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Abstract

Introduction: Applying and leveraging artificial intelligence within the healthcare domain has emerged as a fundamental
pursuit to advance health. Data-driven models rooted in deep learning have become powerful tools for use in healthcare
informatics. Nevertheless, healthcare data are highly sensitive and must be safeguarded, particularly information related
to sexually transmissible infections (STIs) and human immunodeficiency virus (HIV).

Methods: We employed federated learning (FL) in combination with homomorphic encryption (HE) for STI/HIV prediction to
train deep learning models on decentralized data while upholding rigorous privacy. The dataset included 168,459 data
entries collected from eight countries between 2013 and 2018. The data for each country was split into two groups, with
70% allocated for training and 30% for testing. Our strategy was based on two-step aggregation to enhance model perform-
ance and leverage the area under the curve (AUC) and accuracy metrics and involved a secondary aggregation at the local
level before utilizing the global model for each client. We introduced a dropout approach as an effective client-side solution
to mitigate computational costs.

Results: Model performance was progressively enhanced from an AUC of 0.78 and an accuracy of 74.4% using the local
model to an AUC of 0.94 and an accuracy of 90.7% using the more advanced model.

Conclusion: Our proposed model for STI/HIV risk prediction surpasses those achieved by local models and those constructed
from centralized data sources, highlighting the potential of our approach to improve healthcare outcomes while safeguard-
ing sensitive patient information.
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Introduction

Security and privacy are significant considerations in the
context of sexually transmissible infections (STIs) and
human immunodeficiency virus (HIV) risk prediction
powered by artificial intelligence (AI). Security and
privacy protection of an Al-driven STI/HIV risk prediction
system should safeguard individuals’ sensitive health infor-
mation, protect against discrimination, build trust, and
ensure compliance with legal and ethical standards.'” A
meticulous balance between the benefits of Al and ensuring
robust measures for privacy and security is necessary to
achieve meaningful progress in Al-based healthcare
systems, particularly in the domain of risk prediction for
promoting STI/HIV prevention and treatment. While the
application of Al in healthcare is burgeoning in recent
decades, utilizing data to build models to predict the likeli-
hood of developing some diseases has significantly
improved diagnosis and treatment in clinical settings.™*
Machine learning and deep learning models have demon-
strated the potential to forecast the occurrence and patterns
of certain infectious diseases.™® By integrating various
machine learning techniques, accurate and credible out-
comes can be achieved. The centralization of data manage-
ment heightens the vulnerability to unauthorized access,
data breach, or information misuse. Individuals may
exhibit reluctance to share their health information if they
perceive there is a risk of compromise in a centralized
repository, potentially resulting in privacy violations.
Moreover, individuals may be less willing to participate
in research or share health data if they perceive a potential
threat to personal information being traced back to them.
Additionally, the sharing of data must adhere to legal and
ethical standards, as exemplified by laws such as the
Health Insurance Portability and Accountability Act
(HIPAA) of 1996 in the United States.® HIPAA is designed
to safeguard patient information. Centralized storage poses
challenges in ensuring compliance with these regulations,
and any breaches in compliance may expose institutions
and researchers to legal consequences, thereby leading to
aloss of trust among stakeholders and potential legal action.

When delving into the usage of Al for predicting patient
outcomes, the priority focus is to ensure privacy protec-
tion.”® Federated learning (FL) has gained significant inter-
est in healthcare as FL enables clients (personal devices,
private clinics, or hospitals) to share their trained local
model for the construction of a global model on the
server side. The global model is then distributed to each
client for outcome predictions. FL facilitates collaboration
among healthcare organizations in developing deep learn-
ing models without the need to share raw patient data,
ensuring privacy preservation for each client.”'”

FL provides several significant benefits when implemen-
ted in healthcare settings, effectively addressing many of
the challenges associated with the sharing of sensitive

medical data, such as data relating to clients’ STI/HIV
status, while enabling advanced applications of deep learn-
ing and Al. Beyond privacy preservation, FL reduces data
exposure by retaining data on local devices or servers, min-
imizing the risk of data breaches or unauthorized access and
enhancing data security and confidentiality. Since FL is not
required to share sensitive patient data directly, it fosters
knowledge sharing and collaborative efforts for developing
medical solutions.>!' By aggregating knowledge from a
wide range of healthcare centers, FL enables the creation
of more robust and generalizable prediction models.'? In
addition, within the FL system, only the models are
shared, reducing the need to transfer large amounts of
data over networks. This significantly enhances the
overall efficiency and privacy of communication within
the system. '

While FL offers enhanced privacy protection compared
to centralized data solutions, it remains susceptible to spe-
cific types of attacks, including model inversion and mem-
bership inference attacks.'*'> Combining FL with
homomorphic encryption (HE) has emerged as a promising
solution, not only in the context of the Internet of Things
(IoT) healthcare systems16 but also in various FL systems
such as reported in several papers.'’' In a study con-
ducted by Zhang et al.,'® FL was implemented using the
HAMI10000 medical dataset to address the challenge of
skin lesion classification. Additionally, they introduced
enhanced federated learning homomorphic encryption
(FLHE) solutions and applied them to the HAM10000
medical dataset, revealing improved results compared to
conventional methods. However, it is worth noting that
there remains a considerable gap in research concerning
the application of FL in conjunction with encryption techni-
ques for STI/HIV risk prediction. Moreover, FLHE encoun-
ters challenges related to the model’s performance and
computational overhead.'® To overcome these obstacles,
in this study, we propose a framework that significantly
enhances model accuracy and computation overhead. The
summary of our contributions is as follows:

1. We propose an innovative approach, employing FL in
combination with HE for STI/HIV prediction, offering
a robust solution for training deep learning models on
decentralized data while upholding rigorous privacy.

2. Aninnovative strategy based on two-step aggregation is
presented to enhance the model performance, by lever-
aging the area under the curve (AUC) and accuracy
metrics. The two-step aggregation involved a secondary
aggregation at the local level before utilizing the global
model for each client.

3. We introduce a dropout approach as an effective client-
side solution to mitigate computational costs. In this
method, each client is assigned a model quality thresh-
old, specifically measured by AUC. If a client’s model
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falls below the AUC threshold, it does not need to be
encrypted and transmitted to the server for aggregation.
4. We compare our method with various methodologies for
constructing deep learning models used in STI/HIV predic-
tion. Furthermore, acomprehensive evaluation of the advan-
tages and disadvantages of each solution was performed,
providing a valuable reference point for future applications.

The remainder of the paper is constructed as follows. In
Literature review section, related work about FL and
encryption is briefly surveyed. In Fundamentals of feder-
ated learning and homomorphic encryption in STI/HIV
risk prediction section, FL for digital health applications
and the principles of HE are discussed. Methods section
presents the methods for development of the proposed
system, including the scheme and different strategies to
enhance model performance and computational cost.
Results section reports the results of the performance evalu-
ation of our proposed solution. We conclude the paper in
Conclusion section with a discussion of future works.

Literature review

We first discuss the literature about FL and HE for health-
care applications. In AI for healthcare, issues related to
privacy and data protection often result in data isolation.
When models are exclusively built on isolated data
islands, there is a risk of missing valuable insights and
knowledge. These data-sharing limitations can hinder the
progress of Al applications, causing a slowdown in their
development.'® To address privacy concerns and improve
model quality, Google introduced the concept of FL,
known as Federated Average (FedAvg), in 2016. This
approach aimed to optimize the efficiency of machine learn-
ing models for smartphones while simultaneously ensuring
robust privacy protection for personal devices.”****

FL has experienced continuous development through
various studies. A recent contribution by Houssein and
Sayed’ introduced a novel approach called FedImpPSO to
overcome the accuracy challenges encountered by current
FL methods in unstable networks due to the substantial
weight data volume. FedlmpPSO improved algorithmic
robustness in unpredictable network conditions by aggre-
gating score values from FL models and utilizing an
enhanced version of particle swarm optimization (PSO).
The study further extended the application of FedImpPSO
to the healthcare domain, demonstrating its effectiveness
through two case studies. In the first case, COVID-19 clas-
sification using ultrasound and X-ray datasets achieved F1
measures of 77.90% and 92.16%, respectively. In the
second case, focused on cardiovascular data, FedImpPSO
achieved accuracy rates of 91.18% and 92% in predicting
the presence of heart diseases.

While FL has demonstrated superior performance, it
faces the emergence of diverse adversarial attacks.”* A

comprehensive exploration of reconstruction attacks and
their countermeasures were presented in a study by
Bhowmick et al.?> Zhu et al.?® introduced a depth gradient
leakage scheme, enabling adversaries to reconstruct images
closely resembling the original sample solely based on the
local model when additional information is not available.
This highlights the vulnerability in FL. Even if the original
data is kept locally, updating the local model can still create
opportunities for potential adversarial attacks.

In response to the rise of many attack models that pose
threats to the privacy and confidentiality of machine learn-
ing, several protective measures have been proposed. Hardy
etal.'” and Zhang et al.?' utilized the additive HE algorithm
to shield the local model from being observed by curious
participants during the model aggregation process. HE
offers a robust assurance of privacy preservation.

The HE is also used in the work by Jing et al."® They intro-
duced xMK-CKKS, an enhanced iteration of the MK-CKKS
multi-key HE protocol. This protocol served as the foundation
for a novel privacy-preserving FL approach. In their method,
model updates were encrypted using a combined public key
before being shared with a central server for aggregation.
Decryption necessitates collaboration among all participating
devices. Their approach effectively protected against privacy
breaches arising from the public sharing of model updates in
FL, and it exhibits resilience against any collusion attempts
between the participating devices and the server. Through their
evaluations, they demonstrated that their scheme outperformed
other recent advancements in terms of communication and com-
putational efficiency while maintaining the accuracy of the model.

The integration of FL and HE was also explored in the
work by Fang et al.”’ This work combined HE and FL to
ensure the security of both data and models throughout the
training process. Furthermore, the combination of HE and
FL maintains data privacy when multiple parties collaborate.
Their proposed algorithm achieved a similar level of accuracy
in model training as traditional methods. Through experi-
ments conducted on datasets such as MNIST and mental
fatigue, the accuracy difference was maintained below 1%.
Concerning the computational cost associated with HE, the
study by Feng et al.?’ assessed the impact of varying key
lengths and network complexities. The analysis revealed
that increasing the key length or complexity of the network
leads to higher computational overhead. Fang et al.?” empha-
sized the significance of finding a pragmatic solution to
balance the trade-off between performance and security.

The application of FLHE for the IoT-based healthcare
system was presented by Zhang et al. in.'® Cryptographic
techniques such as masks and HE were implemented to
enhance the protection of local models, preventing adver-
saries from extracting private medical data through threat
actions, including model reconstruction or model inversion.
The primary determinant of a local model’s contribution to
the global model during each training epoch was not the
size of the dataset, as typically used in deep learning, but
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rather the quality of the datasets possessed by different par-
ticipants. Additionally, a dropout-tolerant approach was
introduced, ensuring that the FL process continues if the
number of online clients remains above a preset threshold.
The security analysis confirmed the effectiveness of their
proposed scheme in safeguarding data privacy. Moreover,
a theoretical investigation of the computational and com-
munication costs was conducted. As a practical example
within the healthcare domain, the scheme is applied to the
classification of skin lesions using training images from
the HAM10000 medical dataset. Experimental results
demonstrated that the proposed approach yields promising
outcomes while maintaining privacy.

As a summary of the literature review, FL and HE exhibit
significant potential for applications in the healthcare sector.
Note that there are some existing research works (e.g.,
Ref.?®) that used differential privacy for sensitive data protec-
tion. However, differential privacy achieves privacy by adding
some noise to the data or the output of any query. This added
noise decreases the utility and accuracy of data analysis.
Suppose the data is sensitive and requires a strict guarantee
of privacy. In this case, the added noise becomes large
enough to cause degradation in the performance of models
and analyses driven by data. For the above reasons, the differ-
ential privacy technique is excluded from this work.

Fundamentals of federated learning and
homomorphic encryption in STI/HIV risk
prediction

In this section, we provide the fundamentals of FL and HE.

Federated deep learning for STI/HIV risk prediction

There are some traditional deep learning architectures, such as
convolutional neural networks (CNNs), recurrent neural net-
works (RNNs), and feedforward neural networks (FNNs).
These network models comprise various layers, including
the input layer, hidden layer, and output layer. The layers
are connected via neurons, which are defined by activation
functions, weights, and biases. The choice of artificial
neural network models depends on the type of data being pro-
cessed. For example, CNNs are primarily designed for pro-
cessing grid-like data, such as images and sequences, where
the spatial relationships between data points are important.”
They are not commonly employed for processing discrete
tabular data, as CNNs may not be well suited for capturing
tabular data’s inherent relationships and patterns.

Similarly, RNNs are tailored for sequential data, such as
time series or natural language text, where the order of data
points is of paramount importance.’® However, in tabular
data, where the order of rows or columns generally lacks
meaningful information, RNNs may not effectively lever-
age their sequential processing capabilities.

In this work, we propose a federated deep learning model
for STI/HIV-related tabular data. Among the different types
of artificial neural network models, the multi-layered percep-
tron neural networks (MLPs) are exceptionally well suited for
processing discrete tabular data.*® MLPs offer a robust solu-
tion for handling such data, given their flexibility, capacity to
capture feature interactions, and widespread adoption in prac-
tical applications. They can effectively model and learn from
tabular datasets, making them a valuable tool for a wide range
of data analysis and machine learning tasks. A typical MLP
model is described in Figure 1.

A neural network model typically consists of an input layer,
one or multiple hidden layers, and an output layer. Layers are
interconnected with each other to all the neurons in the adjacent
layers by weights. For instance, as illustrated in Figure 2,
neuron N1 is linked to all input features F1 through FM.

Additionally, N1 is also connected to the subsequent
hidden layer, which itself consists of MB neurons. Deep
learning aims to identify the optimal set of weights for
the model, thereby minimizing the error between the pre-
dicted and actual values.

The training process in MLP networks is depicted in
Figure 2. Assuming that D is a dataset with k£ samples, we
define D = {(x;, Yaer,), =1, 2, , k}, where x; is
the input feature vector, x; = {F1li, F2i, ...FMi}. The
output of each neuron is calculated based on the connected
inputs and corresponding weights. For instance, the output
of neuron N1 is determined as:

M
Outy =f(z WyiriFi + b>, (1

i=1

where f is the activation function, Wy f; is the weight that
presents for connection between neuron N1 and input Fi,
and b is the bias value which may be added to each layer.
The output value of neuron Ni is considered as the input
value for the next layer (M). A similar process is repeated
for every neuron up to the output of neuron O to get the
Ypre. Based on the prediction label Ypre and the actual
label Yact, the lost function is calculated. The subsequent
step involves computing the derivative of the lost function

Input layer

szden layers

Output layer

Figure 1. Structure of the MLP model.
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Forward propagation

Backward Propagation

Loss function
L=, 5(Ypre;— Yact)?

Goal: Find weights set to
minimise the loss function

Figure 2. Training process of the MLP model.

and adjusting the model weights during the propagation
process. The stochastic gradient descent (SGD) algorithm
is consistently applied to determine the optimal weight
sets for the model.>' In the training process within each
client, a set of weights is generated. In the FL system,
each client transmits its weight set to the server/cloud for
aggregation, thereby forming a global model. If Q clients
contribute to building a global model, the weights of the
global model (Wgope) can be synthesized using the
average algorithm as outlined below:

Qo
ngobal = Zﬁi*wclienti (2)
i=0

where f; and Wclient; are the aggregated coefficient and set
of weight of client i, respectively.

Once the global model is learnt, it is distributed to all
clients within the FL system. The entire process of FL
ensures that the original dataset of each client is not
shared. While this technique safeguards data privacy to a
certain extent, it is important to acknowledge that model
updates exchanged during the training process may
contain sensitive information, introducing the risk of
privacy breaches. The challenge lies in ensuring that no
identifiable information is disclosed during these updates,
necessitating careful design and presenting potential chal-
lenges for the FL system. HE emerges as a suitable tool
to address these limitations. By establishing a privacy-
preserving environment for model training and ensuring
secure model aggregation, HE enhances the robustness
and privacy compliance of FL, particularly in the context
of sensitive health data.

Homomorphic encryption

Homomorphic encryption refers to encrypting data that is
already encrypted rather than the original data while

delivering the outcome in the same manner as it would with
plaintext. This method allows intricate mathematical opera-
tions to be executed on the ciphertext without altering the
encryption’s fundamental characteristics.”>** HE establishes
a secure setting where operations can be conducted on previ-
ously encrypted data, yielding identical outcomes to those gen-
erated from the original data. Several homomorphic
algorithms utilize asymmetric key systems, including RSA,
ElGamal, and Paillier algorithms, along with diverse HE
schemes such as Brakerski-Gentry-Vaikuntanathan (BGV),
enhanced homomorphic cryptosystem (EHC), algebra homo-
morphic encryption scheme based on updated ElGamal
(AHEE), and non-interactive exponential homomorphic
encryption scheme (NEHE).>

Among various HE encryption algorithms, Paillier encryp-
tion is one of the optimal solutions to protect the STI/HIV risk
prediction model since it is built on the security of the decisio-
nal composite residuality assumption (DCRA), which is con-
sidered a strong foundation for encryption.**

The Paillier encryption algorithm consists of three main
steps: key generation, encryption, and decryption. The algo-
rithm for each step is described in Figure 3.

The key generation created the public key and private key.
The public key is used for encryption. Specifically, it includes
the modulus n and a public generator €Z_(n"2)"*. These
parameters are used in the encryption process to conceal the
plaintext. The private key is used to retrieve the plaintext.*

When using the Paillier HE for a FL system, the public
key and private key must be shared among clients, while the
server or cloud remains unaware of the private key.
Consequently, all computations on the server are performed
on encrypted models or ciphertext received from the clients.
Further details regarding the proposed dropout-tolerant
model FLHE (DTM-FLHE) and performance enhanced
FLHE (PE-FLHE) for STI/HIV risk prediction are outlined
in the next section.
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A=lem(p—1l,g—1)

Key

Generation

2" x " mod n?

* Choose two large prime numbers p and g, such that greatest
common divisor (ged), ged(pg, (p — D(@— 1)) =1
» Compute n = pq and least common multiplier (lcm),

* Select random integer g, gEZ,*lz and define L(x) = — Verify

that n is a divisor of the order of g by confirming the presence of
the subsequent modular multiplicative inverse.

=il
* Compute u = (L(g}‘ mod nz)) mod n
* Create public key = (n, g); private key = (4, u)

* Select a random integer r, 7 € Z,»
» Compute the cipher text ¢ from original plaintext m, ¢ =

* Retrieved plaintext m by m = L(¢* mod #2) x u mod n

=1

Figure 3. Paillier cryptosystem steps.

h_________

Figure k. Proposed system with FLHE for STI/HIV data.

Methods

Proposed system framework

We employed FL in combination with HE for STI/HIV pre-
diction to train deep learning models on decentralized data
while upholding rigorous privacy. The FLHE system for
STI/HIV risk prediction is described in this section. The

system involves three key participants: clients (local data
center), cloud (model aggregation site), and the key gener-

ation center. The detailed architecture of the proposed

system is illustrated in Figure 4.
The key generation center generates public and private
keys and distributes them to all clients. An independent

key generation center within the FLHE system presents
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many invaluable benefits, each contributing significantly to
the overall robustness and security of the data transmission
and collaborative processes. Paillier encryption provides an
additional layer of security, making it difficult for unauthor-
ized parties to access or manipulate sensitive information
during the FL process. Moreover, Paillier encryption is par-
tially homomorphic, allowing for the addition of encrypted
values and multiplication of an encrypted value by a plain-
text constant.*® This property is beneficial for aggregating
encrypted model updates from multiple participants in FL
without the need to decrypt the individual contributions.
By maintaining a distinct entity solely responsible for key
generation, the system instills confidence among participat-
ing clients and the model aggregation site, assuring them of
the integrity and credibility of the encryption mechanism.
Moreover, this centralized approach facilitates efficient
key distribution and ensures uniformity in the key gener-
ation process, thereby simplifying the administration and
maintenance of the encryption framework.

The responsibility for model quality measurement typic-
ally lies with a central coordinating server, that is, the key
generation center (KGC). The KGC is responsible for
setting and distributing the threshold value for model
quality to each client. This threshold is determined based
on the specific requirements from an application and empir-
ical analysis of model performance metrics such as AUC.

The threshold value is carefully chosen through histor-
ical data analysis and expert domain knowledge. It must
be high enough to ensure the quality and robustness of
the aggregated model yet balanced to allow for sufficient
client participation and model diversity.

If a client’s model quality falls below the specified
threshold in a given round, the client is temporarily
excluded from the aggregation process for that round.
However, this exclusion is not permanent. The client can
participate in subsequent rounds once their model quality
improves and meets the required threshold. This dynamic
participation mechanism ensures all clients can contribute
to the FL process while maintaining the overall model
quality and performance. The KGC monitors the perform-
ance continuously and adjusts thresholds as needed to opti-
mize both the security and effectiveness of the FL system.

The model aggregation site collects encrypted models
from clients and performs different secured aggregations
to create the global model. The encrypted global model is
then sent to clients for usage purposes. The model aggrega-
tion site does not know keys — it only does the aggregation
process. It is imperative to emphasize that the model aggre-
gation site remains devoid of direct access to the encryption
keys, functioning solely to orchestrate the aggregation
process. This deliberate separation of roles fortifies the
security infrastructure, shielding sensitive information
from unauthorized access and ensuring the integrity of the
system’s operations. During the exchange of information
between server and clients, the system needs to fulfil

some security constraints to protect the privacy of the
system as follows:

1. The server is limited to obtaining encrypted models and
associated secure parameters provided by the clients
without access to the original local model and medical
data. Nevertheless, it retains the capability to generate
an aggregated global model.

2. During the local training process, clients are restricted
from accessing authentic models of other clients,
except for their local models and the aggregated
global model. This ensures the protection of sensitive
raw data belonging to other clients.

Proposed solution to enhance accuracy

The model is named performance FLHE (PE-FLHE). To
begin with, the model structure and type for the FL
system are confirmed among the clients. The key generation
center produces a pair of keys, namely, the public key(n, g)
and the private key(1, u), where the values of n, g, 4, and u
are defined in Figure 3. These keys are distributed to all
clients within the FL system. After the client model is
created within each client’s local data center, its weights
are encrypted using the public key described below:

Welient; n 2
Ccliem,- = &8 X r'mod n P (3)

where r is a random integer and r € Z%,, Cjien; is the
encrypted weights set of client i and Wclient; is the original
weights set of client i. Cjin, 1s then sent to the server/cloud
for aggregation process, assuming that there are Q clients
participating into aggregation, to create a global model.
The encrypted global model is calculated as follows:

1 Y
Cglobal = éz Cclientl- . (4)
i=1

At the client side, the encrypted global model is
re-aggregated with the encrypted local model before
being utilized by the local client. The final FL. model
(Wpy,) is determined as follows:

C a Cci nt; g
Wrr, = L((W) mod nz)

X umod n. 5)

Our method of aggregating the local model allows it to
adapt more effectively to local situations, enabling the
final FL model to attain higher accuracy.

Proposed solution to reduce computational cost

To implement a federated learning with homomorphic encryp-
tion (FLHE), each client is required to encrypt its local model
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and decrypt the global model, which can result in reducing sig-
nificant computational overhead for the entire system.
Addressing this issue, a client dropout technique has
emerged as a promising solution to enhance the computational
efficiency of the system. An illustrative approach, such as the
dropout-tolerant participants based on the Diffie-Hellman and
Shamir secret sharing algorithm presented in reference,'® is a
viable method to mitigate the computation cost.

Dropout-tolerant model FLHE (DTM-FLHE) introduces a
client-dropout solution that ensures only high-quality models
contributing to the FL process. Specifically, if the quality of a
client model, measured by metrics such as the AUC, falls
below a predetermined threshold, the client is temporarily
excluded. The DTM-FLHE framework employs HE to main-
tain data privacy during training, allowing secure aggregation
of model parameters without revealing sensitive information.
This adaptive approach dynamically adjusts client participation
based on real-time performance metrics, enhancing the overall
accuracy and robustness of the global model. Avoiding incor-
rect threshold settings could lead to the exclusion of potentially
valuable data from clients that might perform better in subse-
quent rounds. In that case, the client is spared from encrypting
and transmitting its model to develop the global model in the
round, which does not have good AUC. This adaptive approach
not only alleviates the computational load on underperforming
clients but also optimizes the allocation of computational
resources, ultimately enhancing the overall accuracy and
dependability of the final global model.

Results

Dataset

The data were sourced from the Demographic and Health
Surveys (DHS). Our study utilized 168,459 data entries
from eight distinct countries collected between 2013 and
2018, as presented in Table 1.

The model was trained using the FL framework, with each
client trained locally on its dataset for a specified number of
epochs before averaging the model weights. The training pro-
cedure involved 50 communication rounds, with each client
performing five local epochs per round. The learning rate was
set to 0.01, and the batch size was 32. The DHS program
encompassed information on behaviors, clinical tests for STI/
HIV, and demographic data related to men’s health.

The selection of features was based on a comprehensive
analysis of relevant literature®” = and consultations with pro-
fessionals in public and sexual health. The input features
included age, education level, wealth index, regionality,
condom use during last sex with a recent partner, current
marital status, age at first sexual intercourse, recent sexual
activity, always use condoms during sex, has one sexual
partner, number of lifetime sexual partmer, given gifts or
other goods in exchange for sex, and if a woman was justified
in asking for condom use if the sexual partner/s has an STI.

Table 1. Dataset characteristics.

Dominica 9717 2013
Dominican 2028 2013
Republic
India 107,297 2015
Haiti 9572 2016
Guinea 3831 2018
Guinea 3688 2012
Ethiopia 11,327 2016
Cameroon 6648 2018
Angola 50,150 2015

Due to the highly imbalanced nature of the dataset, the over-
sampling technique was implemented to address this disparity.
By synthetically increasing the instances of the minority class,
the dataset was rebalanced, ensuring that the model was not
biased toward the majority class during the training process.
This approach facilitated a more comprehensive learning
process, enabling the model to capture the intricacies of both
classes and make more accurate predictions.

Once the dataset was rebalanced through oversampling,
the training commenced on this more equitable data represen-
tation. This allowed the model to learn from more diverse
examples, enhancing its ability to discern subtle patterns
and make informed predictions on both classes. By training
on the balanced dataset, the model was better equipped to
generalize its learning and make more reliable predictions
when presented with new, unseen data points.

Model selection

In this study, we used the MLP model because this type of
model has proven to be a resilient option for managing this
type of data because of its adaptability, capability to compre-
hend feature relationships, and extensive integration in real-
world scenarios. Their adeptness in representing and compre-
hending tabular datasets makes them a valuable asset for
diverse data analysis and machine learning responsibilities.>'

After optimizing to identify the most suitable model for this
task, we settled on an MLP model that incorporated 13 input fea-
tures, two hidden layers (with eight and four neurons, respect-
ively), and the output layer. Following establishing the model
structure, we determined the optimal activation function and opti-
mizer for this specific dataset. The selected activation function
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was the sigmoid function (f(x) = 1 / (1 4 ¢™)). This function
is widely renowned for its effectiveness in predicting the prob-
ability of the output,”® particularly in the context of STI/HIV
risk, where the probability typically ranges between O and
1. This specific function consistently demonstrated favorable
outcomes after conducting several experiments and comparing
the results with alternative activation functions. Similarly, we
applied a comparable process with various optimizers, ultimately
selecting the Adam optimizer as the most optimal choice.

Training procedure and performance metrics

Our model was trained using the proposed framework. Each
client model was trained locally on its dataset for a specified
number of epochs before averaging the model weights. The
training procedure in this study involved 40 communication
rounds, each client performing five local epochs per round.
The learning rate was set to 0.01, and the batch size was 64.
The model was compiled with the binary cross-entropy loss
function and the NAdam optimizer. The AUC and accuracy
were considered to be the evaluation metrics.

Results

In this section, we compare our proposed solutions for
applying FLHE in STI/HIV risk prediction with the original
FLHE, FL, and centralized data models.

Model performance evaluation of different solutions
for predicting HIV risk

We compared our proposed solutions in terms of AUC and
accuracy with different strategies and model structures, includ-
ing local training,41 centralized learning,42 and PLHE,27 for
predicting HIV risk, as outlined in Table 2. The data for each

Table 2. Performance of different solutions for predicting HIV risk.

country was split into two groups, with 70% being allocated
for training and 30% for testing. The local model signifies a
model trained solely on local data. FL represents the model
aggregated from all local models. Centralized learning refers
to the model constructed from the centralized data, where
each client contributes 70% of the data to train the centralized
model. FLHE denotes the model created through a combin-
ation of the HE technique and FL. DTM-FLHE represents
the FLHE-dropout model, which is from the result of combin-
ing our proposed dropout technique with FLHE and designed
to enhance computational efficiency. Finally, PE-FLHE
depicts the performance enhancement FLHE model, which
is our solution to improving accuracy by conducting a second-
ary aggregation with the local model before used with local
data. The average AUC and accuracy results for each type of
model are also presented in Table 2

The first point is that the local model demonstrates rela-
tively weaker performance, with an AUC of 0.78 and an
accuracy of 74.4%. This suggests that the model may not
effectively distinguish between individuals at higher and
lower risk of HIV, indicating limitations in capturing the
complexities of the data and making accurate predictions.

The FL model showed a significant improvement over
the local model, with an AUC of 0.92 and an accuracy of
85.5%. This suggests that the FL. model is more effective
in differentiating between individuals at varying risk
levels for HIV. The higher accuracy rate implies that the
FL model can make precise predictions for a substantial
portion of the dataset, demonstrating its reliability for
HIV risk assessment.

The centralized learning model produced similar results
to FL, with an AUC of 0.9 and an accuracy of 85.8%. The
centralized learning model shows solid performance,
although it slightly lags behind the FL model. This indicates
that a centralized approach can be effective. However, it

Dominican 0.77 78.2 0.97 93.0 0.99

Dominican Republic 0.81 75.0 0.97 87.5 0.97

India 0.61 60.0 0.91 86.2 0.92

Haiti 0.72 64.3 0.87 71.6 0.81

Guinea 0.84 714 0.96 92.9 0.92

Ethiopia 0.94 92.2 0.96 94.7 0.96

Cameroon 0.68 70.2 0.81 72.3 0.81

Angola 0.88 8h.4 0.9 80.0 0.86

Average 0.78 74.5 0.92 85.5 0.91

92.0 0.96 92.1 0.96 93.0 0.96 93.0

90.0 0.95 92.6 0.95 92.0 0.95 92.0

83.0 0.93 87.0 0.92 86.6 0.93 88.0

76.0 0.83 78.2 0.8 76.1 0.88 82.0

92.0 0.94 93.5 0.94 92.2 0.98 96.2

91.0 0.95 91.1 0.95 92.0 0.97 94.6

71.0 0.8 80.5 0.8 79.0 0.89 87.1

86.0 0.9 88.1 0.89 86.8 0.94 92.7

85.9 0.91 87.9 0.90 87.2 0.94 90.7
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may not be as efficient as the FL approach, particularly
when dealing with sensitive data or in scenarios where
data privacy is crucial.

The FLHE model achieved an AUC of 0.9 and an accur-
acy of 87.8%. This performance showcases the successful
integration of privacy-preserving techniques such as HE
within the FL framework. It allows for collaborative
model training on the encrypted data, ensuring data
privacy while achieving high predictive accuracy.

The FLHE performance for different rounds is illustrated
in Figure 5. The first plot shows the trends in AUC values for
each country across the eight rounds. The AUC results show
consistently improved AUC over the rounds, with some fluc-
tuations, for the most countries. The second plot shows the
trends in accuracy values for each country across the eight
rounds. There is a general upward trend for the results of

accuracy. These plots illustrate how the FLHE model’s per-
formance evolves over time, highlighting improvements.

The proposed DTM-FLHE exhibits competitive per-
formance, boasting an AUC of 0.9 and an accuracy of
87.2%. By integrating dropout techniques for lower-quality
client models within the FLHE framework, this model
enhances its robustness and predictive capabilities, simul-
taneously reducing the overall computational cost.
Although the AUC remains consistent with the FL and cen-
tralized learning models, a slight decrease in accuracy sug-
gests a potential trade-off between the complexity of the
model and its predictive accuracy.

The proposed PE-FLHE with accuracy enhancement
stands out as the top performer, with an AUC of 0.94 and
an accuracy of 90.7%. This significant improvement in
AUC and accuracy demonstrates the incorporation of

AUC Across Rounds for Different Countries
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Figure 5. Performance of FLHE across eight rounds.
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advanced techniques, such as feature engineering and
model fine-tuning, leading to superior predictive perform-
ance. The high accuracy rate indicates the model’s strong
capability in identifying individuals at different risk levels
for HIV, making it a robust tool for effective risk assess-
ment and intervention strategies.

We have closely examined the Dominican Republic case
and present the AUC results for HIV risk prediction in the
Dominican Republic which are depicted in Figure 6.

The comparison highlights the substantial benefits of the FL.
and HE solutions in enhancing the predictive performance of
models, particularly in cases where data privacy and security
are paramount. The results emphasize the importance of col-
laborative approaches such as FL and advanced privacy-
preserving techniques such as HE in effectively analyzing sen-
sitive data, ensuring accurate predictions, and enabling valu-
able insights in the context of the Dominican Republic data.

The average result across different countries emphasizes
the potential for incorporating sophisticated techniques and
model enhancements, as demonstrated by the proposed
FLHE model, with an accuracy enhancement and dropout
model, to improve the model’s predictive capabilities and
overall performance significantly.

Model performance evaluation for predicting STI risk

We conducted similar experiments using data from eight
countries to predict the risks of sexually transmitted infections
(STIs), as presented in Table 3. While the overall perform-
ance of the prediction models for STI risk is somewhat

lower compared to the prediction for HIV risk, we still
observed consistent trends. In other words, FL and our pro-
posed models (DTM-FLHE and PE-FLHE) demonstrate
notable security and computational efficiency enhancements.

As demonstrated in Table 3, the proposed methods
(DTM-FLHE and PE-FLHE) generally outperform local learn-
ing, traditional FL, and centralized learning in terms of both
AUC and accuracy. For instance, in the Dominican Republic
case, the DTM-FLHE model achieves an AUC of 0.87 and an
accuracy of 83.00%, while the PE-FLHE model reaches an
AUC of 0.89 and an accuracy of 83.20%. These improvements
highlight the effectiveness of our approaches in leveraging FLL
with enhanced privacy-preserving mechanisms, resulting in
better predictive performance and greater security.

Discussion

This research introduces a novel solution called the
DTM-FLHE for enhancing the computational efficiency
of the system implementing FLHE.

Our method employs client-dropout based on model
quality to manage the computational overhead caused by
the encryption and transmission of models in FLHE.

If the quality of a client model, measured by metrics such as
the AUC, falls below a specified threshold, the client is
excluded from contributing its model to the global model
development. This adaptive strategy not only reduces the com-
putational load on underperforming clients but also optimizes
the allocation of computational resources, ultimately leading to
an improved global model’s accuracy and reliability.

True positive rate

0.0 T

AUC = 0.95

0.0 0.2 0.4

False positive rate

0.6 0.8 1.0

Figure 6. AUC of Dominican Republic under the PE-FLHE method.
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Table 3. Performance of different solutions for predicting STIs risk.

Dominican 0.79 70.1 0.82 73.2 0.79
Dominican Republic 0.83 76.5 0.86 79.6 0.86
India 0.62 60.0 0.63 60.0 0.63
Haiti 0.68 62.3 0.69 63.0 0.68
Guinea 0.78 71.0 0.79 75.1 0.80
Ethiopia 0.82 74.1 0.83 76.1 0.82
Cameroon 0.74 67.5 0.74 70.0 0.74
Angola 0.79 68.9 0.79 713 0.83
Average 0.76  68.8 0.77 71.0 0.77

Comparative analysis was conducted to assess the effi-
cacy of the proposed DTM-FLHE model in STI/HIV risk
prediction alongside the original FLHE, FL, and centralized
data models. The results reveal an AUC of 0.9 and an accur-
acy of 87.2% for the DTM-FLHE model, demonstrating its
efficiency in balancing computational costs without signifi-
cantly compromising predictive accuracy.

The method proposed for PE-FLHE involves the secure
encryption of the model structural weights using a public
key and the subsequent aggregation of the encrypted
client models to form a global model, which is then
shared among clients. This approach allows for the efficient
adaptation of the local model to its specific context, enhan-
cing the overall accuracy of the final FL. model. The results
indicate a significant improvement in model performance,
with an impressive AUC of 0.94 and an accuracy of
90.7%. These results highlight the efficacy of the proposed
approach in achieving higher predictive accuracy, espe-
cially in the challenging task of STI/HIV risk predictions.

Compared to other methods, the PE-FLHE method demon-
strates a superior AUC and accuracy compared to the original
FLHE, FL, and centralized data models. Specifically, it outper-
forms the FL. model with an AUC of 0.91 and the centralized
learning model with an AUC of 0.92, underscoring its effect-
iveness in handling the complexities of the data and improving
predictive capabilities. Additionally, the enhanced accuracy of
the PE-FLHE method surpasses the AUC of 0.9 achieved by
the FLHE-dropout model, reinforcing its superiority in ensur-
ing precise predictions and robust performance.

The proposed method’s capability to adapt to the local
data nuances sets it apart from other approaches, enabling

73.0 0.84 76.1 0.83 76.1 0.81 74.2
80.0 0.87 83.5 0.87 83.0 0.89 83.2
65.0 0.64 60.0 0.62 60.0 0.63 60.0
65.0 0.70  65.1 0.70  65.1 0.71 66.2
76.7 0.80 74.5 0.80 75.1 0.80 74.0
71.5 0.84 77.3 0.81 75.8 0.85 78.3
70.2 0.74  69.1 0.74  70.0 0.76 70.0
70.0 0.78 73.0 0.77 72.0 0.78 73.6
72.2 0.78 723 0.77 721 0.78 72.4

it to capture the intricacies of the Dominican dataset more
effectively. By optimizing the aggregation process and
leveraging the encrypted global model, the PE-FLHE
method effectively balances computational costs while
enhancing the final model’s accuracy. These findings
emphasize the significance of incorporating adaptive strat-
egies within the FLHE framework to achieve higher predict-
ive accuracy, thus demonstrating the method’s potential for
improving healthcare data analysis and risk prediction in
complex scenarios such as STI/HIV assessments.

Limitations of study

Despite employing client dropout strategies to reduce compu-
tational overhead, the encryption and decryption processes
inherent in HE remain computationally intensive. This could
limit the system’s scalability, particularly for clients with
limited computational resources. The proposed method uses
a specified threshold for client dropout based on model
quality metrics such as AUC. However, this process of deter-
mining and dynamically adjusting these thresholds needs to be
experimented with more diversified data.

Conclusion

The study presents an innovative approach that combines
FL and HE for ST/HIV prediction. This system provides
a robust framework for training deep learning models on
decentralized data while ensuring stringent privacy mea-
sures. Additionally, the study outlined a strategy to
enhance model performance evaluated using AUC and




Tang et al.

13

accuracy metrics, which involved a secondary aggregation
at the local level before utilizing the global model for
each client. By employing FL. and homomorphic encryp-
tion, the security of the entire system was effectively main-
tained. Furthermore, we implemented a novel dropout
approach as a viable solution for reducing computational
costs on the client side. This approach involved setting a
threshold for model quality (e.g., AUC) for each client. If
the client’s model falls below the specified threshold,
there is no need to encrypt and transmit it to the server
for aggregation. In addition, we provide a comparative ana-
lysis of different methodologies for constructing deep learn-
ing models in the context of STI/HIV prediction. A
thorough evaluation of the strengths and weaknesses of
each approach serves as a valuable benchmark point for
future applications and research in this research field.

Despite the variations in performance across different
countries, the trend remains clear, which is that our proposed
models consistently provide superior results, demonstrating
their robustness and adaptability in diverse contexts. This
reinforces the potential for advanced FL techniques in
improving the accuracy and reliability of health risk predic-
tions while maintaining stringent security standards.

For future research, exploring advanced techniques to
enhance the privacy preservation mechanisms in FL and
HE is suggested. Investigating the applications of differen-
tial privacy and other state-of-the-art cryptographic proto-
cols could potentially enhance the existing privacy
framework. Moreover, conducting extensive real-world
experiments and validations on larger and more diverse
datasets can help verify the scalability and robustness of
the proposed methodology. Lastly, developing a compre-
hensive framework for incorporating various models and
integrating them seamlessly within the FL context can be
a promising direction for future investigations in this area.
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