

CÔNG TY CỔ PHẦN TRƯỜNG VIỆT

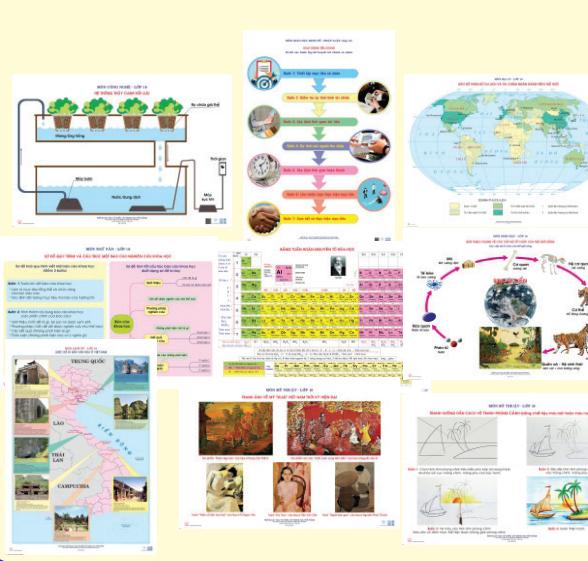
Truongviet joint stock company

TRUONGVIET JSC

Thiết kế, tạo mẫu, chế thử, sản xuất và kinh doanh các trang thiết bị trường học các cấp học theo Thông tư của Bộ Giáo dục & Đào tạo và đồ chơi trẻ em mang tính giáo dục.

- ❖ Xây dựng cơ bản.
- ❖ Cung ứng dịch vụ tin học.
- ❖ Thiết kế, dàn dựng sân khấu, showroom bán hàng, hội chợ, triển lãm, hội nghị, hội thảo, phòng trưng bày, sự kiện, lễ hội.
- ❖ Thiết kế logo, thương hiệu và sản phẩm hàng hoá.
- ❖ Liên doanh, liên kết trên lĩnh vực xuất bản và văn hoá phẩm.
- ❖ Tạo mẫu và sản xuất các sản phẩm đóng gói (bao bì).
- ❖ Xuất nhập khẩu trực tiếp và ủy thác thiết bị và vật tư kỹ thuật.

Mẫu giáo


Tiểu học

Trung học cơ sở

Trung học phổ thông

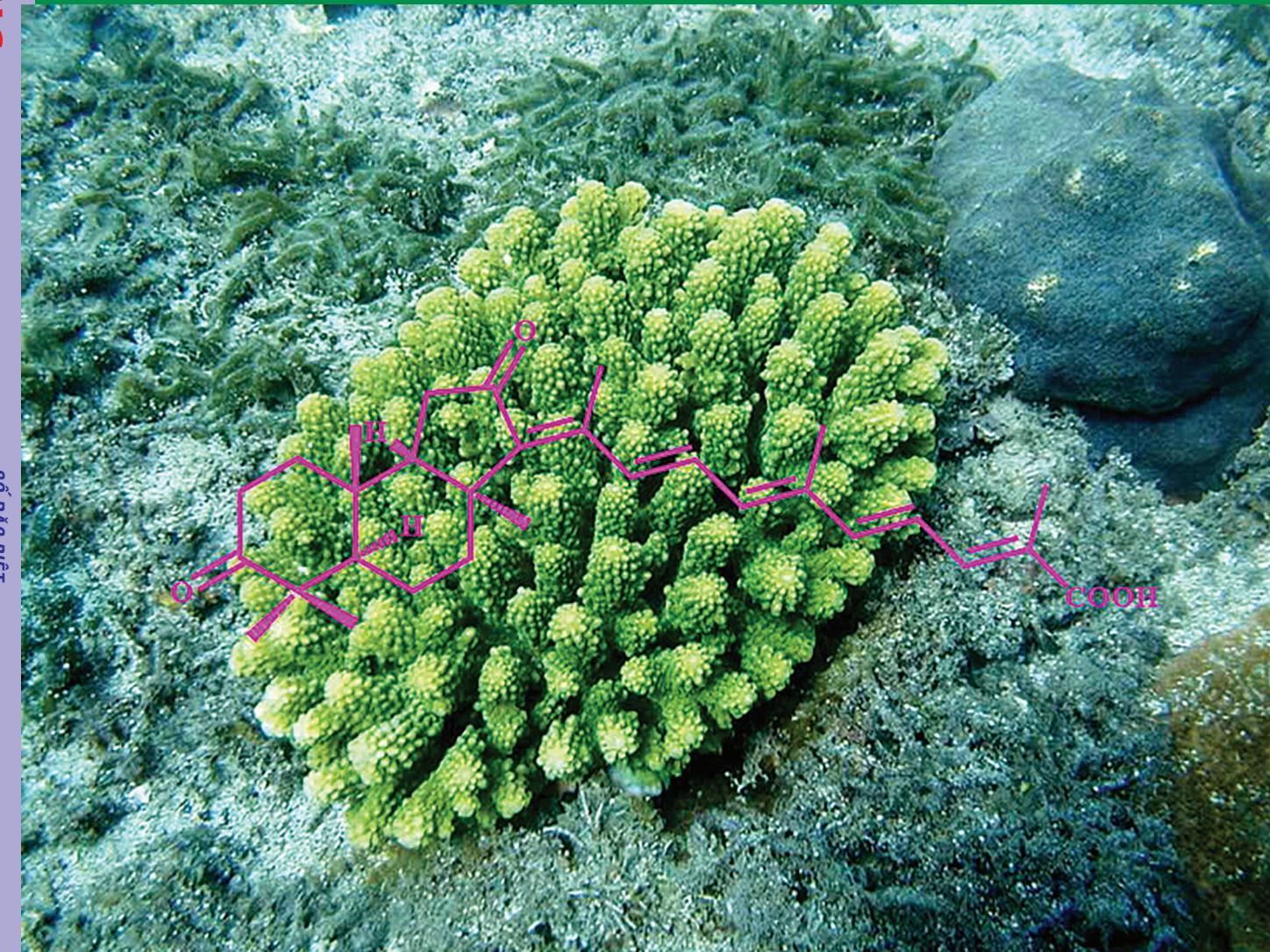
Số 164, Tự Liệt, xã Tam Hiệp, huyện Thanh Trì, Hà Nội.

* Tel/Fax: (024) 62 885 957 * Website: <http://truongvietjsc.com>

* Email: truongvietcp07@gmail.com

TẠP CHÍ HÓA HỌC & ỨNG DỤNG

JOURNAL OF CHEMISTRY AND APPLICATION / TẠP CHÍ CỦA HỘI HÓA HỌC VIỆT NAM - ISSN1859-4069


Số 3B(70B)/5-2024

SỐ ĐẶC BIỆT HỘI NGHỊ HÓA HỌC HỮU CƠ TOÀN QUỐC LẦN THỨ X

(21 - 22/09/2024)

TẠP CHÍ HÓA HỌC & ỨNG DỤNG

HỘI NGHỊ HÓA HỌC HỮU CƠ TOÀN QUỐC LẦN THỨ X (20 - 22/09/2024)

58 Molecular docking and pharmaceutical studies of chromenoimidazocarboline derivatives as VEGFR-2 Kinase Inhibitors
 Dao Thi Nhung, Le Tuan Anh

66 Microwave-assisted three-component synthesis of new pyranonaphthoquinone derivatives
 Nguyen Ha Thanh, Nguyen Tuan Anh, Le Nhat Thuy Giang, Nguyen Thi Quynh Giang, Nguyen Van Ha, Nguyen Thi Nga, Nguyen Thi Hien, Vu Duc Cuong, Dang Thi Tuyet Anh

72 Flavonoids from the aerial parts of *Oligoceras eberhardtii* gagnep. and their cytotoxic evaluation
 Nguyen Thi Binh Yen, Trieu Quy Hung, Pham Van Cuong, Doan Thi Mai Huong, Nguyen Thuy Linh, Tran Van Hieu, Nguyen Manh Hung

79 Palladium catalyzed, quinoline-based directed arylation of C–H bondsng
 Hau C. Le, Danh T. Tran, Nam T. S. Phan, Tung T. Nguyen

84 Study on the preparation of lycopodiella cernua (L.) pic. capsules containing β -sitosterol and naringenin
 Thi Kim Tuyet Nguyen, Thi Thanh Mai Nguyen

89 Evaluating potential inhibitors of HEP-G2 from 14 new hydroxamate derivatives of lupane triterpenoids using molecular docking simulation and admet properties
 Dang Thi Tuyet Anh, Le Nhat Thuy Giang, Nguyen Ha Thanh, Dao Thi Nhung

95 Structure - surface adhesion relationships of *e. coli* fimb proteins and mannosides: A molecular analysis of the main regulators
 Nguyen Ha Thanh, Pham Viet Ha Quang, Nguyen Cam Linh, Pham The Hai

103 Preparation, characterization, and properties of some SiO_2 nanocomposite of polythiophenes containing hydrazone group
 Do Ba Dai, Nguyen Huu Thinh, Le Tien Dat, Le Thanh Nhan, Bui Phuong Thao, Dong Thi Thu Hang, Nguyen Ngoc Linh, Nguyen Thi Hong Nhung, Vu Quoc Manh, Vu Quoc Trung

109 Characterization of acrylic coatings containing poly(triethylammonium 3-thiopheneacetate) polyelectrolyte and nano- SiO_2
 Nguyen Thi Hong Nhung, Nguyen Kim Loan, Vu Quoc Trung, Bui Tuan Anh, Nguyen Ngoc Hai, Vu Viet Bac, Nguyen Ngoc Linh

116 Các hợp chất geranylphenylacetate glycoside và triterpenoid từ cây *Aphananixis polystachya*
 Ngô Anh Bằng, Phạm Hải Yên, Bùi Hữu Tài, Trương Thị Thu Hiền, Phan Văn Kiêm

123 Tổng hợp một số dẫn xuất mới từ madecassic acid có sự biến đổi cấu trúc vòng A
 Trần Văn Lộc, Nguyễn Thế Anh, Trần Văn Chiến, Trần Tuấn Anh, Trần Thị Phương Thảo

129 Tổng hợp một số hợp chất lai coumarin-pyrimidine, coumarin-benzothiazepine đi từ các hợp chất α , β -ketone không no
 Dương Ngọc Toàn, Đinh Thuý Vân, Khouamai Luethor

134 Các hợp chất phenolic và lignan từ loài *Symplocos cochinchinensis*
 Lê Thị Giang, Ninh Khắc Bản, Hoàng Trọng Dân, Nguyễn Thị Thủ Thủ, Vũ Mai Thảo, Nguyễn Thị Mỹ Ninh, Nguyễn Thị Ánh Tuyết, Nguyễn Xuân Nhiệm

139 Nghiên cứu ứng dụng medium chain triglycerides (MCTS) trong công thức son dưỡng nhân sâm
 Bạch Hải Nghi, Vũ Trung Đức, Đào Huy Toàn

149 Nghiên cứu sử dụng phản ứng đa thành phần để tổng hợp các hợp chất dị vòng mới khung dihydronaphthofuran có chứa nguyên tố flo
 Nguyễn Hà Thanh, Hoàng Thị Phương, Đặng Thị Tuyết Anh, Nguyễn Thị Quỳnh Giang, Trần Văn Kết, Vũ Ngọc Doãn, Nguyễn Thị Loan, Vũ Thị Thu Hà, Nguyễn Thị Kim Tuyết, Lê Nhật Thùy Giang

155 Nghiên cứu khả năng kháng oxy hóa và kháng vi sinh vật của cây cam thảo nam (*Scoparia dulcis* Linn)
 Nguyễn Thị Hoài Ngân, Võng Thị Kim Anh, Đỗ Thị Huỳnh Như, Tôn Nữ Liên Hương

160 Tổng hợp và hoạt tính gây độc tế bào ung thư của một số hợp chất từ zerumbone
 Phạm Thế Chính, Phạm Thị Thắm, Hoàng Thị Thanh, Vũ Thị Liên, Vũ Tuấn Kiên, Trần Thị Thu Phương, Phan Thanh Phương, Nguyễn Thị Thảo

166 Haloxit gắn dopa ứng dụng nâng cao khả năng chống cháy và cơ tính của hệ compozit polyetylen
 Hắc Thị Nhung, Nguyễn Hồng Thắm, Nguyễn Linh Chi, Hồ Thị Oanh, Đoàn Tiến Đạt, Nguyễn Đức Tuyển, Trần Quang Hưng, Trần Quang Vinh, Nguyễn Văn Tuyển, Hoàng Mai Hà

173 Nghiên cứu phân lập và đánh giá hoạt tính chống oxy hóa của các flavonoid glycoside từ lá cây bình bát nước (*Annona glabra* L., annonaceae)
 Trần Thị Minh, Đỗ Minh Hiếu, Trần Thị Minh Trang, Dương Hoàng Thúc

178 Nghiên cứu bào chế kem chống nắng với dịch chiết vỏ thanh long ruột đỏ (*Hylocereus costaricensis*)
 Phạm Diệu Linh, Trần Thu Hương, Lê Thị Thùy

183 Hàm lượng, thành phần, hoạt tính kháng vi sinh vật kiểm định và kháng viêm của các lớp chất lipid trong loài rong nâu *Lobophora australis* Z.sun, Gurgel & H.kawai
 Đào Thị Kim Dung, Nguyễn Thị Nga, Đặng Thị Minh Tuyết, Trần Đình Thắng, Idania Rodeiro Guerra, Ivones Hernández Balmaseda, Đoàn Lan Phương

191 Chế tạo hệ hạt nano tổ hợp chứa astaxanthin và curcumin: cải thiện khả năng phân tán, nâng cao tính ổn định và tăng cường hoạt tính chống oxy hóa
 Hồ Thị Oanh, Hắc Thị Nhung, Đoàn Tiến Đạt, Quách Thị Quỳnh, Nguyễn Yên Thanh, Hoàng Mai Hà

197 **Điều chế chất lỏng ion 1,4-diazabicyclo[2.2.2]octan-um sol-gel làm xúc tác trong tổng hợp 4-h-chromene**
*Nguyễn Thái Thê, Nguyễn Tấn Lực, Nguyễn Thị Huyền
Trần, Phan Ngọc Hồng Thúy, Trần Hoàng Phương*

207 **Nghiên cứu chế tạo điện cực dựa trên vật liệu khung hữu cơ kim loại CuBTC và FeBTC ứng dụng trong cảm biến điện hoá phát hiện đồng thời amoxicillin và enrofloxacin với độ nhạy và độ chọn lọc cao**
*Đoàn Tiến Đạt, Phạm Thị Hải Yến,
Nguyễn Thị Kim Ngân, Đoàn Tất Đạt, Trần Quang Hải,
Hắc Thị Nhưng, Hồ Thị Oanh, Nguyễn Đức Tuyền,
Lê Quốc Hùng, Vũ Thị Thu Hà, Lê Thu Thảo,
Hoàng Văn Hùng, Hoàng Mai Hà*

213 **Nghiên cứu tổng hợp hệ dẫn truyền thuốc piga-chitosan giúp cải thiện độ phân tán của diosmin**
*Tôn Anh Khoa, Trần Thị Trà Mi, Huỳnh Thị Kim Chi,
Nguyễn Hoàng Phúc, Nguyễn Thị Cẩm Thu,
Nguyễn Thị Hồng An, Hoàng Thị Kim Dung*

219 **Một số thành phần hóa học và hoạt tính gây độc tế bào ung thư của hợp chất thiophene từ loài *Pluchea indica* ở Việt Nam**
*Vũ Minh Trang, Trần Hoàng Anh,
Phan Minh Giang, Đỗ Thị Việt Hương*

223 **Nghiên cứu chứng cất tinh dầu lá bạc hà (*Mentha arvensis*) thu hái ở tỉnh Quảng Nam và ứng dụng phối chế xà phòng**
*Cao Vân Miên, Nguyễn Đình Bảo Trần,
Nguyễn Thúy Hằng, Nguyễn Hồng Khanh Phương,
Trần Thị Ngọc Bích, Đỗ Thị Thúy Vân*

229 **Nghiên cứu sơ bộ thành phần hóa học loài *Camellia phanii Hakoda & Ninh***
*Hoàng Thị Tuyết Lan, Nguyễn Việt Dũng,
Vũ Thị Xuân, Bùi Thị Mai Anh, Nguyễn Thị Minh Hằng,
Vũ Mai Thảo, Nguyễn Thị Mai*

233 **Các hợp chất triterpene glycoside khung (20s)-dammarane phân lập từ rễ cây Tam thất**
Hoàng Văn Hùng, Lục Quang Tấn

242 **Các hợp chất cis-clerodane furanoditerpenoid từ cây dây ký ninh (*Tinospora crispa*)**
*Nguyễn Văn Quốc, Bùi Hữu Tài, Phạm Hải Yến,
Đan Thị Thuý Hằng, Lê Đức Giang, Phan Văn Kiệm*

248 **Các hợp chất flavonoid phân lập từ lá loài bùm bụp *Mallotus apelta***
*Nguyễn Hoàng Anh, Vũ Kim Thư,
Phạm Thế Chính, Nguyễn Xuân Nhiệm*

253 **Một số hợp chất terpenoid từ loài *Cryptolepis buchananii***
*Nguyễn Đức Duy, Ngô Anh Bằng, Phạm Hải Yến,
Đỗ Thị Trang, Nguyễn Thị Kim Thúy, Nguyễn Thị Cúc,
Nguyễn Xuân Nhiệm, Phan Văn Kiệm,
Ninh Khắc Bản, Bùi Hữu Tài*

260 **Tác dụng kháng viêm của Aurantiamide Acetate từ *Gomphrena Celosioides*: ức chế con đường tín hiệu Mapk trong tế bào Raw264.7**
*Ngô Văn Quang, Đặng Vũ Lương, Hồ Đức Cường,
Đỗ Thị Thanh Xuân, Thành Thị Thu Thủy*

266 **Các dẫn xuất của acid caffeoylquinic từ loài phì diệp biển (*Suaeda maritima* (L.) Dumort.)**
*Bùi Thị Nha Trang, Bùi Hữu Tài,
Bùi Thị Mai Anh, Nguyễn Thị Mai*

271 **Ứng dụng phương pháp phân tích sắc ký lỏng khối phổ phân giải cao LC-HR-QTOF-MS định lượng quer-cetin và kaempferol có trong dược liệu Hoàng Cầm (*Scutellaria baicalensis* georg)**
*Nguyễn Thị Thúy Hằng, Trần Thị Yến,
Nguyễn Thu Uyên, Đỗ Hoàng Giang, Ngô Quốc Anh*

274 **Khảo sát một số yếu tố ảnh hưởng đến quá trình ủ phân hữu cơ với than tro bay từ nhà máy nhiệt điện đốt than chất lượng thấp**
*Hoàng Thị Bích, Phạm Thị Hồng Minh,
Trần Hữu Quang, Đỗ Tiến Lâm, Bùi Thị Thực,
Hoàng Đại Tuấn, Phạm Cao Bách, Nguyễn Văn Trọng,
Nguyễn Trọng Vinh, Nguyễn Trọng Vượng,
Trần Quốc Toàn*

281 **Nghiên cứu carboxymethyl kappa-carrageenan bao bọc lectin từ rong đỏ *Kappaphycus striatus***
*Hoàng Thị Trang Nguyễn,
Lê Đình Hùng, Thành Thị Thu Thủy*

288 **Ba hợp chất flavonoid phân lập từ cỏ biển *Zostera marina* L.**
*Hồ Xuân Thủy, Huỳnh Tiến Thịnh,
Đoàn Lan Phương, Phạm Nguyễn Kim Tuyến,
Lê Đức Giang, Trần Đình Thắng*

CHARACTERIZATION OF ACRYLIC COATINGS CONTAINING POLY(TRIETHYLMONIUM 3-THIOPHENEACETATE) POLYELECTROLYTE AND NANO-SI_O₂

NGUYEN THI HONG NHUNG¹, NGUYEN KIM LOAN², VU QUOC TRUNG³,
BUI TUAN ANH³, NGUYEN NGOC HAI³, VU VIET BAC⁴, NGUYEN NGOC LINH^{1*}

1. Faculty of Pharmacy, Thanh Do University

2. Thanh Thuy High School

3. Faculty of Chemistry, Hanoi National University of Education

4. Hung Vuong High School for the Gifted

* Email: nnlinh@thanhdouni.edu.vn

SUMMARY:

The fabrication of acrylic coatings containing polythiophene-based conjugated polyelectrolyte and nano-SiO₂, using oxidative coupling polymerization to create the water-soluble polyelectrolyte triethylammonium poly(3-thiophene acetate), was successful. The chemical structure, morphology, and mechanical properties of acrylic/polythiophene/nano-SiO₂ coatings were characterized by Fourier Transform Infrared (FT-IR) spectroscopy, Field emission scanning electron microscope (FESEM), and measurements including abrasion resistance, gloss, and pencil hardness. The results indicated that adding polythiophene and nano-SiO₂ as reinforcing additives improved the mechanical properties of the acrylic coating. The acrylic coating with the nano-SiO₂ and polythiophene content of 2wt% and 2wt% achieved optimal properties in gloss, pencil hardness, and abrasion resistance results. The abrasion resistance of the coating was 346.4l/mil, and the gloss was 121.6 GU.

Keywords: Nano-SiO₂, polythiophene, polyelectrolyte, acrylic coating, abrasion resistance.

I. INTRODUCTION

In recent years, the development of organic paints and coatings has grown significantly due to the rising need for sustainability and aesthetics in buildings. The current problems in this area are the production of coatings with good mechanical properties, including hardness, gloss, weather resistance, and improvement of the material's surface qualities under environmental conditions. Acrylic resin coating, with its high adhesion strength, color stability enhancement, and weather resistance, is extensively employed[1-3]. Research has indicated that adding photo stabilizers, modified nanocomposite particles, or additives such as plasticizers, adhesives, and crosslinkers can improve these characteristics of acrylic coatings [4-6].

Currently, scientists and industry have paid particular attention to nanotechnology[7-9]. Among the used

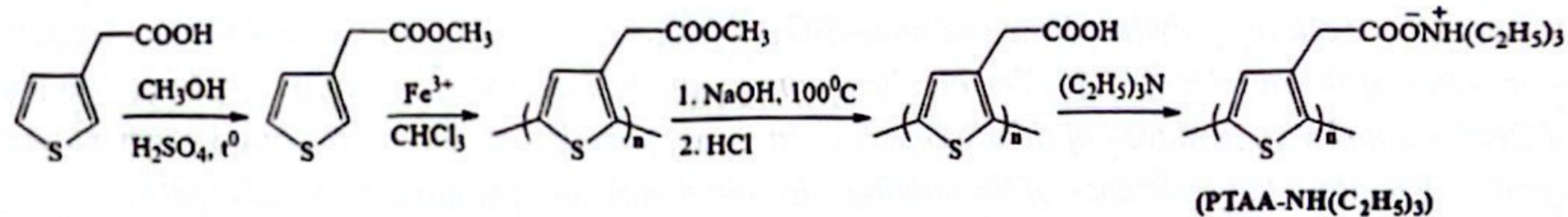
nano-particles, nano-SiO₂ is studied and utilized in numerous high-tech manufacturing industries, such as drug carriers, corrosion inhibitors, antibacterial agents, or nanomaterials to reinforce polymer-based materials[10-13]. Incorporating nano-SiO₂ into the coating can provide it with novel, desirable properties while enhancing its mechanical, thermal, and anti-corrosion qualities. Additionally, using silane-grafted nano-SiO₂ or polymer-grafted nano-SiO₂ can improve the dispersion and compatibility of nano-SiO₂ in a polymer matrix[14-18]. For example, the grafting of poly(ethylene oxide) onto nano-silica has demonstrated enhanced dispersibility and adhesion of nano-SiO₂ in polyurethane coatings[19]. Upon adding nano-SiO₂ modified with some polythiophene to waterborne acrylic coatings, the UV absorption intensity and other mechanical

characteristics, including abrasion resistance, pencil hardness, and gloss, were improved[14]. This research highlights that using nano-silica and polythiophenes as additives can enhance the characteristics of acrylic coatings. In particular, water-soluble polythiophene derivatives or polyelectrolyte polythiophene are of special significance among CPEs due to a unique combination of good environmental stability, conductivity, and versatility of substituted π -conjugated backbone in various technical applications[20-22].

In our studies, nano-SiO₂ and polyelectrolyte polythiophene as reinforcing additives were added to acrylic coatings, aiming to enhance the mechanical characteristics of coatings. Polyelectrolyte polythiophene was synthesized from poly(3-thiophene acetic acid) using an oxidative coupling polymerization reaction with FeCl₃ catalyst. The influence of nano-SiO₂ content on the mechanical characteristics of acrylic/polythiophene/nano-SiO₂ coatings, including gloss, pencil hardness, and abrasion resistance of coatings, were investigated.

II. EXPERIMENTAL

2.1. Chemicals


2-(Thiophen-3-yl)acetic acid, anhydrous iron (III) chloride (98%), triethylamine, sulfuric acid (98%), hydrochloric acid (37%), sodium hydroxide, methanol, and chloroform (all obtained from Merck), and nano-SiO₂ (from rice husk ash, ~50-200nm) were directly used as purchased.

Acrylic emulsion resin Plextol R 4152, which has a total solids content of 50%, pH of 7-8.5, a viscosity of 500-

3,000cps, and particle size of 0.13 μ m, was purchased from Synthomer Company, USA.

2.2. Fabrication of acrylic R4152 coatings containing poly(triethylammonium 3-thiopheneacetate) polyelectrolyte and nano-SiO₂

2.2.1. Synthesis of poly(triethylammonium 3-thiopheneacetate) polyelectrolyte PTAA-NH(C₂H₅)₃

Scheme 1. The synthesis of poly(triethylammonium 3-thiopheneacetate) polyelectrolyte

The synthesis of poly(triethylammonium 3-thiopheneacetate) polyelectrolyte (PTAA-NH(C₂H₅)₃) was reported in our previous study[23].

2.2.2. Fabrication of acrylic coatings containing PTAA-NH(C₂H₅)₃ and nano-SiO₂

0.1g of PTAA-NH(C₂H₅)₃ was dissolved in 1ml of deionized water by TPC-15H Ultrasonic Bath Equipment with a capacity of 450W and a vibration frequency of 20kHz. This step was carried out for 120 minutes to ensure good dispersion of polyelectrolyte particles in water. After that, nano-SiO₂ and 10g of acrylic 4,152 resin were added to the mixture. The newly obtained mixture was further ultrasonically vibrated for 120 minutes and magnetic stirred for 2 hours with an IKA RW16 stirrer at 400rpm speed to disperse the nanoparticles evenly in the acrylic resin mixture. The mass compositions of the acrylic/polythiophene/nano-SiO₂ coatings (APS0.5, APS1, APS2, and APS4) are displayed in Table 1.

Table 1: Composition of acrylic coatings containing PTAA-NH(C₂H₅)₃ and nano-SiO₂

No.	Sample symbol	SiO ₂ (g)	PTAA-NH(C ₂ H ₅) ₃ (g)	H ₂ O (ml)	Acrylic R4152 (g)
1	A0	-	-	1.0	10
2	AP0	-	0.1	1.0	10
3	APS0.5	0.025	0.1	1.0	10
4	APS1	0.050	0.1	1.0	10
5	APS2	0.100	0.1	1.0	10
6	APS4	0.200	0.1	1.0	10

Coating A0 and AP0 were prepared using the same method to serve as a control sample.

The samples were created with a wet film thickness of 120 μ m using an Erichsen Film Applicator (model 360) on glass and concrete (equivalent to a dry film thickness

of $30 \pm 2 \mu\text{m}$). Before determining the characteristics and properties of the coating, the coating samples were allowed to dry for seven days under standard conditions. They were kept at standard temperatures of 25°C and 60% relative humidity for 24 hours before testing.

2.3. Devices and methods

FT-IR spectroscopy

FT-IR spectroscopy was investigated using a Nexus 670 ThermoNicolet Fourier Transform Infrared Spectrometer from Nicolet. The spectrum was scanned in the $4,000\text{--}400\text{cm}^{-1}$ range with a resolution of 8cm^{-1} , and the number of scans was 32 times.

Thermal stability

Thermo-gravimetry experiments were performed using a TGA-50 Shimadzu Thermal Analysis Instruments (Japan). The samples were heated from room temperature to 600°C at a rate of $10^\circ\text{C}/\text{min}$ with a flow rate of $50\text{cm}^3/\text{min}$.

Morphology

Structural morphology of the coatings was analyzed in a Hitachi S-4800 SEM instrument (Japan).

Abrasion resistance

Following ASTM D968-15 standard, the Falling Sand Abrasion TesterTM was used to evaluate the abrasion resistance of the coating by measuring the surface degradation when the paint film was under the falling sand force at a predefined height of 0.914 meters. Furthermore, the paint film thickness was deducted as the mean from 3 measures using the ElektroPhysik Minitest 600.

Gloss measurement

Erichsen Picogloss (model 503) was used to test the gloss at 60° angle of the formula coatings after an accelerated aging process according to ISO 2813:2014. The ratio of the aged coating's gloss to that of the original coating was used to calculate the gloss retention.

Pencil hardness

This technique assessed the hardness and scratch resistance of the film according to the ASTM D 3363 standard. The graphite scale ranged from 6B to 8H, the pencil tip was subjected to 500g of pressure, and the angle between the pencil and measuring surface was 45 degrees.

III. RESULTS AND DISCUSSION

3.1. Morphology of acrylic coatings containing PTAA-NH(C₂H₅)₃ and nano-SiO₂

The results show a relatively even distribution of the polythiophene and nano-SiO₂ particles throughout the polymer matrix (Figure 1). When adding polythiophene coating with 0.5wt%, 1 wt%, and 2wt% nano-SiO₂ (APS0.5, APS1, and APS2), all paint films have identical morphology. The nanoparticles are well-dispersed in the

polymer matrix, with only a few small clumps. However, when 4wt% of nano-SiO₂ particles are added to the APS4 coating, the SiO₂ nanoparticles tend to aggregate considerably, forming particle clusters that are tens of nm in size and leading to defective areas in the paint films.

Therefore, it is clear that the ideal outcomes are obtained with 1-2 wt% nano-SiO₂ particles and 2wt% polythiophene polyelectrolyte particles distributed throughout the acrylic resin system.

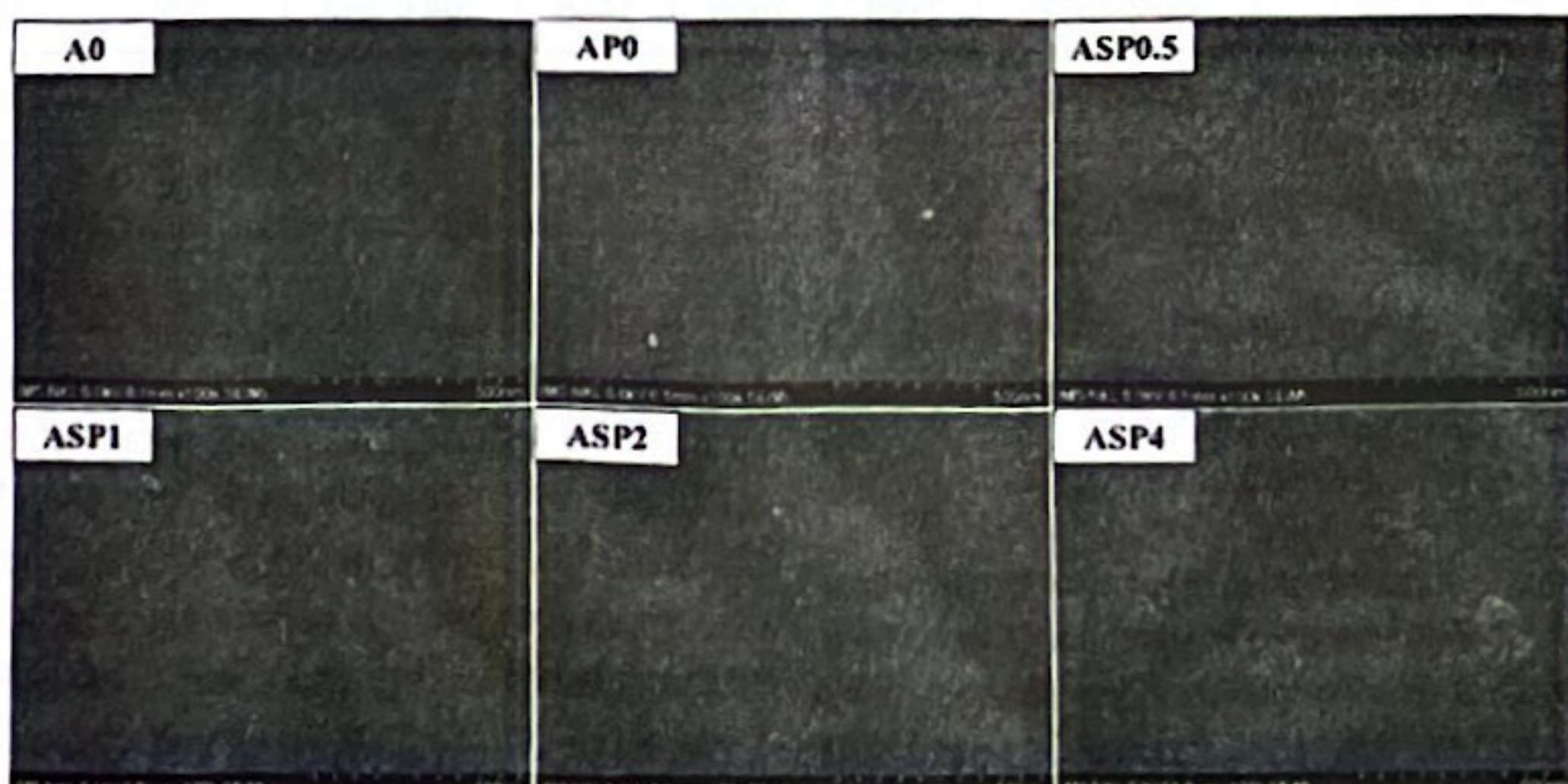


Figure 1. FE-SEM images of acrylic/ poly(triethylammonium 3-thiopheneacetate) polyelectrolyte/nano-SiO₂, coatings

3.2. FT-IR spectra of acrylic coatings containing PTAA-NH(C₂H₅)₃ and nano-SiO₂

Based on the IR spectra of all acrylic/poly(triethylammonium 3-thiopheneacetate) polyelectrolyte/nano-SiO₂ coatings (Figure 2) and some major vibrations of acrylic/polythiophene/nano-SiO₂ coatings (Table 2), it can be seen that the absorption spectra at 1,098cm⁻¹ and 808cm⁻¹ corresponding to the asymmetric and symmetric vibrations of the Si-O group in nano-SiO₂, respectively[24]. In the coating containing polyelectrolyte and acrylate systems, there are characteristic peaks for the vibration of the -C=O ester group at around 1,745–1,722cm⁻¹ and the vibration of the -CH sp³ group at around 2,946cm⁻¹. In addition, a strong blunt band at around 3,500cm⁻¹ characterizes the valence vibrations of -OH bonds of hydroxyl groups on the SiO₂ surface and -NH bond of the side group in polyelectrolyte. The characteristic band for the deformation vibration of the C-S bond of the thiophene ring is covered by the characteristic vibrational region of acrylate. The bands in the 1,400-1,100cm⁻¹ region of the bending mode of the C-C-O and C-C=O bonds belong to esters in the backbone chain[25].

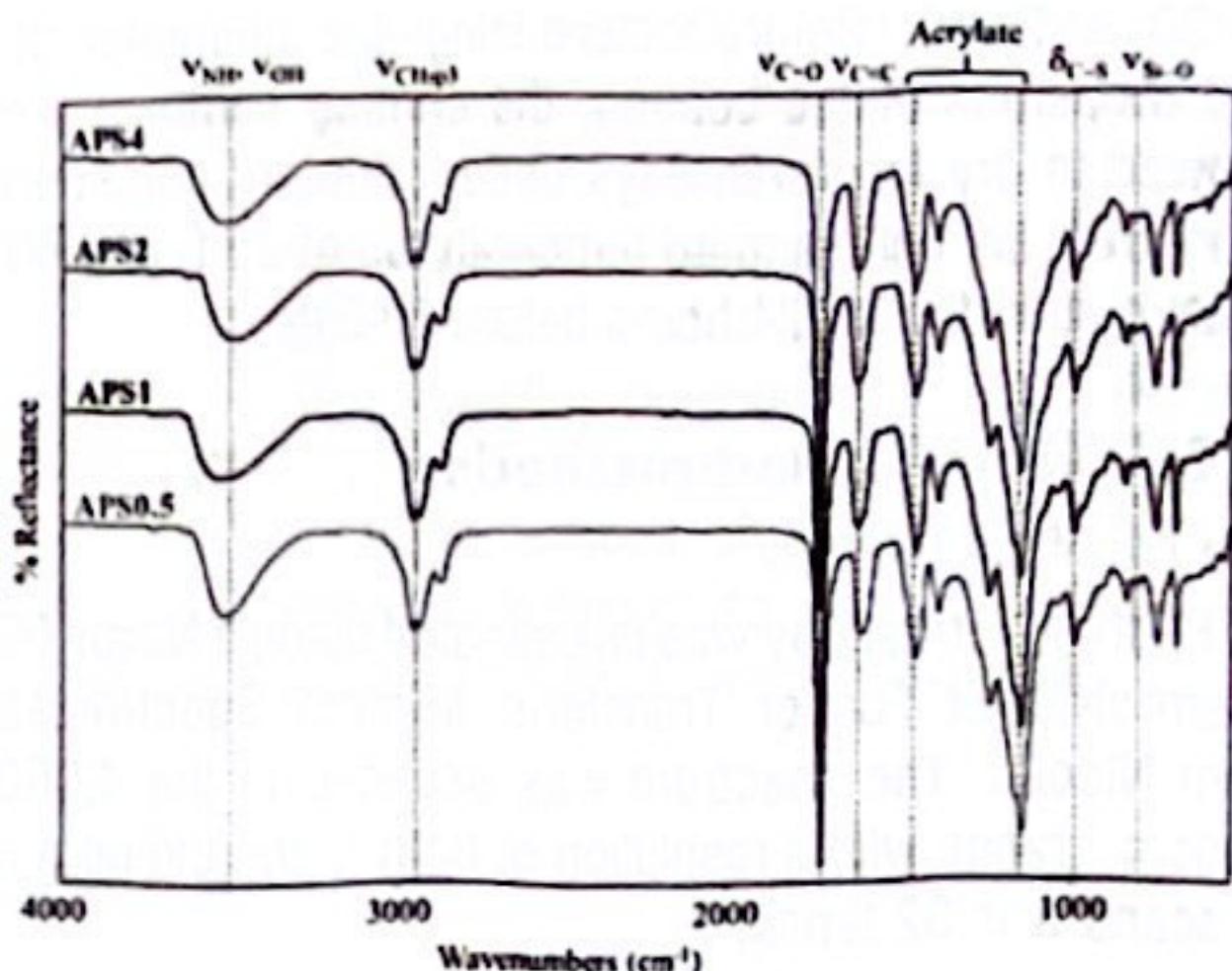
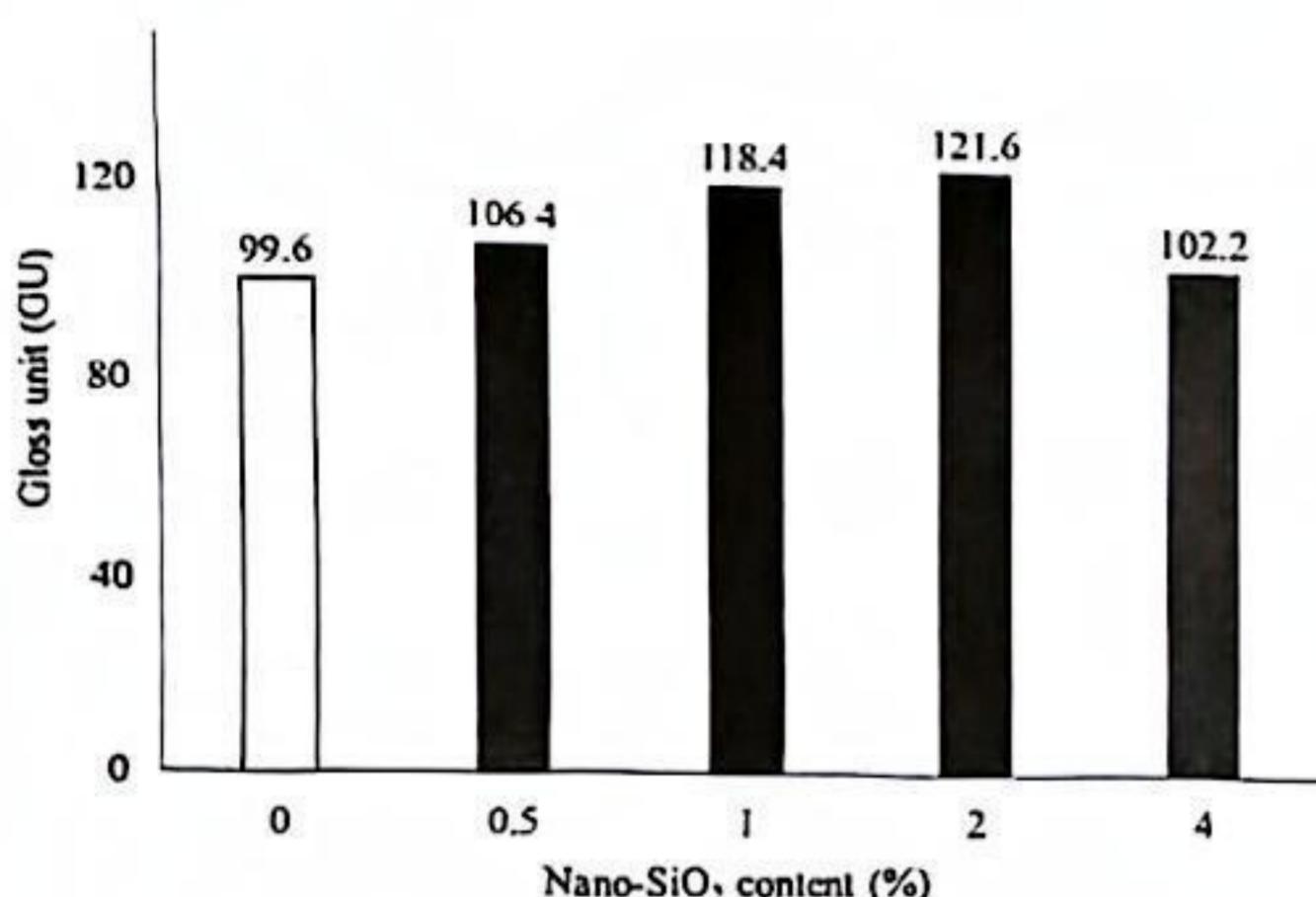


Figure 2. FT-IR spectra of acrylic/poly(triethylammonium 3-thiopheneacetate) polyelectrolyte/nano-SiO₂ coatings

Theoretically, the distinctive spectral bands for acrylate group bonds at 1,635cm⁻¹ and 982cm⁻¹ will almost disappear during the production of the acrylic/poly(triethylammonium 3-thiopheneacetate) polyelectrolyte/nano-SiO₂ paint system, indicating that these groups have taken part in the bonding process. The spectral bands at this point, however, continue to occur because they represent the deformation vibration of the C-S bond in polyelectrolyte PTAA-NH(C₂H₅)₃ and the vibration of the conjugated system C=C-C=C, respectively.

Table 2: Some major vibrations in IR spectrum (cm⁻¹) of acrylic/poly(triethylammonium 3-thiopheneacetate) polyelectrolyte/nano-SiO₂ coatings


Coating	ν _{N-H} , ν _{O-H}	ν _{-CH sp³}	ν _{C=O}	ν _{C=C}	ν _{C-C}	δ _{C-S}	ν _{Si-O}	Acrylate
APS0.5	3511	2949-2922	1728	1604	1448	1040; 989	809	1400-1100
APS1	3509	2952-2922	1729	1608	1448	1043; 983	809	1400-1100
APS2	3496	2946-2922	1722	1610	1445	985	810	1400-1100
APS4	3515	2952-2925	1745	1604	1445	986	809	1400-1100

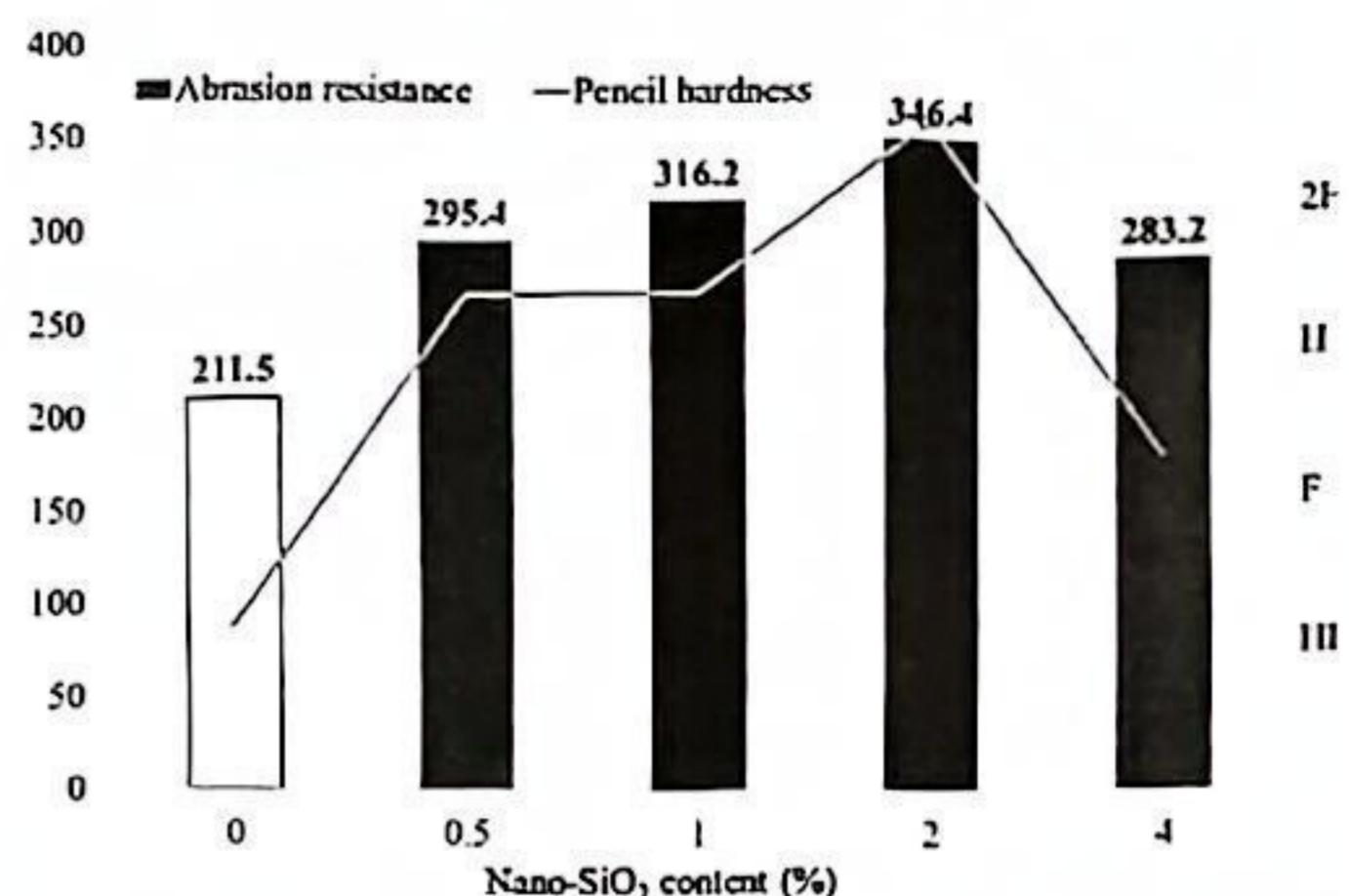
3.3. Mechanical properties of acrylic coatings containing PTAA-NH(C₂H₅)₃ and nano-SiO₂

3.3.1. The gloss

Gloss is one of the necessary properties of the paint film surface. Figure 3 illustrates how the content of nano-SiO₂ affects the gloss of acrylic/polythiophene polyelectrolyte coatings. The control film A0 without SiO₂ and PTAA-NH(C₂H₅)₃ has the lowest gloss measured at 92.2 GU. The gloss of the paint film is enhanced with the presence

of PTAA-NH(C₂H₅)₃ (AP0), or both PTAA-NH(C₂H₅)₃ and nano-SiO₂ (APS0.5, APS1, APS2 and APS4). The paint film with the highest gloss result, measured at 121.6 GU, is APS0.5, which contains 2wt% nano-SiO₂. When nano-SiO₂ particles are in the 0.5–1 wt% range, they can fill the defect area and cover the surface of the coating. However, as the concentration of nano-SiO₂ particles increases to 4wt%, more surface flaws develop because of the excess nano-SiO₂, leading to a decrease in the gloss of the coating in the sample APS4.

Figure 3. Influence of nano-SiO₂ content on the gloss of acrylic/poly(triethylammonium 3-thiopheneacetate) polyelectrolyte coatings


3.3.2. Abrasion resistance and pencil hardness

The influence of nano-SiO₂ content on the abrasion resistance and pencil hardness of acrylic/polythiophene coatings are presented in Figure 4 and Table 3.

Firstly, the mechanical properties of the coating are improved by the presence of nano-SiO₂ particles, and the results of pencil hardness and abrasion resistance are proportionate. These results reveal that the ideal relative hardness and pencil hardness values, or 346.4 l/mil and 2H, respectively, are found in the APS2 sample that contains 2wt% nano-SiO₂, whereas the control sample A0 exhibits the lower values of 91.4 l/mil and HB.

Secondly, the nano-SiO₂ content added to the coating in the range of 0.5wt% to 2wt% is proportionate to the abrasion resistance and pencil hardness values. Nevertheless, the abrasion resistance value of the APS4 sample drops to a value that is even lower than that of the APS0.5 sample, which contains 0.5% nano-SiO₂ content, when the silica concentration grows to 4wt%. This is because an excessive concentration of nano-SiO₂ can cause the agglomeration, resulting in uneven distribution of the particles throughout the sample and reducing the compactness of the material.

Third, the results of abrasion resistance and pencil hardness values of the coatings are also consistent with the FE-SEM image (Figure 1) and gloss (Figure 3) results.

Figure 4. Influence of nano-SiO₂ content on the abrasion resistance and pencil hardness of acrylic/poly(triethylammonium 3-thiopheneacetate) polyelectrolyte coatings

Table 3: Effect of nano-SiO₂ on mechanical properties of acrylic/poly(triethylammonium 3-thiopheneacetate) polyelectrolyte coatings

No.	Mechanical characteristics	Content of nano-SiO ₂ , %				
		0	0.5	1	2	4
1	The gloss, GU	99.6	106.4	118.4	121.6	102.2
2	Pencil hardness	HB	H	H	2H	F
3	Abrasion resistance, L/mil	211.5	295.4	316.2	346.4	283.2

IV. CONCLUSION

Poly(triethylammonium 3-thiopheneacetate) polyelectrolyte (PTAA-NH(C₂H₅)₃) was synthesized from poly(3-thiophene acetic acid) using oxidative coupling polymerization reaction with FeCl₃ catalyst. Based on the highest water solubility, the polyelectrolyte was used as a reinforcing additive to improve the properties of acrylic coatings. Furthermore, the impact of nano-SiO₂ content on the mechanical properties of acrylic coatings that incorporate PTAA-NH(C₂H₅)₃ was investigated. The dispersion of polythiophene polyelectrolyte and nano-SiO₂ particles in the acrylic resin matrix was satisfactory, with 2wt% of each material for optimal outcomes. In addition, the presence of SiO₂ nanoparticles and polyelectrolyte polythiophene significantly improved the morphology, gloss, pencil hardness, and abrasion resistance of the acrylic coatings, with the best results achieved from the sample containing 2wt% both SiO₂ nanoparticles and polythiophene. In particular, at this content of poly(triethylammonium

3-thiopheneacetate) polyelectrolyte and nano-SiO₂, the abrasion resistance and gloss of the coating APS2, respectively, were 346.4 l/mil and 121.6 GU.

REFERENCES

- [1]. B. Du, F. Chen, R. Luo, S. Zhou and Z. Wu. *Synthesis and Characterization of Nano-TiO₂/SiO₂-Acrylic Composite Resin*, Advances in Materials Science and Engineering, 2019, 2019(1), 7 pages.
- [2]. S. Muradova, E.-S. Negim, A. Makhmetova, D. Ainakulova and N. M. I. Mohamad. *An Overview of the Current State and the Advantages of using acrylic resins as anticorrosive coatings*, Kompleksnoe Ispolzovanie Mineralnogo Syra = Complex use of mineral resources, 2023, 32 (4), 90-98.
- [3]. M. L. Nobel, E. Mendes and S. J. Picken. *Enhanced properties of innovative laponite-filled waterborne acrylic resin dispersions*, Journal of Applied Polymer Science, 2007, 103 (2), 687-697.
- [4]. C.-A. Xu, Z. Qu, H. Meng, B. Chen, X. Wu, X. Cui, K. Wang, K. Wu, J. Shi and M. Lu. *Effect of polydopamine-modified multi-walled carbon nanotubes on the thermal stability and conductivity of UV-curable polyurethane/polysiloxane pressure-sensitive adhesives*, Polymer, 2021, 223, 11 pages.
- [5]. T. X. H. To, T. D. Ngo, A. T. Trinh, T. D. Nguyen, V. T. Bui, G. V. Pham, H. Thai, T. M. T. Dinh and M.-G. Olivier. *Effect of silane modified nano ZnO on UV degradation of polyurethane coatings*, Progress in Organic Coatings, 2015, 79, 68-74.
- [6]. B. Pang, C.-M. Ryu, X. Jin and H.-I. Kim. *Preparation and properties of UV curable acrylic PSA by vinyl bonded graphene oxide*, Applied Surface Science, 2013, 285, 727-731.
- [7]. T. V. Nguyen, P. H. Dao, K. L. Duong, Q. H. Duong, Q. T. Vu, A. H. Nguyen, V. P. Mac and T. L. Le. *Effect of R-TiO₂ and ZnO nanoparticles on the UV-shielding efficiency of water-borne acrylic coating*, Progress in Organic Coatings, 2017, 110, 114-121.
- [8]. D. Chaudhari, T. Patil, P. Raichurkar and A. Daberao. *Review on Nanotechnology & Its Application in Coating Industry*, International Journal of Scientific and Engineering Research, 2018, 09, 13 pages.
- [9]. H. Boostani and S. Modirrousta. *Review of Nanocoatings for Building Application*, Procedia Engineering, 2016, 145, 1541-1548.
- [10]. N. L. Nguyen, T. M. L. Dang, T. A. Nguyen, H. T. Ha and T. V. Nguyen. *Study on Microstructure and Properties of the UV Curing Acrylic Epoxy/SiO₂ Nanocomposite Coating*, Journal of Nanomaterials, 2021, 2021(1), 9 pages.
- [11]. S. Mallakpour and M. Naghdi. *Polymer/SiO₂ nanocomposites: Production and applications*, Progress in Materials Science, 2018, 97, 409-447.
- [12]. O. Afzal, A. S. A. Altamimi, M. S. Nadeem, S. I. Alzarea, W. H. Almalki, A. Tariq, B. Mubeen, B. N. Murtaza, S. Iftikhar, N. Riaz and I. Kazmi. *Nanoparticles in Drug Delivery: From History to Therapeutic Applications*, Nanomaterials (Basel), 2022, 12(24), 27 pages.
- [13]. H. Kirla, D. J. Henry, S. Jansen, P. L. Thompson and J. Hamzah. *Use of Silica Nanoparticles for Drug Delivery in Cardiovascular Disease*, Clin Ther, 2023, 45(11), 1060-1068.
- [14]. D. T. T. Nguyen, D. B. Do, T. H. Nguyen, C. T. Nguyen, T. X. Nguyen, H. P. Dao, H. Thai, L. N. Nguyen, M. Q. Vu and T. Q. Vu. *Effect of silica nanocomposite modified with some polythiophene derivations on characteristics and properties of waterborne acrylic coatings*, Journal of Coatings Technology and Research, 2024.
- [15]. X. Gong and S. He. *Highly Durable Superhydrophobic Polydimethylsiloxane/Silica Nanocomposite Surfaces with Good Self-Cleaning Ability*, ACS Omega, 2020, 5(8), 4100-4108.
- [16]. X. Lv, J. Wang, Y. Guo and Y. Guo. *Preparation of UV-curable nano-SiO₂/acrylate coatings modified by P-containing LEPB and their applications on plywood*, Journal of Coatings Technology and Research, 2023, 20(6), 2031-2044.
- [17]. T. Nguyen, T. A. Nguyen and H. Nguyen. *The Synergistic Effects of SiO₂ Nanoparticles and Organic Photostabilizers for Enhanced Weathering Resistance of Acrylic Polyurethane Coating*, Journal of Composites Science, 2020, 4, 11 pages.
- [18]. S. Zhou, L. Wu, J. Sun and W. Shen. *The change of the properties of acrylic-based polyurethane via addition of nano-silica*, Progress in Organic Coatings, 2002, 45(1), 33-42.

[19]. B. Lin and S. Zhou. *Poly(ethylene glycol)-grafted silica nanoparticles for highly hydrophilic acrylic-based polyurethane coatings*, Progress in Organic Coatings, 2017, 106, 145-154.

[20]. F. Wang, M. Li, B. Wang, J. Zhang, Y. Cheng, L. Liu, F. Lv and S. Wang. *Synthesis and characterization of water-soluble polythiophene derivatives for cell imaging*, Sci Rep, 2015, 5, 8 pages.

[21]. Q. T. Vu, N. L. Nguyen, B. D. Do, C. T. Pham, H. H. Nguyen and M. L. Van. *Crystal structure and Hirshfield surface analysis of 4-phenyl-3-(thiophen-3-ylmethyl)-1H-1,2,4-triazole-5(4H)-thione*, Acta Crystallographica Section E Crystallographic Communications, 2018, 74, 812-815.

[22]. L. Wang, G. Zhang, M. Pei, L. Hu, E. Li and H. Li. *A novel water-soluble polythiophene derivatives based fluorescence "turn-on" method for protein determination*, Journal of Applied Polymer Science, 2013, 130(2), 939-943.

[23]. N. L. Nguyen, M. T. Tran, K. L. Duong, T. H. Vu, M. H. Ha, T. Y. O. Doan and Q. T. Vu. *Synthesis and characterization of poly(3-thiophene acetic acid) upon binding by cationic groups*, Vietnam Journal of Chemistry, 2021, 59(6), 902-909.

[24]. E. Rafiee1, S. Shahebrahimi, M. Feyz1 and M. Shaterzadeh. *Optimization of synthesis and characterization of nanosilica produced from rice husk (a common waste material)*, International Nano Letters, 2012, 2(29), 8 pages.

[25]. A. M. B. Mahfooz and M. R. Alammari. *The Use of Fourier Transform Infra-Red (FTIR) Spectroscopic Analysis and Cell Viability Assay to Assess Pre-polymerized CAD\CAM Acrylic Resin Denture Base Materials*. Int. J. Pharm. Res. Allied Sci., 2018, 7(2), 111-118.❖

TẠP CHÍ CỦA HỘI HÓA HỌC VIỆT NAM

HỘI ĐỒNG BIÊN TẬP

NGÔ QUỐC ANH, NGUYỄN CƯỜNG,
TRẦN THÀNH HUẾ, CHÂU VĂN MINH,
ĐẶNG VŨ MINH, TRẦN TRUNG NINH,
NGÔ ĐẠI QUANG, NGUYỄN ĐẶNG QUANG,
HỒ SĨ THOẢNG, NGUYỄN XUÂN TRƯỜNG,
VŨ VĂN TÂN

Phó Tổng Biên tập/Phụ trách Tổng Biên tập:
NGUYỄN HỮU ĐỨC

Thư ký tòa soạn:
LƯU THÚY HIỀN

Trình bày:
LÊ THANH HẢI

Tòa soạn:
164 đường Tự Liệt
xã Tam Hiệp, huyện Thanh Trì, Hà Nội
ĐT: (024) 62885957 - 0983 602 553
Email: tapchihoahocvaungdung@gmail.com
Tài khoản: 002704060000831
Ngân hàng Quốc tế-VIB, số 5, Lê Thánh Tông, Hà Nội.

Giấy phép xuất bản:
Số 319/GP-BTTTT
Bộ Thông tin và Truyền thông
cấp ngày 14/6/2016

In tại Công ty THNH in ấn Đa Sắc
13 Ngọc Mạch - Xuân Phương
quận Nam Từ Liêm - Hà Nội

* Tạp chí xuất bản hàng quý,
phát hành vào các tháng 3, 6, 9 và 12.

Giá: 200.000 đồng

Trong số này:

3B(71)/9-2024

3 Design and synthesis of some novel amino acid derivatives containing benzo[*d*]thiazole

Nguyen Duc Du, Nguyen Van Dat, Nguyen Thi Ngoc Mai, Ngo Lan Anh, Do Quynh Anh, Nguyen Thu Phuong, Bach Ngoc Lan, Pham Huu Dien, Duong Quoc Hoan

12 Flavonoids from *Combretum trifoliatum*

Nguyen Cong Thai Son, Le My Lam Thuyen, Pham Nguyen Kim Tuyen, Huynh Bui Linh Chi, Phan Nhat Minh, Nguyen Diep Xuan Ky, Bui Trong Dat, Huynh Thi Kim Chi, Mai Dinh Tri, Dang Van Son, Nguyen Kim Phi Phung, Nguyen Tan Phat

17 Glycosides from *Combretum trifoliatum*

Nguyen Cong Thai Son, Nguyen The Anh, Nguyen Long Nguyen, Thong Ngoc Lan Anh, Phan Nhat Minh, Nguyen Diep Xuan Ky, Bui Trong Dat, Huynh Thi Kim Chi, Mai Dinh Tri, Ngo Trong Nghia, Dang Van Son, Nguyen Kim Phi Phung, Nguyen Tan Phat

23 Release of lovastatin drug from poly(lactic acid) biomaterial

Nguyen Thi Bich Viet, Vu Quoc Manh, Tran Thi Kieu Giang, Doan Thi Yen, Vu Thi Thuong, Ha Manh Hung, Nguyen Dang Dat, Vu Quoc Trung, Nguyen Ngoc Linh

31 Study on the effect of N/P ratio and cultivation conditions on biomass growth and phycocyanin production of cyanobacterium *Oscillatoria* sp. LBI OCTO

Dang Thi Mai, Bui Thi Thu Uyen, Ba Thi Duong, Nguyen Thi Phuong Dung, Luu Thi Thu Ha, Do Thi Cam Van, Nguyen Thi Thu Phuong, Tran Dang Thuan

42 Three 3-benzylphthalide compounds isolated from the Moss *Erythrodontium julaceum* Paris

Nguyen Ngoc Khanh Van, Pham Nguyen Kim Tuyen

47 Copper-promoted directed amination of c-h bonds in benzamides to access 2-arylquinazolin-4(3h)-ones

Thanh T. V. Le, Ha T. T. Nguyen, Nam T. S. Phan, Tung T. Nguyen

52 Total phenolic and flavonoid contents, and antioxidant capacity of Vietnamese *Curcuma Aromatica* Salisb

Bui Mai Hoa, Le Thi Minh Thuy, Le Thi Huyen