fixed_array():

 array = [None] * 5

 for index in range(len(array)):

 array[index] = random.randint(0, 100)

 display_array(array)

def demonstrate_dynamic_array():

 array = []

 for index in range(5):

 array.append(random.randint(0, 100))

 display_array(array)

def demonstrate_multidimensional_array():

 game = [

 ['X', 'O', 'X'],

 ['O', 'O', 'O'],

 ['X', 'O', 'X']]

 for row in range (0, 3):

Python Examples | 455

 for column in range(0, 3):

 print(game[row][column], end='')

 if column < 2:

 print(' | ', end='')

 print()

def main():

 names = ['Lisa', 'Michael', 'Ashley', 'Jacob', 'Emily']

 ages = [49, 48, 26, 19, 16]

 display_array(names)

 display_array(ages)

 total = calculate_sum(ages)

 maximum = calculate_maximum(ages)

 minimum = calculate_minimum(ages)

 print('total: ' + str(total))

 print('maximum: ' + str(maximum))

 print('minimum: ' + str(minimum))

 demonstrate_parallel_arrays(names, ages)

 ages.sort()

 display_array(ages)

 demonstrate_fixed_array()

 demonstrate_dynamic_array()

 demonstrate_multidimensional_array()

main()

456 | Python Examples

Output

array[0] = Lisa

array[1] = Michael

array[2] = Ashley

array[3] = Jacob

array[4] = Emily

array[0] = 49

array[0] = Lisa

array[1] = Michael

array[2] = Ashley

array[3] = Jacob

array[4] = Emily

array[0] = 49

array[1] = 48

array[2] = 26

array[3] = 19

array[4] = 16

total: 158

maximum: 49

minimum: 16

Lisa is 49 years old

Michael is 48 years old

Ashley is 26 years old

Jacob is 19 years old

Emily is 16 years old

array[0] = 16

array[1] = 19

array[2] = 26

array[3] = 48

array[4] = 49

array[0] = 18

array[1] = 14

array[2] = 59

array[3] = 99

Python Examples | 457

array[4] = 61

array[0] = 85

array[1] = 4

array[2] = 35

array[3] = 45

array[4] = 93

X | O | X

O | O | O

X | O | X

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

458 | Python Examples

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Swift Examples
DAVE BRAUNSCHWEIG

Arrays

// This program demonstrates array processing, including:

// display, total, max, min, parallel arrays, sort,

// fixed arrays, dynamic arrays, and multidimensional arrays.

//

// References:

// https://www.mathsisfun.com/temperature-conversion.html

// https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html

import Foundation

func displayArray(array: [Int]) {

 for index in 0...array.count - 1 {

 print("array[" + String(index) + "] = " + String(array[index]))

 }

}

func demonstrateParallelArrays(names:[String], ages:[Int]) {

 for index in 0...names.count - 1 {

 print(names[index] + " is " + String(ages[index]))

 }

}

func demonstrateFixedArray() {

 var array: [Int] = [Int](repeating: 0, count: 5)

 srand(UInt32(time(nil)))

 for index in 0...4 {

Swift Examples | 459

 array[index] = random() % 100

 }

 print(array)

}

func demonstrateDynamicArray() {

 var array: [Int] = []

 srand(UInt32(time(nil)))

 for _ in 0...4 {

 array.append(random() % 100)

 }

 print(array)

}

func demonstrateMultidimensionalArray() {

 var game: [[String]]

 game = [

 ["X", "O", "X"],

 ["O", "X", "O"],

 ["X", "O", "X"]

]

 for row in 0...2 {

 for column in 0...2 {

 print(game[row][column], terminator:"")

 if column < 2 {

 print(" | ", terminator:"")

 }

 }

 print()

 }

}

460 | Swift Examples

func main() {

 var names: [String]

 var ages: [Int]

 var total: Int

 var maximum: Int

 var minimum: Int

 names = ["Lisa", "Michael", "Ashley", "Jacob", "Emily"]

 ages = [49, 48, 26, 19, 16]

 displayArray(array:ages)

 total = ages.reduce(0, +)

 maximum = ages.max()!

 minimum = ages.min()!

 print("total:", total)

 print("maximum:", maximum)

 print("minimum:", minimum)

 demonstrateParallelArrays(names:names, ages:ages)

 ages.sort()

 displayArray(array:ages)

 demonstrateFixedArray()

 demonstrateDynamicArray()

 demonstrateMultidimensionalArray()

}

main()

Output

array[0] = 49

Swift Examples | 461

array[1] = 48

array[2] = 26

array[3] = 19

array[4] = 16

total: 158

maximum: 49

minimum: 16

Lisa is 49

Michael is 48

Ashley is 26

Jacob is 19

Emily is 16

array[0] = 16

array[1] = 19

array[2] = 26

array[3] = 48

array[4] = 49

[89, 41, 22, 56, 60]

[89, 41, 22, 56, 60]

X | O | X

O | X | O

X | O | X

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

• Wikiversity: Computer Programming

462 | Swift Examples

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://en.wikiversity.org/wiki/Computer_Programming

Practice: Arrays
KENNETH LEROY BUSBEE

Review Questions

True / False

1. The array data type is one of the standard data types in
C++.

2. Arrays can have more than one dimension.
3. For loops are often used to display the members of an

array.
4. When defining an array, it is preferable to specify how

many members are in the array.
5. Arrays are rarely used to represent data.
6. Linear searches require complex algorithms.
7. Functions are often created for searching for the max and

min values in an array.
8. The bubble sort is an easy way to arrange data an array.
9. There is only one method of bubble sorting.

10. Sorting an array is frequently done.

Answers:

1. false
2. true
3. true
4. false
5. false
6. false
7. true

Practice: Arrays | 463

8. true
9. false

10. true

Short Answer

1. Briefly explain what an array is and list the two common
operators used with arrays.

2. Give a short explanation of bubble sorting.

Activities

Complete the following activities using pseudocode, a
flowcharting tool, or your selected programming language.
Use separate functions for input, each type of processing, and
output. Avoid global variables by passing parameters and
returning results. Create test data to validate the accuracy of
each program. Add comments at the top of the program and
include references to any resources used.

Defined-Value Arrays

1. Review MathsIsFun: Leap Years. Create a program with a
defined array where each entry is the number of days in
the corresponding month (January = 31, February = 28 or
29 depending on year, March = 31, etc.). Build a parallel
string array with the names of each month. Ask the user to
enter a year and month number and then look up the
corresponding month name and number of days and
display the information. Continue accepting input until
the user enters an invalid year or invalid month number.

464 | Practice: Arrays

http://www.mathsisfun.com/leap-years.html

2. Review Wikipedia: Zeller’s congruence. Create a program
that asks the user for their birthday (year, month, and day)
and then calculates and displays the day of the week on
which they were born. Use an array lookup to convert the
numeric day of the week to the correct string
representation (Monday, Tuesday, Wednesday, etc.).

Fixed-Length Arrays

1. Review MathsIsFun: Definition of Average. Create a
program that asks the user to enter grade scores. Start by
asking the user how many scores they would like to enter.
Then use a loop to request each score and add it to a static
(fixed-size) array. After the scores are entered, calculate
and display the high, low, and average for the entered
scores.

2. If your programming language supports it, use a built-in
sort function to sort the grade scores from the activity
above and display the array in order from highest score to
lowest score.

3. Review Wikipedia: Monty Hall problem. Create a program
that uses an array to simulate the three doors. Use 0 (zero)
to indicate goats and 1 (one) to indicate the car. Clear each
“door” and then use a random number function to put the
number 1 in one of the array elements. Then use the
random number function to randomly select one of the
three elements. Run the simulation in a loop 100 times to
confirm a 1/3 chance of winning. Then run the simulation
again, this time switching the selection after a 0 (goat) is
removed from the remaining choices. Run the simulation
in a loop 100 times to confirm a 2/3 chance of winning by
switching.

Practice: Arrays | 465

https://en.wikipedia.org/wiki/Zeller%27s_congruence
https://www.mathsisfun.com/definitions/average.html
https://en.wikipedia.org/wiki/Monty_Hall_problem

Dynamic Arrays / Lists

1. If your programming language supports it, update the
grade scores program above to replace the static array
with a dynamic array, and extend the array as each item is
added to the array. Continue accepting scores until the
user enters a negative value.

2. If your programming language supports it, use a built-in
sort function to sort the grade scores from the activity
above and display the array in order from highest score to
lowest score.

3. Review Khan Academy: A guessing game. Write a
program that allows the user to think of a number
between 0 and 100, inclusive. Then have the program try
to guess their number. Start at the midpoint (50) and ask
the user if their number is (h)igher, (l)ower, or (e)qual to
the guess. If they indicate lower, guess the new midpoint
(25). If they indicate higher, guess the new midpoint (75).
Record each guess in an an array and continue efficiently
guessing higher or lower until they indicate equal, then
display the list of guesses required to guess their number
and end the program.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

• Wikiversity: Computer Programming

466 | Practice: Arrays

https://www.khanacademy.org/computing/computer-science/algorithms/intro-to-algorithms/a/a-guessing-game
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://en.wikiversity.org/wiki/Computer_Programming

CHAPTER VII

STRINGS AND FILES

Overview

This chapter introduces string and file processing.

Chapter Outline

• Strings
• String Functions
• String Formatting
• File Input and Output
• Exception Handling
• Loading an Array from a File
• Code Examples

◦ Program Plan
◦ C++
◦ C#
◦ Java
◦ JavaScript
◦ Python
◦ Swift

• Practice

Learning Objectives

1. Understand key terms and definitions.
2. Given example pseudocode, flowcharts, and source code,

Strings and Files | 467

create a program that processes strings to solve a given
problem.

3. Given example pseudocode, flowcharts, and source code,
create a program that processes a text file to solve a given
problem.

468 | Strings and Files

Strings

Overview

A string is traditionally a sequence of characters, either as a
literal constant or as some kind of variable. The latter may allow
its elements to be mutated and the length changed, or it may
be fixed (after creation). A string is generally considered a data
type and is often implemented as an array data structure of
bytes (or words) that stores a sequence of elements, typically
characters, using some character encoding.1

Discussion

Recall from String Data Type earlier in the book
that, depending on programming language and precise data
type used, a variable declared to be a string may either cause
storage in memory to be statically allocated for a
predetermined maximum length or employ dynamic
allocation to allow it to hold a variable number of elements.
When a string appears literally in source code, it is known as a
string literal or an anonymous string.2

Most data is more complex than just one character, integer,
etc. Programming languages develop other methods to
represent and store data that are more complex. A complex
data type of array is the first most students encounter. An array

1. Wikipedia: String (computer science)
2. Wikipedia: String (computer science)

Strings | 469

https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/String_(computer_science)

is a sequenced collection of elements of the same data type
with a single identifier name. This definition perfectly describes
our string data type concept. The simplest array is called a
one-dimensional array; also know as a list because we usually
list the members or elements vertically. However, strings are
viewed as a one-dimensional array that visualize as listed
horizontally. Strings are an array of character data.

In the “C” programming language all strings were handled
as an array of characters that end in an ASCII null character
(the value 0 or the first character in the ASCII character code
set). This approach required programmers to manually process
string length and manage string storage. Buffer overflows were
common. A buffer overflow, or buffer overrun, is an anomaly
where a program, while writing data to a buffer, overruns the
buffer’s boundary and overwrites adjacent memory locations.3

Most current programming languages implement strings as
a data type or class where strings are stored as a length
controlled array. String length and storage are handled by the
compiler or interpreter, reducing program errors.

Language Reserved Word

C++ string

C# String

Java String

JavaScript String

Python str()

Swift String

3. Wikipedia: Buffer overflow

470 | Strings

https://en.wikipedia.org/wiki/Buffer_overflow

Key Terms

array
A sequenced collection of elements of the same data type
with a single identifier name.

buffer overflow
An anomaly where a program overruns a memory storage
location and overwrites adjacent memory locations.

concatenation
Combining two strings into one string.

string class
A complex data item that uses object oriented
programming.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

Strings | 471

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

String Functions
DAVE BRAUNSCHWEIG

Overview

String functions are used in computer programming
languages to manipulate a string or query information about a
string.1

Discussion

Most current programming languages include built-in or
library functions to process strings. Common examples include
case conversion, comparison, concatenation, find, join, length,
reverse, split, substring, and trim.

1. Wikipedia: Comparison of programming languages (string
functions)

472 | String Functions

https://en.wikipedia.org/wiki/Comparison_of_programming_languages_(string_functions)
https://en.wikipedia.org/wiki/Comparison_of_programming_languages_(string_functions)

Function C++ C# Java

case
tolower(),

toupper(),
etc.

ToLower(),

ToUpper(),
etc.

toLowerCase(),

toUpperCase(),
etc.

comparison <, >, ==, etc. <, >, ==, etc. <, >, ==, etc.

concatenation +, += +, += +, +=

find find() IndexOf() indexOf()

join N/A Join() join()

length length() Length length()

replace replace() Replace() replace()

reverse reverse() Reverse() N/A

split strtok() Split() split()

substring substr() Substring() substring()

trim N/A Trim() trim()

String Functions | 473

Function JavaScript Python Swift

case
toLowerCase(),

toUpperCase(),
etc.

lower(), upper(),
etc.

lowercased(),

uppercased()

comparison <, >, ==, etc. <, >, ==, etc. <, >, ==, etc.

concatenation +, += +, += +, +=

find indexOf() find() firstIndex()

join join() join() joined()

length length len() count

replace replace() replace() replacingOccurrences()

reverse N/A string[::-1] reversed()

split split() split() split()

substring substring() string[start:end] string[start...end]

trim trim() strip() trimmingCharacters()

Key Terms

concatenate
Join character strings end-to-end.2

trim
Remove leading and trailing spaces from a string.3

References

2. Wikipedia: Concatenation
3. Wikipedia: Trimming (computer programming)

474 | String Functions

https://en.wikipedia.org/wiki/Concatenation
https://en.wikipedia.org/wiki/Concatenation

String Formatting

Overview

String formatting uses a process of string interpolation
(variable substitution) to evaluate a string literal containing one
or more placeholders, yielding a result in which the
placeholders are replaced with their corresponding values.1

Discussion

Most current programming languages provide one or more
string formatting functions that use a template string with
placeholders and optional alignment, width, and precision
indicators to generate formatted output.

1. Wikipedia: String interpolation

String Formatting | 475

https://en.wikipedia.org/wiki/String_interpolation

Language Function Examples

C++ snprintf()

snprintf(str, sizeof(str),

"Hello %s!", name);

snprintf(str, sizeof(str),

"$%.2f", value);

C# Format()

String.Format("Hello {0}!",

name);

String.Format("{0:$0.00}",

value);

Java format()

String.format("Hello %s!",

name);

String.format("$%.2f", value);

JavaScript template
literal

`Hello ${name}`;

`$${value.toFixed(2)}`;

Python interpolation
(f-string)

f"Hello {name}!"

f"${value:.2f}"

Swift
interpolation
String()

"Hello \(name)!"

String(format:"%.2f", value)

String interpolation, like string concatenation, may lead to
security problems. If user input data is improperly escaped or
filtered, the system may be exposed to code injection.2

Key Terms

code injection
The exploitation of a computer bug that is caused by

2. Wikipedia: String interpolation

476 | String Formatting

https://en.wikipedia.org/wiki/String_interpolation

processing invalid data.3

formatting
Modifying the way the output is displayed.

string interpolation
Evaluating a string literal containing one or more
placeholders, yielding a result in which the placeholders
are replaced with their corresponding values.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

3. Wikipedia: Code injection

String Formatting | 477

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://en.wikipedia.org/wiki/Code_injection

File Input and Output
KENNETH LEROY BUSBEE

Overview

A computer file is a computer resource for recording data
discretely in a computer storage device. Just as words can be
written to paper, so can information be written to a computer
file.

There are different types of computer files, designed for
different purposes. A file may be designed to store a picture,
a written message, a video, a computer program, or a wide
variety of other kinds of data. Some types of files can store
several types of information at once.

By using computer programs, a person can open, read, change,
and close a computer file. Computer files may be reopened,
modified, and copied an arbitrary number of times.1

Discussion

In computer programming, standard streams are pre-
connected input and output communication channels
between a computer program and its environment when it
begins execution. The three input/output (I/O) connections are
called standard input (stdin – keyboard), standard output
(stdout – originally a printer) and standard error (stderr –

1. Wikipedia: Computer file

478 | File Input and Output

https://en.wikipedia.org/wiki/Computer_file

monitor). Streams may be redirected to other devices and/or
files. In current environments, stdout is usually redirected to
the monitor.2

Computer files are stored on secondary storage devices and
used to maintain program data over time. Most programming
languages have built-in functions or libraries to support
processing files as text streams. We need to understand how to
open, read, write and close text files. The following File Input/
Output terms are explained:

Text File – A file consisting of characters from the ASCII
character code set. Text files (also known as ASCII text files)
contain character data. When we create a text file we usually
think of it consisting of a series of lines. On each line are several
characters (including spaces, punctuation, etc.) and we
generally end the line with a return (a character within the
ASCII character code set). The return is also known as the new
line character. You are most likely already familiar with the
escape code of \n which is used within many programming
languages to indicate a return character when used within a
literal string.

A typical text file consisting of lines can be created by text
editors (Notepad) or word processing programs (Microsoft
Word). When using a word processor you must usually specify
the output file as text (.txt) when saving it. Most source
code files are ASCII text files with a unique file extension; such
as C++ using .cpp, C# using .cs, Python using .py, etc. Thus,
most compiler/Integrated Development Environment software
packages can be used to create ASCII text files.

Filename – The name and its extension. Most operating

2. Wikipedia: Standard streams

File Input and Output | 479

https://en.wikipedia.org/wiki/Standard_streams

systems have restrictions on which characters can be used in
filenames. Example Lab_05.txt

Because some operating systems do not allow spaces, we
suggest that you use the underscore where needed for
spacing in a filename.

Path (Filespec) – The location of a file along with its filename.
Filespec is short for file specification. Most operating systems
have a set of rules on how to specify the drive and directory (or
path through several directory levels) along with the filename.
Example: C:\myfiles\cosc_1436\Lab_05.txt

Because some operating systems do not allow spaces, we
suggest that you use the underscore where needed when
creating folders or sub-directories.

Open – Your program requesting the operating system to let
it have access to an existing file or to open a new file. In most
current programming languages, a file data type exists and
is used for file processing. A file variable will be used to store
the device token that the operating system assigns to the file
being opened. An open function or method is used to retrieve
the device token, and typically requires at least two parameters:
the path and the mode (read, write, append, or a combination
thereof). Corresponding pseudocode would be:

Declare File datafile

datafile = open(filespec, mode)

The open function provides a return value of a device
token from the operating system and it is stored in the variable
named data.

It is considered good programming practice to determine if
the file was opened properly. The reason the operating system
usually can’t open a file is because the filespec is wrong

480 | File Input and Output

(misspelled or not typed case consistent in some operating
systems) or the file is not stored in the location specified.
Accessing files stored on a network or the Internet may fail due
to a network error.

Verifying that a file was opened properly is processed with a
condition control structure. That structure may be either be an
if-then-else statement or a try-catch / try-except error handler,
depending on the programming language used.

Read – Moving data from a device that has been opened into a
memory location defined in your program. For example:
text = read(datafile)

or
text = datafile.read()

Write – Moving data from a memory location defined in your
program to a device that has been opened. For example:
write(datafile, text)

or
datafile.write(text)

Close – Your program requesting the operating system to
release a file that was previously opened. There are two reasons
to close a file. First, it releases the file and frees up the
associated operation system resources. Second, if closing a file
that was opened for output; it will clear the out the operating
system’s buffer and ensure that all of the data is physically
stored in the output file. For example:

close(datafile)

or
datafile.close()

Using / With – A wrapper around a processing block that will
automatically close opened resources, available in some
programming languages. For example:

File Input and Output | 481

// C#

using (datafile = open(filespec, mode))

{

 //...

}

or

Python3

with open(filespec, mode) as datafile:

 # ...

Key Terms

close
Your program requesting the operating system to release
a file that was previously opened.

device token
A key value provided by the operating system to associate
a device to your program.

filename
The name and its extension.

filespec
The location of a file along with its filename.

open
Your program requesting the operating system to let it
have access to an existing file or to open a new file.

read
Moving data from a device that has been opened into a
memory location defined in your program.

stream
A sequence of data elements made available over time.3

stdin
Standard input stream, typically the keyboard. 4

482 | File Input and Output

stderr
Standard output error stream, typically the monitor.5

stdout
Standard output stream, originally a printer, but now
typically the monitor.6

text file
A file consisting of characters from the ASCII character
code set.

using / with
A wrapper around a processing block that will
automatically close opened resources.

write
Moving data from a memory location defined in your
program to a device that has been opened.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

3. Wikipedia: Stream (computing)
4. Wikipedia: Standard streams
5. Wikipedia: Standard streams
6. Wikipedia: Standard streams

File Input and Output | 483

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://en.wikipedia.org/wiki/Stream_(computing)
https://en.wikipedia.org/wiki/Standard_streams
https://en.wikipedia.org/wiki/Standard_streams
https://en.wikipedia.org/wiki/Standard_streams

Loading an Array from
a Text File

Overview

Loading an array from a text file requires several steps,
including: opening the file, reading the records, parsing
(splitting) the records into fields, adding the fields to an array,
and closing the file. The file may be read all at once and then
parsed, or processed line by line. The array must either be at
least as large as the number of records in the file, or must be
generated dynamically.

Discussion

Loading an array from a file presents an interesting dilemma.
The problem resolves around how many elements you should
plan for in the array. Let’s say 100, but what if the file has fewer
or more than 100 values. How can the program handle it
correctly?

Either:

1. Read the file and count the number of records.
2. Create a static array of that size.
3. Read the file again and add each record to the array.

Or:

1. Read the file and dynamically add the records to the array.

484 | Loading an Array from a
Text File

Processing Records

There are two options for file processing:

1. Read the entire file into memory, split the records and
then process each record.

2. Read the file line by line and process one record at a time.

Which of these approaches is better will depend on the size of
the file and the types of file and string processing supported
by your programming language. Reading the entire file at once
may be faster for small files. Very large files must be processed
line by line.

Processing Fields

Processing fields requires splitting records based on the given
file format. For example, a comma-separated-values file might
be formatted as:

Celsius,Fahrenheit

0.0,32.0

1.0,33.8

2.0,35.6

The first line contains field names separated by commas.
Following lines contain a value for each of the fields, separated
by commas. Note that all text file input is strings. Each line
must be split on the field separator (comma), and then
numeric fields must be converted to integer or floating point
values for processing.

Loading an Array from a Text File | 485

Pseudocode

Static Array Processing

Open file

Read header

While Not End-Of-File

 Read line

 Increment record count

Close file

Declare array with length based on record count

Read Header

While Not End-Of-File

 Read line

 Split line into field(s)

 Convert numeric values to numeric data types

 Add field(s) to array or parallel arrays

Close file

Dynamic Array Processing

Declare empty array

Open file

Read Header

While Not End-Of-File

 Read line

 Split line into field(s)

 Convert numeric values to numeric data types

 Add field(s) to array or parallel arrays

Close file

486 | Loading an Array from a Text File

Key Terms

dynamic memory
Aka stack created memory associated with local scope.

static memory
Aka data area memory associated with global scope.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

Loading an Array from a Text File | 487

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17

Program Plan

This program demonstrates string functions.

Main Program

Demonstrate string concatenation

Demonstrate lower case

Demonstrate upper case

Demonstrate find

Demonstrate length

Demonstrate replace

Demonstrate reverse

Demonstrate slice

Demonstrate strip

Demonstrate number formatting

This program demonstrates reading a text file with exception
handling.

Main Program

Read File

488 | Program Plan

Read File

Parameters:

Filename

Process:

Create exception handler

Open file

While not End-of-File

Read line

Display line

Close file

Handle exceptions

Return Value:

None

Program Plan | 489

C++ Examples
DAVE BRAUNSCHWEIG

Strings

#include <algorithm>

#include <iostream>

#include <string>

using namespace std;

string toLower(string);

string toUpper(string);

int main() {

 string str = "Hello";

 cout << "string: " << str << endl;

 cout << "tolower: " << toLower(str) << endl;

 cout << "toupper: " << toUpper(str) << endl;

 cout << "string.find('e'): " << str.find('e') << endl;

 cout << "string.length(): " << str.length() << endl;

 cout << "string.replace(0, 1, \"j\"): " << str.replace(0, 1, "j") << endl;

 cout << "string.substr(2, 2): " << str.substr(2, 2) << endl;

 string name = "Bob";

 double value = 123.456;

 cout << name << " earned $" << fixed << setprecision (2) << value << endl;

}

string toLower(string str) {

490 | C++ Examples

 transform(str.begin(), str.end(), str.begin(), ::tolower);

 return str;

}

string toUpper(string str) {

 transform(str.begin(), str.end(), str.begin(), ::toupper);

 return str;

}

Output

string: Hello

tolower: hello

toupper: HELLO

string.find('e'): 1

string.length(): 5

string.replace(0, 1, "j"): jello

string.substr(2, 2): ll

Bob earned $123.46

Files

// This program demonstrates reading a text file with error handling.

// References:

// https://en.wikibooks.org/wiki/C%2B%2B_Programming

#include <fstream>

#include <iostream>

#include <string>

C++ Examples | 491

using namespace std;

void readFile(string);

int main() {

 string FILENAME = "temperature.txt";

 readFile(FILENAME);

}

void readFile(string filename)

{

 fstream file;

 string line;

 file.open(filename, fstream::in);

 if (file.is_open()) {

 while (getline(file, line))

 {

 cout << line << endl;

 }

 file.close();

 } else {

 cout << "Error reading " << filename << endl;

 }

}

Output

Celsius,Fahrenheit

0,32

10,50

20,68

492 | C++ Examples

...

80,176

90,194

100,212

References

• Wikiversity: Computer Programming

C++ Examples | 493

https://en.wikiversity.org/wiki/Computer_Programming

C# Examples
DAVE BRAUNSCHWEIG

Strings

// This program demonstrates string functions.

using System;

class Strings

{

 public static void Main (string[] args)

 {

 String str = "Hello";

 Console.WriteLine("string: " + str);

 Console.WriteLine("string.ToLower(): " + str.ToLower());

 Console.WriteLine("string.ToUpper(): " + str.ToUpper());

 Console.WriteLine("string.IndexOf('e'): " + str.IndexOf('e'));

 Console.WriteLine("string.Length: " + str.Length);

 Console.WriteLine("string.Replace('H', 'j'): " + str.Replace('H', 'j'));

 Console.WriteLine("string(Substring(2, 2)): " + str.Substring(2, 2));

 Console.WriteLine("string.Trim(): " + str.Trim());

 String name = "Bob";

 double value = 123.456;

 Console.WriteLine(String.Format("{0} earned {1:$0.00}", name, value));

 }

}

494 | C# Examples

Output

string: Hello

string.ToLower(): hello

string.ToUpper(): HELLO

string.IndexOf('e'): 1

string.Length: 5

string.Replace('H', 'j'): jello

string(Substring(2, 2)): ll

string.Trim(): Hello

Bob earned $123.46

Files

// This program demonstrates reading a text file with exception handling.

// References:

// https://en.wikibooks.org/wiki/C_Sharp_Programming

using System;

public class Files

{

 public static void Main(String[] args)

 {

 string FILENAME = "temperatures.txt";

 ReadFile(FILENAME);

 }

 private static void ReadFile(string filename)

 {

 System.IO.StreamReader file;

C# Examples | 495

 string line;

 try

 {

 using (file = System.IO.File.OpenText(filename))

 {

 while (true)

 {

 line = file.ReadLine();

 if (line == null)

 {

 break;

 }

 Console.WriteLine(line);

 }

 }

 }

 catch(Exception exception)

 {

 Console.WriteLine("Error reading " + filename);

 Console.WriteLine(exception.Message);

 }

 }

}

Output

Celsius,Fahrenheit

0,32

10,50

20,68

...

80,176

90,194

496 | C# Examples

100,212

References

• Wikiversity: Computer Programming

C# Examples | 497

https://en.wikiversity.org/wiki/Computer_Programming

Java Examples
DAVE BRAUNSCHWEIG

Strings

// This program demonstrates string functions.

class Main {

 public static void main(String[] args) {

 String str = "Hello";

 System.out.println("string: " + str);

 System.out.println("string.toLowerCase(): " + str.toLowerCase());

 System.out.println("string.toUpperCase(): " + str.toUpperCase());

 System.out.println("string.indexOf('e'): " + str.indexOf('e'));

 System.out.println("string.length(): " + str.length());

 System.out.println("string.replace('H', 'j'): " + str.replace('H', 'j'));

 System.out.println("string(substring(2,4): " + str.substring(2, 4));

 System.out.println("string.trim(): " + str.trim());

 String name = "Bob";

 double value = 123.456;

 System.out.println(String.format("%s earned $%.2f", name, value));

 }

}

Output

string: Hello

string..toLowerCase(): hello

498 | Java Examples

string.toUpperCase(): HELLO

string.indexOf('e'): 1

string.length(): 5

string.replace('H', 'j'): jello

string(substring(2,4): ll

string.trim(): Hello

Bob earned $123.46

Files

// This program demonstrates reading a text file with exception handling.

// References:

// https://en.wikibooks.org/wiki/Java_Programming

import java.util.*;

class Main {

 public static void main(String[] args) {

 String FILENAME = "temperature.txt";

 readFile(FILENAME);

 }

 private static void readFile(String filename) {

 try {

 java.io.File file = new java.io.File(filename);

 java.io.BufferedReader reader =

 new java.io.BufferedReader(new java.io.FileReader(file));

 String line;

 while(true) {

 line = reader.readLine();

 if (line == null) {

Java Examples | 499

 break;

 }

 System.out.println(line);

 }

 reader.close();

 System.out.println("");

 } catch(Exception exception) {

 System.out.println("Error reading " + filename);

 exception.printStackTrace();

 }

 }

}

Output

Celsius,Fahrenheit

0,32

10,50

20,68

...

80,176

90,194

100,212

References

• Wikiversity: Computer Programming

500 | Java Examples

https://en.wikiversity.org/wiki/Computer_Programming

JavaScript Examples
DAVE BRAUNSCHWEIG

Strings

// This program demonstrates string functions.

main();

function main()

{

 var str = "Hello";

 output("string: " + str);

 output("string.toLowerCase(): " + str.toLowerCase());

 output("string.toUpperCase(): " + str.toUpperCase());

 output("string.indexOf('e'): " + str.indexOf('e'));

 output("string.length: " + str.length);

 output("string.replace('H', 'j'): " + str.replace('H', 'j'));

 output("string(substring(2,4): " + str.substring(2, 4));

 output("string.trim(): " + str.trim());

 var name = "Bob";

 var value = 123.456;

 output(`string.format(): ${name} earned $${value.toFixed(2)}`);

}

function output(text) {

 if (typeof document === 'object') {

 document.write(text);

 }

 else if (typeof console === 'object') {

JavaScript Examples | 501

 console.log(text);

 }

 else {

 print(text);

 }

}

Output

string: Hello

string..toLowerCase(): hello

string.toUpperCase(): HELLO

string.indexOf('e'): 1

string.length: 5

string.replace('H', 'j'): jello

string(substring(2,4): ll

string.trim(): Hello

string.format(): Bob earned $123.46

Files

Note: For security reasons, JavaScript in a browser requires
the user to select the file to be processed. This example is
based on node.js rather than browser-based JavaScript.

// This program demonstrates reading a text file with exception handling.

const fs = require('fs');

main();

function main() {

 const filename = "temperature.txt";

502 | JavaScript Examples

 readFile(filename);

}

function readFile(filename) {

 try {

 const text = fs.readFileSync(

 filename,

 {encoding:"utf8"});

 const lines = text.split("\n");

 for (const line of lines) {

 console.log(line);

 }

 } catch (exception) {

 console.log(exception)

 }

}

Output

Celsius,Fahrenheit

0,32

10,50

20,68

...

80,176

90,194

100,212

JavaScript Examples | 503

References

• Wikiversity: Computer Programming

504 | JavaScript Examples

https://en.wikiversity.org/wiki/Computer_Programming

Python Examples
DAVE BRAUNSCHWEIG

Strings

This program demonstrates string functions.

def main():

 string = "Hello"

 print("string: " + string)

 print("string.lower(): " + string.lower())

 print("string.upper(): " + string.upper())

 print("string.find('e'): " + str(string.find('e')))

 print("len(string): " + str(len(string)))

 print("string.replace('H', 'j'): " + string.replace('H', 'j'))

 print("string[::-1]: " + string[::-1])

 print("string[2:4]: " + string[2:4])

 print("string.strip('H'): " + string.strip('H'))

 name = "Bob"

 value = 123.456

 print("string.format(): {0} earned ${1:.2f}".format(name, value))

main()

Python Examples | 505

Output

string: Hello

string.lower(): hello

string.upper(): HELLO

string.find('e'): 1

len(string): 5

string.replace('H', 'j'): jello

string[::-1]: olleH

string[2:4]: ll

string.strip('H'): ello

string.format(): Bob earned $123.46

Files

This program demonstrates reading a text file with exception handling.

References:

https://en.wikibooks.org/wiki/Python_Programming

def read_file(filename):

 try:

 with open(filename, "r") as file:

 for line in file:

 line = line.strip()

 print(line)

 except Exception as exception:

 print(exception)

def main():

 filename = "temperature.txt"

506 | Python Examples

 read_file(filename)

main()

Output

Celsius,Fahrenheit

0,32

10,50

20,68

...

80,176

90,194

100,212

References

• Wikiversity: Computer Programming

Python Examples | 507

https://en.wikiversity.org/wiki/Computer_Programming

Swift Examples
DAVE BRAUNSCHWEIG

Strings

// This program demonstrates string functions.

import Foundation

func main() {

 let string:String = "Hello"

 print("string: " + string)

 print("string.lowercased(): " + string.lowercased())

 print("string.uppercased(): " + string.uppercased())

 print("find(string, \"e\"): " + String(find(string:string, character:"e")))

 print("string.count: " + String(string.count))

 print("string.replacingOccurrences(of:\"H\", with:\"j\"): " + string.replacingOccurrences(of:"H", with:"j"))

 print("string.reversed(): " + String(string.reversed()))

 print("substring(2, 2): " + substring(string:string, start:2, length:2))

 print("string.trimmingCharacters(\"H\"): " + string.trimmingCharacters(in:CharacterSet.init(charactersIn: "H")))

 let name:String = "Bob"

 let value:Double = 123.456

 print("\(name) earned $" + String(format:"%.2f", value))

}

func find(string:String, character:Character) -> Int {

 var result: Int

 if let index = string.firstIndex(of:character) {

 result = string.distance(from: string.startIndex, to: index)

508 | Swift Examples

 } else {

 result = -1

 }

 return result

}

func substring(string:String, start:Int, length:Int) -> String {

 let startIndex = string.index(string.startIndex, offsetBy: start)

 let endIndex = string.index(string.startIndex, offsetBy: start + length - 1)

 return String(string[startIndex...endIndex])

}

main()

Output

string: Hello

string.lowercased(): hello

string.uppercased(): HELLO

find(string, "e"): 1

string.count: 5

string.replacingOccurrences(of:"H", with:"j"): jello

string.reversed(): olleH

substring(2, 2): ll

string.trimmingCharacters("H"): ello

Bob earned $123.46

Files

// This program demonstrates reading a text file with exception handling.

// References:

Swift Examples | 509

// https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html

import Foundation

func readFile(filename:String) {

 var text = ""

 do {

 text = try String(contentsOfFile: filename, encoding: .utf8)

 let lines = text.components(separatedBy:"\n")

 for line in lines {

 print(line)

 }

 } catch {

 print("Error reading " + filename)

 print(error.localizedDescription)

 }

}

func main() {

 let filename:String = "temperature.txt"

 readFile(filename:filename)

}

main()

Output

Celsius,Fahrenheit

0,32

10,50

20,68

510 | Swift Examples

...

80,176

90,194

100,212

References

• Wikiversity: Computer Programming

Swift Examples | 511

https://en.wikiversity.org/wiki/Computer_Programming

Practice: Strings and
Files
KENNETH LEROY BUSBEE

Review Questions

True / False

1. The character data type in C++ uses the double quote
marks, like: char grade = “A”;

2. Sizeof is an operator that tells you how many bytes a data
type occupies in storage.

3. Typedef helps people who can’t hear and is one of the
standard accommodation features of a programming
language for people with a learning disability.

4. The sequence operator should be used when defining
variables in order to save space.

5. Programming can be both enjoyable and frustrating.
6. Text files are hard to create.
7. A filespec refers to a very small (like a spec dust) file.
8. A device token is a special non zero value the operating

system gives your program and is associated with the file
that you requested to be opened.

9. Programmers should not worry about closing a file.
10. Where you define an item, that is global or local scope, is

rarely important.

Answers:

1. false

512 | Practice: Strings and Files

2. true
3. false
4. false
5. true
6. false
7. false
8. true
9. false

10. false

Short Answer

1. Describe the normal operations allowed with the string
data type.

2. Describe why unary positive is worthless.
3. Describe how unary negative works.

Activities

Complete the following activities using pseudocode, a
flowcharting tool, or your selected programming language.
Use separate functions for input, each type of processing, and
output. Avoid global variables by passing parameters and
returning results. Create test data to validate the accuracy of
each program. Add comments at the top of the program and
include references to any resources used.

String Activities

1. Create a program that asks the user for a single line of text
containing a first name and last name, such as Firstname

Practice: Strings and Files | 513

Lastname. Use string functions/methods to parse the line

and print out the name in the form last name, first initial,
such as Lastname, F. Include a trailing period after the

first initial. Handle invalid input errors, such as extra spaces
or missing name parts.

2. Create a program that asks the user for a line of text. Use
string functions/methods to delete leading, trailing, and
duplicate spaces, and then print the line of text
backwards. For example:
 the cat in the hat

tah eht ni tac eht

3. Create a program that asks the user for a line of comma-
separated-values. It could be a sequence of test scores,
names, or any other values. Use string functions/methods
to parse the line and print out each item on a separate
line. Remove commas and any leading or trailing spaces
from each item when printed.

4. Create a program that asks the user for a line of text. Then
ask the user for the number of characters to print in each
line, the number of lines to be printed, and a scroll
direction, right or left. Using the given line of text,
duplicate the text as needed to fill the given number of
characters per line. Then print the requested number of
lines, shifting the entire line’s content by one character,
left or right, each time the line is printed. The first or last
character will be shifted / appended to the other end of
the string. For example:
Repeat this. Repeat this.

epeat this. Repeat this. R

peat this. Repeat this. Re

514 | Practice: Strings and Files

File Activities

Note: Each of the following activities uses code only to read the
file. It is not necessary to use code to create the file.

1. Using a text editor or IDE, copy the following list of names
and grade scores and save it as a text file named
scores.txt:

Name,Score

Joe Besser,70

Curly Joe DeRita,0

Larry Fine,80

Curly Howard,65

Moe Howard,100

Shemp Howard,85

Create a program that displays high, low, and average
scores based on input from scores.txt. Verify that the file

exists and then use string functions/methods to parse the
file content and add each score to an array. Display the
array contents and then calculate and display the high,
low, and average score. Format the average to two
decimal places. Note that the program must work for any
given number of scores in the file. Do not assume there
will always be six scores.

2. Create a program that displays high, low, and average
scores based on input from scores.txt. Verify that the file

exists and then use string functions/methods to parse the
file content and add each score to an array. Display the
array contents and then calculate and display the high,
low, and average score. Format the average to two
decimal places. Include error handling in case the file is
formatted incorrectly. Note that the program must work
for any given number of scores in the file. Do not assume
there will always be six scores.

Practice: Strings and Files | 515

3. Create a program that asks the user for the name of a text/
HTML file that contains HTML tags, such as:
<p>This is a bold

paragraph.</p>

Verify that the file exists and then use string methods to
search for and remove all HTML tags from the text, saving
each removed tag in an array. Display the untagged text
and then display the array of removed tags. For example:
This is a bold paragraph.

<p>

</p>

4. Using a text editor or IDE, create a text file of names and
addresses to use for testing based on the following format:
Firstname Lastname

123 Any Street

City, State/Province/Region PostalCode

Include a blank line between addresses, and include at
least three addresses in the file. Create a program that
verifies that the file exists, and then processes the file and
displays each address as a single line of comma-separated
values in the form:
Lastname, Firstname, Address, City, State/

Province/Region, PostalCode

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

• Wikiversity: Computer Programming

516 | Practice: Strings and Files

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://en.wikiversity.org/wiki/Computer_Programming

Exception Handling

Overview

Exception handling is the process of responding to the
occurrence of exceptions – anomalous or exceptional
conditions requiring special processing – during the execution
of a program. In general, an exception breaks the normal flow
of execution and executes a pre-registered exception handler.1

Discussion

One of the challenges of file processing is that the actual input
and output is beyond program control. Behind the scenes, the
program is paused while the operating system uses interrupts
to request that the storage device read from or write to the file.
If a read is successful, data is returned to the program. If the
read is unsuccessful, an exception occurs. Possible exception
reasons include File Not Found, OS Error, IO Error, Permission
Error, Timeout Error, Memory Error, Buffer Error, Encoding
Error, etc.

Most current programming languages provide some type of
support for exceptions and exception handling.

1. Wikipedia: Exception handling

Exception Handling | 517

https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Exception_handling

Language Key words Examples

C++
C#
Java
JavaScript
Swift

throw

try

catch

finally

throw // an exception

try {

// code statements

} catch {

// handle exception

} finally {

// clean up

}

Python

raise

try

except

finally

raise # an exception

try:

code statements

except:

handle exception

finally:

clean up

Swift

defer

throw

do try

catch

defer {

// clean up

}

throw // an exception

do {

try // code statements

} catch {

// handle exception

}

Exception handling should always be used with any type of
processing that is beyond program control.

518 | Exception Handling

Key Terms

exception
Anomalous or exceptional conditions requiring special
processing.2

interrupt
A request for the processor to interrupt currently
executing code (when permitted), so that the event can be
processed in a timely manner.3

References

2. Wikipedia: Exception handling
3. Wikipedia: Interrupt

Exception Handling | 519

https://en.wikipedia.org/wiki/Exception_handling
https://en.wikipedia.org/wiki/Interrupt

CHAPTER VIII

OBJECT-ORIENTED
PROGRAMMING

Overview

This chapter introduces object-oriented programming, with a
focus on understanding object-oriented concepts and
terminology. It includes short examples of objects and classes
in different programming languages.

Chapter Outline

• Objects and Classes
• Encapsulation
• Inheritance and Polymorphism
• Code Examples

◦ C++
◦ C#
◦ Java
◦ JavaScript
◦ Python
◦ Swift

• Practice

Learning Objectives

1. Understand key terms and definitions.

Object-Oriented
Programming | 521

2. Gain exposure to object-oriented programming.
3. Given example source code, create a program that uses

object-oriented programming concepts to solve a given
problem.

522 | Object-Oriented Programming

Objects and Classes
DAVE BRAUNSCHWEIG

Overview

Object-oriented programming (OOP) is a programming
paradigm based on the concept of “objects”, which may
contain data, in the form of fields, often known as attributes;
and code, in the form of procedures, often known as methods.
A feature of objects is that an object’s procedures can access
and often modify the data fields of the object with which they
are associated (objects have a notion of “this” or “self”). There
is significant diversity of OOP languages, but the most popular
ones are class-based, meaning that objects are instances of
classes, which typically also determine their type.1

Discussion

Thus far, we have focused on procedural programming. Based
on structured programming, procedures (routines,
subroutines, or functions) contain a series of computational
steps to be carried out. Any given procedure might be called
at any point during a program’s execution, including by other
procedures or itself. The focus of procedural programming is to
break down a programming task into a collection of variables,
data structures, and subroutines.2 Small programs and scripts

1. Wikipedia: Object-oriented programming
2. Wikipedia: Object-oriented programming

Objects and Classes | 523

https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming

tend to be easier to develop using a simple procedural
approach.

Object-oriented programming instead breaks down a
programming task into objects that expose behavior
(methods) and data (members or attributes) using interfaces.
The most important distinction is that while procedural
programming uses procedures to operate on separate data
structures, object-oriented programming bundles the two
together, so an “object”, which is an instance of a class, operates
on its “own” data structure.3 Larger programs benefit from
better code and data isolation and reuse provided by an object-
oriented approach.

Objects and classes are often designed to represent real-world
objects. Consider a door as an example of a real-world object.
Most doors have limited functionality. They may be opened and
closed, and locked and unlocked. In procedural programming,
we might design functions to open, close, lock, and unlock a
door, such as:

Procedural Programming - Functions

OpenDoor(door)

CloseDoor(door)

LockDoor(door)

UnlockDoor(door)

Object-oriented programming combines code and data, so
that, rather than having separate functions act on doors, we
design doors that have methods that can act on themselves.
Methods represent something the object can do, and are
typically defined using verbs. Object-oriented door
pseudocode might look like:

3. Wikipedia: Object-oriented programming

524 | Objects and Classes

https://en.wikipedia.org/wiki/Object-oriented_programming

Object-Oriented Programming - Methods

door.Open()

door.Close()

door.Lock()

door.Unlock()

Objects may also have attributes, something the object is or
has, and are typically defined using nouns or adjectives. Door
attributes might include:

Object-Oriented Programming - Attributes

door.Height

door.Width

door.Color

door.Closed

door.Locked

When we write code to define a generic door, we would create
a door class. The door class would contain all of the methods a
door can perform and all of the attributes a door might have.
We would then create instances of the class (objects) to
represent specific doors, such as a front door, back door, or
room door on a house, or a left door and right door on a car.

Key Terms

attribute
A specification that defines a property of an object.4

class
An extensible program-code-template for creating
objects, providing initial values for state (member

4. Wikipedia: Attribute (computing)

Objects and Classes | 525

https://en.wikipedia.org/wiki/Attribute_(computing)

variables) and implementations of behavior (member
functions or methods).5

instance
:A concrete occurrence of an object.6

method
A specification that defines a procedure or behavior of an
object.7

object
A particular instance of a class where the object can be a
combination of variables, functions, and data structures.8

this, self, or Me
Keywords used in some computer programming
languages to refer to the object, class, or other entity that
the currently running code is part of.9

References

• Wikibooks: Object-Oriented Programming
• Wikipedia: Object-oriented programming
• Wikiversity: Computer Programming

5. Wikipedia: Class (computer programming)
6. Wikipedia: Instance (computer science)
7. Wikipedia: Method (computer programming)
8. Wikipedia: Object (computer science)
9. Wikipedia: this (computer programming)

526 | Objects and Classes

https://en.wikipedia.org/wiki/Object-Oriented_Programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikiversity.org/wiki/Computer_Programming
https://en.wikipedia.org/wiki/Class_(computer_programming)
https://en.wikipedia.org/wiki/Instance_(computer_science)
https://en.wikipedia.org/wiki/Method_(computer_programming)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/this_(computer_programming)

Encapsulation
DAVE BRAUNSCHWEIG

Overview

Encapsulation is one of the fundamentals of OOP (object-
oriented programming). It refers to the bundling of data with
the methods that operate on that data. Encapsulation is used
to hide the values or state of a structured data object inside a
class, preventing unauthorized parties’ direct access to them.
Publicly accessible methods are generally provided in the class
(so-called getters and setters) to access the values, and other
client classes call these methods to retrieve and modify the
values within the object.1

Discussion

The most important principle of object orientation
is encapsulation: the idea that data inside the object should
only be accessed through a public interface – that is, the
object’s methods.

If we want to use the data stored in an object to perform an
action or calculate a derived value, we define a method
associated with the object which does this. Then whenever we
want to perform this action we call the method on the object.
We consider it bad practice to retrieve the information from

1. Wikipedia: Encapsulation (computer programming)

Encapsulation | 527

https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)

inside the object and write separate code to perform the action
outside of the object.

Encapsulation is a good idea for several reasons:

• the functionality is defined in one place and not in
multiple places.

• it is defined in a logical place – the place where the data is
kept.

• data inside our object is not modified unexpectedly by
external code in a completely different part of our
program.

• when we use a method, we only need to know what result
the method will produce – we don’t need to know details
about the object’s internals in order to use it. We could
switch to using another object which is completely
different on the inside, and not have to change any code
because both objects have the same interface.

We can say that the object “knows how” to do things with its
own data, and it’s a bad idea for us to access its internals and
do things with the data ourselves. If an object doesn’t have an
interface method which does what we want to do, we should
add a new method or update an existing one.

Some languages have features which allow us to enforce
encapsulation strictly. In Java or C++, we can define access
permissions on object attributes, and make it illegal for them
to be accessed from outside the object’s methods. In Java it is
also considered good practice to write setters and getters for all
attributes, even if the getter simply retrieves the attribute and
the setter just assigns it the value of the parameter which you
pass in.

In Python, encapsulation is not enforced by the language, but
there is a convention that we can use to indicate that a

528 | Encapsulation

property is intended to be private and is not part of the object’s
public interface: we begin its name with an underscore. Python
also supports the use of a property decorator to replace a
simple attribute with a method without changing the object’s
interface.

Key Terms

abstraction
A technique for arranging complexity of computer
systems so that functionality may be separated from
specific implementation details.23

accessor
A method used to return the value of a private member
variable, also known as a getter method.4

encapsulation
A language mechanism for restricting direct access to
some of an object’s components.5

information hiding
The principle of segregation of the design decisions in a
computer program from other parts of the program. See
encapsulation.6

mutator
A method used to control changes to a private member
variable, also known as a setter method.7

2. Wikipedia: Object-oriented programming
3. Wikipedia: Abstraction (computer science)
4. Wikipedia: Mutator method
5. Wikipedia: Encapsulation (computer programming)
6. Wikipedia: Information hiding
7. Wikipedia: Mutator method

Encapsulation | 529

https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Abstraction_(computer_science)
https://en.wikipedia.org/wiki/Mutator_method
https://en.wikipedia.org/wiki/Encapsulation_(computer_programming)
https://en.wikipedia.org/wiki/Information_hiding
https://en.wikipedia.org/wiki/Mutator_method

private
An access modifier that restricts visibility of a property or
method to the class in which it is defined.8

public
An access modifier that opens visibility of a property or
method to all other classes.9

References

• Read the Docs: Object-Oriented Programming in Python
• Wikiversity: Computer Programming

8. Wikipedia: Access modifiers
9. Wikipedia: Access modifiers

530 | Encapsulation

https://python-textbok.readthedocs.io/en/1.0/Object_Oriented_Programming.html
https://en.wikiversity.org/wiki/Computer_Programming
https://en.wikipedia.org/wiki/Access_modifiers
https://en.wikipedia.org/wiki/Access_modifiers

Inheritance and
Polymorphism
DAVE BRAUNSCHWEIG

Overview

In object-oriented programming, inheritance is the
mechanism of basing an object or class upon another object
(prototypical inheritance) or class (class-based inheritance),
retaining similar implementation. In most class-based object-
oriented languages, an object created through inheritance (a
“child object”) acquires all the properties and behaviors of the
parent object (except: constructors, destructor, overloaded
operators and friend functions of the base class). Inheritance
allows programmers to create classes that are built upon
existing classes, to specify a new implementation while
maintaining the same behaviors (realizing an interface), to
reuse code and to independently extend original software via
public classes and interfaces.1

Discussion

Inheritance is a way of arranging objects in a hierarchy from
the most general to the most specific. An object
which inherits from another object is considered to be
a subtype of that object. An example might include Instructor

1. Wikipedia: Inheritance (object-oriented programming)

Inheritance and
Polymorphism | 531

https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)

and Student, each of which inherit from Person. When we
can describe the relationship between two objects using the
phrase is-a, that relationship is inheritance.

We also often say that a class is a subclass or child class of a
class from which it inherits, or that the other class is
its superclass or parent class. We can refer to the most generic
class at the base of a hierarchy as a base class.

Inheritance can help us to represent objects which have some
differences and some similarities in the way they work. We can
put all the functionality that the objects have in common in a
base class, and then define one or more subclasses with their
own custom functionality.

Inheritance is also a way of reusing existing code easily. If we
already have a class which does almost what we want, we can
create a subclass in which we partially override some of its
behavior, or perhaps add some new functionality.

In some statically typed languages inheritance is very popular
because it allows the programmer to work around some of the
restrictions of static typing. If an instructor and a student are
both a kind of person, we can write a function which accepts a
parameter of type Person and have it work on both instructor
and student objects because they both inherit from
Person. This is known as polymorphism.

Key Terms

inheritance
An object or class being based on another object or class,
using the same implementation or specifying a new
implementation to maintain the same behavior.2

532 | Inheritance and Polymorphism

polymorphism
The provision of a single interface to entities of different
types.3

References

• Read the Docs: Object-Oriented Programming in Python
• Wikiversity: Computer Programming

2. Wikipedia: Inheritance (object-oriented programming)
3. Wikipedia: Polymorphism (computer science)

Inheritance and Polymorphism | 533

https://python-textbok.readthedocs.io/en/1.0/Object_Oriented_Programming.html
https://en.wikiversity.org/wiki/Computer_Programming
https://en.wikipedia.org/wiki/Inheritance_(object-oriented_programming)
https://en.wikipedia.org/wiki/Polymorphism_(computer_science)

C++ Examples
DAVE BRAUNSCHWEIG

Objects

// This class converts temperature between Celsius and Fahrenheit.

// It may be used by assigning a value to either Celsius or Fahrenheit

// and then retrieving the other value, or by calling the ToCelsius or

// ToFahrenheit methods directly.

//

// References:

// https://www.mathsisfun.com/temperature-conversion.html

// https://en.wikibooks.org/wiki/C%2B%2B_Programming

#include <iostream>

using namespace std;

class Temperature {

 public:

 double getCelsius(void);

 void setCelsius(double value);

 double getFahrenheit(void);

 void setFahrenheit(double value);

 double toCelsius(double fahrenheit);

 double toFahrenheit(double celsius);

 private:

 double celsius;

 double fahrenheit;

};

534 | C++ Examples

double Temperature::getCelsius(void) {

 return celsius;

}

void Temperature::setCelsius(double value) {

 celsius = value;

 fahrenheit = toFahrenheit(celsius);

}

double Temperature::getFahrenheit(void) {

 return fahrenheit;

}

void Temperature::setFahrenheit(double value) {

 fahrenheit = value;

 celsius = toCelsius(fahrenheit);

}

double Temperature::toCelsius(double fahrenheit) {

 return (fahrenheit - 32) * 5 / 9;

}

double Temperature::toFahrenheit(double celsius) {

 return celsius * 9 / 5 + 32;

}

// This program creates instances of the Temperature class to convert Celsius

// and Fahrenheit temperatures.

//

// References:

// https://www.mathsisfun.com/temperature-conversion.html

// https://en.wikibooks.org/wiki/C%2B%2B_Programming

int main() {

 Temperature temp1;

C++ Examples | 535

 temp1.setCelsius(100.0);

 cout << "temp1.celsius = " << temp1.getCelsius() << endl;

 cout << "temp1.fahrenheit = " << temp1.getFahrenheit() << endl;

 cout << endl;

 Temperature temp2;

 temp2.setFahrenheit(100.0);

 cout << "temp2.fahrenheit = " << temp2.getFahrenheit() << endl;

 cout << "temp2.celsius = " << temp2.getCelsius() << endl;

}

Output

temp1.celsius = 100

temp1.fahrenheit = 212

temp2.fahrenheit = 100

temp2.celsius = 37.7778

References

• Wikiversity: Computer Programming

536 | C++ Examples

https://en.wikiversity.org/wiki/Computer_Programming

C# Examples
DAVE BRAUNSCHWEIG

Objects

// This program creates instances of the Temperature class to convert Celsius

// and Fahrenheit temperatures.

//

// References:

// https://www.mathsisfun.com/temperature-conversion.html

// https://en.wikibooks.org/wiki/C_Sharp_Programming

using System;

public class Objects

{

 public static void Main(String[] args)

 {

 Temperature temp1 = new Temperature(celsius: 0);

 Console.WriteLine("temp1.Celsius = " + temp1.Celsius.ToString());

 Console.WriteLine("temp1.Fahrenheit = " + temp1.Fahrenheit.ToString());

 Console.WriteLine("");

 temp1.Celsius = 100;

 Console.WriteLine("temp1.Celsius = " + temp1.Celsius.ToString());

 Console.WriteLine("temp1.Fahrenheit = " + temp1.Fahrenheit.ToString());

 Console.WriteLine("");

 Temperature temp2 = new Temperature(fahrenheit: 0);

 Console.WriteLine("temp2.Fahrenheit = " + temp2.Fahrenheit.ToString());

 Console.WriteLine("temp2.Celsius = " + temp2.Celsius.ToString());

 Console.WriteLine("");

C# Examples | 537

 temp2.Fahrenheit = 100;

 Console.WriteLine("temp2.Fahrenheit = " + temp2.Fahrenheit.ToString());

 Console.WriteLine("temp2.Celsius = " + temp2.Celsius.ToString());

 }

}

// This class converts temperature between Celsius and Fahrenheit.

// It may be used by assigning a value to either Celsius or Fahrenheit

// and then retrieving the other value, or by calling the ToCelsius or

// ToFahrenheit methods directly.

public class Temperature

{

 double _celsius;

 double _fahrenheit;

 public double Celsius

 {

 get

 {

 return _celsius;

 }

 set

 {

 _celsius = value;

 _fahrenheit = ToFahrenheit(value);

 }

 }

 public double Fahrenheit

 {

 get

 {

538 | C# Examples

 return _fahrenheit;

 }

 set

 {

 _fahrenheit = value;

 _celsius = ToCelsius(value);

 }

 }

 public Temperature(double? celsius = null, double? fahrenheit = null)

 {

 if (celsius.HasValue)

 {

 this.Celsius = Convert.ToDouble(celsius);

 }

 if (fahrenheit.HasValue)

 {

 this.Fahrenheit = Convert.ToDouble(fahrenheit);

 }

 }

 public double ToCelsius(double fahrenheit)

 {

 return (fahrenheit - 32) * 5 / 9;

 }

 public double ToFahrenheit(double celsius)

 {

 return celsius * 9 / 5 + 32;

 }

}

C# Examples | 539

Output

temp1.Celsius = 0

temp1.Fahrenheit = 32

temp1.Celsius = 100

temp1.Fahrenheit = 212

temp2.Fahrenheit = 0

temp2.Celsius = -17.7777777777778

temp2.Fahrenheit = 100

temp2.Celsius = 37.7777777777778

References

• Wikiversity: Computer Programming

540 | C# Examples

https://en.wikiversity.org/wiki/Computer_Programming

Java Examples
DAVE BRAUNSCHWEIG

Objects

// This program creates instances of the Temperature class to convert Celsius

// and Fahrenheit temperatures.

//

// References:

// https://www.mathsisfun.com/temperature-conversion.html

// https://en.wikibooks.org/wiki/Java_Programming

import java.util.*;

class Main {

 public static void main(String[] args) {

 Temperature temp1 = new Temperature();

 temp1.setCelsius(100.0);

 System.out.println("temp1.celsius = " + temp1.getCelsius().toString());

 System.out.println("temp1.fahrenheit = " + temp1.getFahrenheit().toString());

 System.out.println("");

 Temperature temp2 = new Temperature();

 temp2.setFahrenheit(100.0);

 System.out.println("temp2.fahrenheit = " + temp2.getFahrenheit().toString());

 System.out.println("temp2.celsius = " + temp2.getCelsius().toString());

 }

}

// This class converts temperature between Celsius and Fahrenheit.

// It may be used by assigning a value to either Celsius or Fahrenheit

// and then retrieving the other value, or by calling the ToCelsius or

Java Examples | 541

// ToFahrenheit methods directly.

class Temperature {

 Double celsius;

 Double fahrenheit;

 public Double getCelsius() {

 return celsius;

 }

 public void setCelsius(Double value) {

 celsius = value;

 fahrenheit = toFahrenheit(celsius);

 }

 public Double getFahrenheit() {

 return fahrenheit;

 }

 public void setFahrenheit(Double value) {

 fahrenheit = value;

 celsius = toCelsius(fahrenheit);

 }

 public Double toCelsius(Double fahrenheit) {

 return (fahrenheit - 32) * 5 / 9;

 }

 public Double toFahrenheit(Double celsius) {

 return celsius * 9 / 5 + 32;

 }

}

542 | Java Examples

Output

temp1.celsius = 100.0

temp1.fahrenheit = 212.0

temp2.fahrenheit = 100.0

temp2.celsius = 37.77777777777778

References

• Wikiversity: Computer Programming

Java Examples | 543

https://en.wikiversity.org/wiki/Computer_Programming

JavaScript Examples
DAVE BRAUNSCHWEIG

Objects

// This class converts temperature between Celsius and Fahrenheit.

// It may be used by assigning a value to either Celsius or Fahrenheit

// and then retrieving the other value, or by calling the ToCelsius or

// ToFahrenheit methods directly.

class Temperature {

 constructor() {

 this._celsius = 0;

 this._fahrenheit = 32;

 }

 get celsius() {

 return this._celsius;

 }

 set celsius(value) {

 this._celsius = value;

 this._fahrenheit = this.toFahrenheit(value);

 }

 get fahrenheit() {

 return this._fahrenheit;

 }

 set fahrenheit(value) {

 this._fahrenheit = value;

 this._celsius = this.toCelsius(value);

544 | JavaScript Examples

 }

 toCelsius(fahrenheit) {

 return (fahrenheit - 32) * 5 / 9

 }

 toFahrenheit(celsius) {

 return celsius * 9 / 5 + 32

 }

}

// This program creates instances of the Temperature class to convert Celsius

// and Fahrenheit temperatures.

//

// References:

// https://www.mathsisfun.com/temperature-conversion.html

// https://en.wikibooks.org/wiki/JavaScript

main()

function main() {

 var temp1 = new Temperature();

 temp1.celsius = 0

 output("temp1.celsius = " + temp1.celsius);

 output("temp1.fahrenheit = " + temp1.fahrenheit);

 output("");

 temp1.celsius = 100;

 output("temp1.celsius = " + temp1.celsius);

 output("temp1.fahrenheit = " + temp1.fahrenheit);

 output("");

 var temp2 = new Temperature();

 temp2.fahrenheit = 0

 output("temp2.fahrenheit = " + temp2.fahrenheit);

JavaScript Examples | 545

 output("temp2.celsius = " + temp2.celsius);

 output("");

 temp2.fahrenheit = 100;

 output("temp2.fahrenheit = " + temp2.fahrenheit);

 output("temp2.celsius = " + temp2.celsius);

}

function output(text) {

 if (typeof document === 'object') {

 document.write(text);

 }

 else if (typeof console === 'object') {

 console.log(text);

 }

 else {

 print(text);

 }

}

Output

temp1.celsius = 0

temp1.fahrenheit = 32

temp1.celsius = 100

temp1.fahrenheit = 212

temp2.fahrenheit = 0

temp2.celsius = -17.77777777777778

temp2.fahrenheit = 100

temp2.celsius = 37.77777777777778

546 | JavaScript Examples

References

• Wikiversity: Computer Programming

JavaScript Examples | 547

https://en.wikiversity.org/wiki/Computer_Programming

Python Examples
DAVE BRAUNSCHWEIG

Objects

This class converts temperature between Celsius and Fahrenheit.

It may be used by assigning a value to either Celsius or Fahrenheit

and then retrieving the other value, or by calling the to_celsius or

to_fahrenheit methods directly.

References:

https://www.mathsisfun.com/temperature-conversion.html

https://en.wikibooks.org/wiki/Python_Programming

class Temperature:

 _celsius = None

 _fahrenheit = None

 @property

 def celsius(self):

 return self._celsius

 @celsius.setter

 def celsius(self, value):

 self._celsius = float(value)

 self._fahrenheit = self.to_fahrenheit(self._celsius)

 @property

 def fahrenheit(self):

 return self._fahrenheit

 @fahrenheit.setter

548 | Python Examples

 def fahrenheit(self, value):

 self._fahrenheit = float(value)

 self._celsius = self.to_celsius(self._fahrenheit)

 def __init__(self, celsius=None, fahrenheit=None):

 if celsius != None:

 self._celsius = celsius

 self._fahrenheit = self.to_fahrenheit(celsius)

 if fahrenheit != None:

 self._fahrenheit = fahrenheit

 self._celsius = self.to_celsius(fahrenheit)

 def to_celsius(self, fahrenheit):

 return (fahrenheit - 32) * 5 / 9

 def to_fahrenheit(self, celsius):

 return celsius * 9 / 5 + 32

This program creates instances of the Temperature class to convert Cesius

and Fahrenheit temperatures.

def main():

 temp1 = Temperature(celsius=0)

 print("temp1.celsius =", temp1.celsius)

 print("temp1.fahrenheit =", temp1.fahrenheit)

 print("")

 temp1.celsius = 100

 print("temp1.celsius =", temp1.celsius)

 print("temp1.fahrenheit =", temp1.fahrenheit)

 print("")

 temp2 = Temperature(fahrenheit=0)

 print("temp2.fahrenheit =", temp2.fahrenheit)

Python Examples | 549

 print("temp2.celsius =", temp2.celsius)

 print("")

 temp2.fahrenheit = 100

 print("temp2.fahrenheit =", temp2.fahrenheit)

 print("temp2.celsius =", temp2.celsius)

main()

Output

temp1.celsius = 0

temp1.fahrenheit = 32.0

temp1.celsius = 100.0

temp1.fahrenheit = 212.0

temp2.fahrenheit = 0

temp2.celsius = -17.77777777777778

temp2.fahrenheit = 100.0

temp2.celsius = 37.77777777777778

References

• Wikiversity: Computer Programming

550 | Python Examples

https://en.wikiversity.org/wiki/Computer_Programming

Swift Examples
DAVE BRAUNSCHWEIG

Objects

// This class converts temperature between Celsius and Fahrenheit.

// It may be used by assigning a value to either Celsius or Fahrenheit

// and then retrieving the other value, or by calling the ToCelsius or

// ToFahrenheit methods directly.

class Temperature {

 var _celsius:Double = 0

 var _fahrenheit:Double = 32

 init(celsius:Double?=nil, fahrenheit:Double?=nil) {

 if celsius != nil {

 self.celsius = celsius!

 }

 if fahrenheit != nil {

 self.fahrenheit = fahrenheit!

 }

 }

 var celsius: Double {

 get {

 return self._celsius

 }

 set {

 self._celsius = newValue

 self._fahrenheit = toFahrenheit(celsius:self._celsius)

 }

Swift Examples | 551

 }

 var fahrenheit: Double {

 get {

 return self._fahrenheit

 }

 set {

 self._fahrenheit = newValue

 self._celsius = toCelsius(fahrenheit:self._fahrenheit)

 }

 }

 func getCelsius() -> Double {

 return self.celsius

 }

 func setCelsius(celsius:Double) {

 self.celsius = celsius

 self.fahrenheit = toFahrenheit(celsius:celsius)

 }

 func getFahrenheit() -> Double {

 return self.fahrenheit

 }

 func setFahrenheit(fahrenheit:Double) {

 self.fahrenheit = fahrenheit

 self.celsius = toCelsius(fahrenheit:fahrenheit)

 }

 func toCelsius(fahrenheit:Double) -> Double {

 return (fahrenheit - 32) * 5 / 9

 }

 func toFahrenheit(celsius:Double) -> Double {

552 | Swift Examples

 return celsius * 9 / 5 + 32

 }

}

// This program creates instances of the Temperature class to convert Celsius

// and Fahrenheit temperatures.

//

// References:

// https://www.mathsisfun.com/temperature-conversion.html

// https://developer.apple.com/library/content/documentation/Swift/Conceptual/Swift_Programming_Language/TheBasics.html

func main() {

 let temp1 = Temperature(celsius:0);

 print("temp1.celsius = " + String(temp1.celsius));

 print("temp1.fahrenheit = " + String(temp1.fahrenheit));

 print("");

 temp1.celsius = 100;

 print("temp1.celsius = " + String(temp1.celsius));

 print("temp1.fahrenheit = " + String(temp1.fahrenheit));

 print("");

 let temp2 = Temperature(fahrenheit:0);

 print("temp2.fahrenheit = " + String(temp2.fahrenheit));

 print("temp2.celsius = " + String(temp2.celsius));

 print("");

 temp2.fahrenheit = 100;

 print("temp2.fahrenheit = " + String(temp2.fahrenheit));

 print("temp2.celsius = " + String(temp2.celsius));

}

main()

Swift Examples | 553

Output

temp1.celsius = 0.0

temp1.fahrenheit = 32.0

temp1.celsius = 100.0

temp1.fahrenheit = 212.0

temp2.fahrenheit = 0.0

temp2.celsius = -17.7777777777778

temp2.fahrenheit = 100.0

temp2.celsius = 37.7777777777778

References

• Wikiversity: Computer Programming

554 | Swift Examples

https://en.wikiversity.org/wiki/Computer_Programming

Practice
KENNETH LEROY BUSBEE

Review Questions

Answer the following statements as either true or false:

1. Procedural programming and object-oriented
programming cannot be done with the same compiler/
IDE.

2. Object-oriented programming encapsulates data and
functions.

Answers:

1. false
2. true

Short Answer

1. Describe the fundamental differences between
procedural (modular structured) programming and
object-oriented programming.

Activities

Complete the following activities using your selected
programming language. Use separate functions for input, each
type of processing, and output. Avoid global variables by

Practice | 555

passing parameters and returning results. Create test data to
validate the accuracy of each program. Add comments at the
top of the program and include references to any resources
used.

1. Review MathsIsFun: Area of Plane Shapes. Create a
program that asks the user what shape they would like to
calculate the area for. Use if/else conditional statements to
determine their selection and then gather the appropriate
input and calculate and display the area of the shape.
Perform all area calculations using a ShapeArea class that
has separate methods to calculate and return the area for
different shapes. Include data validation in the class and
error handling in the main program.

2. Create a program that asks the user how old they are in
years. Then ask the user if they would like to know how old
they are in months, days, hours, or seconds. Use if/else
conditional statements to display their approximate age in
the selected timeframe. Perform all calculations using an
AgeConverter class that accepts the age in years during
initialization and has separate properties and methods to
calculate and return the age in months, days, hours, and
seconds. Include data validation in the class and error
handling in the main program.

3. Review Wikipedia: Zeller’s congruence. Create a program
that asks the user for their birthday (year, month, and day)
and then calculate and display the day of the week on
which they were born. Use if/else conditional statements
to convert the numeric day of the week to the correct
string representation (Monday, Tuesday, Wednesday, etc.).
Perform all calculations using a DayOfWeek class that
accepts the year, month, and day during initialization and
has separate properties and methods to calculate and
return the day of week as a number, as an abbreviated
string (Mon, Tue, etc.), and as a full string (Monday,

556 | Practice

http://www.mathsisfun.com/area.html
https://en.wikipedia.org/wiki/Zeller%27s_congruence

Tuesday, etc.). Include data validation in the class and error
handling in the main program.

References

• cnx.org: Programming Fundamentals – A Modular
Structured Approach using C++

• Wikiversity: Computer Programming

Practice | 557

https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://cnx.org/contents/MDgA8wfz@22.2:YzfkjC2r@17
https://en.wikiversity.org/wiki/Computer_Programming

	Contents
	Contents
	About this Book
	Author Acknowledgements
	Introduction to Programming
	Systems Development Life Cycle
	Program Design
	Program Quality
	Pseudocode
	Flowcharts
	Software Testing
	Integrated Development Environment
	Version Control
	Input and Output
	Hello World
	C++ Examples
	C# Examples
	Java Examples
	JavaScript Examples
	Python Examples
	Swift Examples
	Practice: Introduction to Programming

	Data and Operators
	Constants and Variables
	Identifier Names
	Data Types
	Integer Data Type
	Floating-Point Data Type
	String Data Type
	Boolean Data Type
	Nothing Data Type
	Order of Operations
	Assignment
	Arithmetic Operators
	Integer Division and Modulus
	Unary Operations
	Lvalue and Rvalue
	Data Type Conversions
	Input-Process-Output Model
	C++ Examples
	C# Examples
	Java Examples
	JavaScript Examples
	Python Examples
	Swift Examples
	Practice: Data and Operators

	Functions
	Modular Programming
	Hierarchy or Structure Chart
	Function Examples
	Parameters and Arguments
	Call by Value vs. Call by Reference
	Return Statement
	Void Data Type
	Scope
	Programming Style
	Standard Libraries
	Program Plan
	C++ Examples
	C# Examples
	Java Examples
	JavaScript Examples
	Python Examples
	Swift Examples
	Practice: Functions

	Conditions
	Structured Programming
	Selection Control Structures
	If Then Else
	Code Blocks
	Relational Operators
	Assignment vs Equality
	Logical Operators
	Nested If Then Else
	Case Control Structure
	Program Plan
	Condition Examples
	C++ Examples
	C# Examples
	Java Examples
	JavaScript Examples
	Python Examples
	Swift Examples
	Practice: Conditions

	Loops
	Iteration Control Structures
	While Loop
	Do While Loop
	Flag Concept
	For Loop
	Branching Statements
	Increment and Decrement Operators
	Integer Overflow
	Nested For Loops
	Program Plan
	Loop Examples
	C++ Examples
	C# Examples
	Java Examples
	JavaScript Examples
	Python Examples
	Swift Examples
	Practice: Loops

	Arrays
	Arrays and Lists
	Index Notation
	Displaying Array Members
	Arrays and Functions
	Math Statistics with Arrays
	Searching Arrays
	Sorting Arrays
	Parallel Arrays
	Multidimensional Arrays
	Fixed and Dynamic Arrays
	Program Plan
	C++ Examples
	C# Examples
	Java Examples
	JavaScript Examples
	Python Examples
	Swift Examples
	Practice: Arrays

	Strings and Files
	Strings
	String Functions
	String Formatting
	File Input and Output
	Loading an Array from a Text File
	Program Plan
	C++ Examples
	C# Examples
	Java Examples
	JavaScript Examples
	Python Examples
	Swift Examples
	Practice: Strings and Files
	Exception Handling

	Object-Oriented Programming
	Objects and Classes
	Encapsulation
	Inheritance and Polymorphism
	C++ Examples
	C# Examples
	Java Examples
	JavaScript Examples
	Python Examples
	Swift Examples
	Practice

