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deeply-fused nets electricity demand prediction model that factors in the climate-based predictors for enhanced
accuracy and energy market insight analysis, generating point-based and confidence interval predictions
of daily electricity demand. The proposed hybrid approach is built using Deeply Fused Nets (FNET) that
comprises of Convolutional Neural Network (CNN) and Bidirectional Long-Short Term Memory (BILSTM)
Network with residual connection. The study then contributes to a new deep fusion model that integrates
intermediate representations of the base networks (fused output being the input of the remaining part of each
base network) to perform these combinations deeply over several intermediate representations to enhance the
demand predictions. The results are evaluated with statistical metrics and graphical representations of predicted
and observed electricity demand, benchmarked with standalone models i.e., BILSTM, LSTMCNN, deep neural
network, multi-layer perceptron, multivariate adaptive regression spline, kernel ridge regression and Gaussian
process of regression. The end part of the proposed FNET model applies residual bootstrapping where final
residuals are computed from predicted and observed demand to generate the 95% prediction intervals, analysed
using probabilistic metrics to quantify the uncertainty associated with FNETS objective model. To enhance the
FNET model’s transparency, the SHapley Additive explanation (SHAP) method has been applied to elucidate the
relationships between electricity demand and climate-based predictor variables. The suggested model analysis
reveals that the preceding hour’s electricity demand and evapotranspiration were the most influential factors
that positively impacting current electricity demand. These findings underscore the FNET model’s capacity to
yield accurate and insightful predictions, advocating its utility in predicting electricity demand and analysis

of energy markets for decision-making.

1. Introduction

The United Nations advocates for global strategic measures to
implement the Sustainable Development Goals (SDGs) for the 2030
Agenda [1]. Out of the 17 Sustainable Development Goals (SDGs),
Goal 7 aims to optimize and improve the energy production and
utilization system globally [1]. Prediction models for electricity de-
mand (G) are a critical component of modern energy systems. For
the construction of an efficient and sustainable energy platform, a
reliable prediction model that incorporates the most relevant climate
and social factors is essential. In addition to short-term (hourly, daily)
and long-term (monthly, seasonal, annual) prediction horizons, G mod-
els must include techniques for evaluating uncertainties in electricity
use patterns. However, constructing reliable prediction models poses
significant challenges. These include, but not limited to the variability
of climate conditions, the difficulty to predict social behaviours, and
the integration or availability of diverse data sources. Additionally, due
to the continuous changes in electricity demand, the models must be
robust enough to handle non-linear interactions and adapt to rapidly
changing energy consumption trends.

A number of earlier studies recommended soft computing algo-
rithms based on machine learning (ML) algorithms for G predictions.
These include statistical methods [2,3], Kernel models [2], regres-
sion analysis [4], hybrid ML-based nature inspired algorithms [5],
neural network models [3], improved hybrid ML models using data
pre-processing approaches [6], Trees models [6], Extreme Learning
Machine (ELM) [7], Multiple Linear Regression (MLR) [3], and several
others [8,9], Gaussian Process of Regression (GPR) [9] and Maximum
Overlap Discrete Wavelet Transform (MODWT)-OS-ELM [7]. Due to the
diverse capabilities of such ML models, whose accuracy varies based
on data and region, the development of G prediction methods and
understanding of their predicted uncertainties is an ongoing research
area.

Recently, deep learning (DL) models have become increasingly pop-
ular for predicting G. A research study conducted by [10] shows that
LSTM networks, convolutional neural networks (CNNs) and multilayer
perceptrons (MLPs) perform best for G prediction. The LSTM models
are widely used because of their ability to handle long-term dependen-
cies [11], whereas in CNNs, convolution operations are used to extract
features, which increases the accuracy of time series prediction by cap-
turing high-level feature representations from multiple time series [12].
Locally connected algorithms have global sharing properties, which
reduce training parameters and time, increasing time-series prediction
accuracy [13]. In the study of [14], the authors evaluated the predic-
tion ability of the Factored Conditional Restricted Boltzmann Machine

(FCRBM) in comparison with Mutual Information-based ANNs (MI-
ANNSs), Bi-level, LSTM, and ANN-based accurate and fast convergence
(AFC-ANNs). In terms of training time, FCRBM was demonstrated to
be faster and more accurate than alternative models. In addition, the
authors in [15] have connected a CNN and an ANN model to predict
French energy demand. For such prediction tasks, Bidirectional LSTM
(BILSTM), a variant of LSTM, has been demonstrated to be much faster
and more accurate than traditional LSTM models [16]. Bidirectional
memory in the BILSTM model is especially useful for exploring both
previous and upcoming features; see, for instance, the works of [17,18].
To predict the G data, [19] applied Bi-LSTM model with attention
mechanisms and compared with an SVR and a conventional Bi-LSTM.
Overall, the study showed that the proposed Bi-LSTM model with an
attention mechanism could be a viable and effective predictive model.

Because of the volatility and instability of electrical loads, stan-
dalone ML and DL models occasionally cannot precisely extract com-
plex feature correlations in nonlinear and non-stationary G data. Many
researchers have thus proposed hybrid models combining DL/ML mod-
els to show promising results through CNN/LSTM methods for elec-
tricity load prediction compared with non-hybrid models [20,21]. In
[22], a hybrid model combining Multilayer Perceptron (MLP), Adap-
tive Network-based Fuzzy Inference System (ANFIS), and Seasonal
Autoregressive Integrated Moving Average (SARIMA) was also pro-
posed where its accuracy was demonstrated by reduced Mean Absolute
Percentage Error and faster convergence rate. Other hybrid models
applied to time-series prediction problems include LSTMs with Extreme
Gradient Boosting (XGBOOST) [23] and the fractional ARIMA with
enhanced Cuckoo search [24], outperforming their standalone coun-
terpart models for electricity load prediction problems. In particular,
ML, DL and hybrid models have largely been applied for point-based
G prediction for distinct, deterministic, and definite outcomes. It is,
however, impossible to completely eliminate prediction errors when G
is non-stationary and chaotic. Thus, point prediction results can be hard
to use in sound decision-making in critical power system infrastructure
if these models are used. For electricity demand, the quantification of
model uncertainty estimation is crucial in terms of a point-based and
probability interval prediction outcome in order to better understand
the model’s fidelity and variability.

In the light of the aforementioned, the prediction intervals of an
electricity demand model are constructed by assuming specific distri-
bution functions. Due to the chaotic nature of G itself, it is typically
impossible to determine the exact distribution and therefore, general
assumptions must be made. A deviation from such assumptions can
also affect the decisions made using the generated prediction intervals
as well as on the estimated model parameter values, which could
result in an over- or underestimation of the underlying risk of using
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such predicted G values in real-time. Fortunately, re-sampling tech-
niques, like Bootstrap (BS), enable the creation of prediction intervals
without taking any sorts of distributional assumptions. As opposed to
conventional methods such as Lower Upper Bound Estimation (LUBE),
Monte Carlo Simulation (MCS), and Quantile Regression (QR), the BS
technique uses original samples as a population of resampling.

In [25], a deeply-fused nets (FNET) method which embraces deep
fusion or a combination of the intermediate representations of a base
network with various other intermediate representations, was pro-
posed. Importantly, this approach simultaneously learned the represen-
tations of the base networks, to mimic the highly successful methods
such as GoogLeNet or deeply-supervised nets [26] and variants like
Highway [27] and ResNet [28]. The FNET method was successfully
applied on the CIFAR-10 and CIFAR-100 image-based datasets, to show
93.77-93.98% for the CIFAR-10 and 72.29-72.64% for the CIFAR-100
datasets with the Deep summation (fusion before ReLU) and the Deep
summation (fusion after ReLU), respectively. Compared with several
state-of-the-art algorithms baseline methods, the FNET model demon-
strated significantly better performance. However, the application of
the original FNET model has so far been restricted to only image and
text-based datasets so its application to the time-series datasets, and
especially in G prediction problems could provide new avenues to
capitalize on the merits of the deeply-fused nets method.

In this study, we extend and significantly improve the scope and
practical applicability of FNET [25] for time-series data fusion. We also
adopt residual bootstrapping (B.S) to generate prediction intervals of
electricity demand in such a way that the proposed BS-based FNET
model does not require prior information about the data distribution
or the model parameters while it seamlessly adopts explainable ar-
tificial intelligence based on Shapley Additive Explanations (SHAP)
to demonstrate an interpretable FNETS model for G predictions. The
contributions and the novelty of this research are as follows:

1. To develop for the first time a new approach for electricity
demand prediction by proposing Deeply Fused Network (FNET)
model that seamlessly fuses the CNN and BILSTM algorithms for
the point-based and confidence interval predictions.

2. To improve the efficiency of the proposed FNET model consid-
ering a fused net system with three fusions: a deep base network
(1D-CNN), a set of CNN filters (ranging from 32-128) and a 4-
layer BILSTM network with BILSTM unit (ranging from 16-128).
As a regression model, we then adopt a single BILSTM layer at
the end of the network before the fully connected or dense layer
and apply the Scaled Exponential Linear Units (SeLU) activation
function for 1D-CNN layer and Rectified Linear Unit (ReLU) for
the Dense layer.

3. To evaluate the performance of the proposed FNET model using
deterministic and probabilistic metrics against standalone and
hybrid models (i.e., BILSTM, LSTMCNN, Deep Neural Network
(DNN), Multi-layer Perceptron (MLP), Multivariate Adaptive Re-
gression Spline (MARS), Kernel Ridge Regression (KRR), and
Gaussian Process of Regression (GPR)).

4. To improve the practicality of the proposed FNET model by
generating the interval predictions of electricity demand that
can inform model predicted uncertainties in electricity demand,
enhancing the validity of using FNET in real-life scenarios for
electricity forecasting.

5. To interpret model behaviour and better understand the under-
lying factors influencing electricity demand. Here, we adopted
the Shapley Additive Explanations (SHAP) to reveal the intricate
relationship between key variables and their contribution to the
model’s predictions.

Our study contributes to the development of a robust model that
incorporates climate predictors for enhanced insights into energy mar-
kets to predict electricity demand daily with confidence intervals and
point-based prediction. Consequently, this study contributes to a new
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deep fusion model that integrates intermediate representations from
base networks (the fused output is used as input by the rest of the
base networks) and enhances demand prediction by combining several
intermediate representations deeply.

To enhance the contribution of this study, we adopted residual
bootstrapping to quantify the uncertainties in the proposed FNET model
to advance its practical implementation as previous studies [25] used
FNET for only point-based predictions. In particular, the network com-
prising substantially fused CNN and BI-LSTM model utilizes the primary
concept, to perform the fusion over intermediate representations of
the base networks rather than just over the final representations. Such
fusions are repeatedly performed at intermediate layers with the fused
output serving as the input of remaining portion of each base network,
and finally the base network is used to generate prediction intervals
on the residuals obtained by the difference between observed G and
predicted G generated from the proposed FNET model.

To train and evaluate the proposed FNET model, we have utilized
historical (i.e., time-lagged) G data as well as respective local climate
variables for Annerley, Heathwood, Laidley and Zillmere substations
located in Queensland, Australia, along with detailed statistical and
probabilistic analysis of model performance (see later, in Table 3).

2. Overview of theoretical frameworks

This section describes the components of the proposed FNET model,
the related theory in detail and benchmark models used to compare
against the objective models.

2.1. The proposed Deeply Fused Networks (FNET) model

In this study, we have developed the Deeply Fused Networks (FNET)
model, which is constructed from a series of base networks whose out-
put representations are fused together [25]. In contrast to the shallow
fusion model, as per Fig. 2(a), the deep fusion approach applies the fea-
ture fusion to both the final representation and the intermediate feature
embedding, as schematized in Fig. 2(b). Typically, there are N blocks
(N > 1) in the proposed FNET model and each block has L (L > 1) base
networks. Each block fuses the feature representation from several base
networks together, and the merged feature embedding is then handled
as the input to the succeeding block. Furthermore, the L base networks
are composed of various convolutional kernel scales while the number
of convolutional layers can frequently vary [29]. In the study of [25],
the FNET approach has achieved superior performance over Residual
Network [28] and Highway Network [27]. In principle, the deep fusion
approach can offer numerous advantages over the traditional shallow
fusion method [30], which are as follows:

+ The information flow during deep fusion can be enhanced regard-
less of whether it comes from the input to the intermediate layers
or from the intermediate to the output layers.

It is relatively easier to train an FNET model consisting of a very
deep base network (i.e., the first model, CNN) and a shallow
model (e.g., ANN, SVR, etc.) or other deep models (second model,
LSTM, BILSTM, GRU, etc.) compared to a deep base network
alone. Despite having several base networks, the FNET model
does not add more parameters or computational complexity but
it facilitates training process quite seamlessly.

The two models (deep-shallow or deep-deep) are likely to provide
benefit from each other’s own merits and are therefore trained
simultaneously in order to learn more representative feature em-
bedding.

Because of its unique structure, the FNET model can extract
multi-scale feature representations.

As a result of the advantages mentioned above, we expect the point-
based and the interval prediction of daily electricity demand data to
be performed quire satisfactorily by the proposed FNET model.
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Fig. 1. A schematic view of the LSTM, BILSTM, 1D-CNN and DNN models employed to construct the proposed deep hybrid Fused Network (FNET) model for point-based and

interval prediction of daily electricity demand.
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Fig. 2(a). The presentation of shallow fusion principle, where different scores from various CNN categories fused once prior the release to the regression analysis. Note that Convl

is a CNN model, and FC is a fully Connected Layer.
2.2. Benchmark (deep and shallow learning) models

2.2.1. Long-short term memory network

The LSTM Network model, as a benchmark for the proposed FNET
model, is a variation of Recurrent Network (RNN) [31,32]. In com-
parison to RNN, LSTM can manage long-term dependencies as well as
gradient vanishing difficulties. The cell state and the gate structure are
the basic concepts of LSTM, in which cell states are used to communi-
cate information and solve the issues of short-term memory. The LSTM
has three gate structures: input, forgetting, and output gates, each
with its function [33]. The forget gate determines whether information
should be discarded or maintained [34]. The input gate is utilized
to update the state of the cell. The output gate is used to calculate
the value of the next hidden state, which contains the previously
entered data. Fig. 1 (a) depicts the structure and the equations below
(Egs. (1)-(6)) show the conventional equations for LSTM [35].

fi=o(wy*[h—Lx]+b/) @

i, =0 (w;[h - Lx] +b) @)
¢, = tanh (w, - [, — 1,x,] +b,) 3
¢=fi%xC_ +i,%C @)
o, =0'(VVO~ [h,_l_xl] +b0) (5)
h; = O, = tanh () (6)

where f, is the forget gate, ¢ is the sigmoid function, W, is the weight,
h,_; is the output of previous block, X, is the input vector, and b, shows
the bias. The symbol * signifies elementwise multiplication, C, is the
Cell state, h, is the hidden state, O, is the output gate and tanh(.) denotes
the hyperbolic tangent activation function.
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Block 2

Block 4

Fully Connected

Layer

Fig. 2(b). Deep fusion principle where features extracted from different CNN branches are fused in a block before entering the intermediate results into the next block for further

feature learning.

2.2.2. Bi-directional LSTM

By examining input vectors in one direction only, the typical LSTM
model may lose crucial feature information in the training process,
preventing the sequence information from being completely evalu-
ated [36]. To overcome this issue, BILSTM is built with a bidirectional
structure to gather both the forward and backward directions of time-
series data representations, as illustrated in Fig. 1(a). As a result, the
BILSTM produces a final output vector Y, expressed by:

Y, =0 (Wynyhyay + Winyhyy + by) Q)

This structure enables the internal state to store information in A,
from the past time-series values in the forward direction and in h,,
from the future sequence values in the backward direction. The W/,
and Wy, symbolize forward and backward weighting scores from the
internal unit to the output, respectively. ¢ is set to sigmoid or linear
functions as the output layer activation function and b, signifies the
bias vector of the output layer.

2.2.3. Convolution neural network

Convolutional neural networks (CNN) are a type of feedforward
neural network that uses convolutional computing. To extract feature
information, CNN models employ convolution layers and pooling lay-
ers [37]. The core of a CNN model is the convolution layer that reduces
the network’s complexity and parameter numbers by connecting a neu-
ron to only a subset of its neighbours [31]. Further, the pooling layer
minimizes the number of parameters by lowering the dimensionality of
the features. Adding a pooling layer not only speeds up the computation
but also prevents over-fitting [8,38]. This study has employed a one-
dimensional convolutional structure for sequential data (Fig. 1(b)),
where the convolutional kernel is set to 3, depicted by red, orange,
and green colour, and the CNN network structure is shown in Fig. 1(c).

The convolution outputs for each layer after convolution compu-
tation are treated non-linearly using the activation function known as
Scaled Exponential Linear Unit (SeLU). This study has utilized SeLU
because it avoids the self-dying problem associated with Rectified
Linear Unit Activation function (ReLU) [39] and has a self-normalizing
property [40] that makes the neuron activation automatically converge
toward an average of 0 and a variance of 1. Due to this property of
the SeLU activation function, many layers of CNN can be trained more
robustly without gradient vanishing issues. The output Y of the rth
convolution layer can be defined as:

M
Y<’)=f<2 an’l)®W(’)+B(’)>(r= 1,2,...,10) ®

m=1

where the convolution operation is a dot product ® between M feature
maps X~ and a set of filters W), which is the convolution kernels
of the rth convolution layer. It is noted that when r = 1, X"~V is the
reorganization of the input layer data; otherwise, X"~V is the output
of the r'"* pooling layer. B") denotes the bias term. The activation
function f(x) is the SeLU function defined by following Eq. (9).

{x if x>0,
SeLU(x) = 4 ()]

ae* —a ifx<0

where x signifies the input to the activation function, 4 ~ 1.0507 and
a ~ 1.6733 [41]. The pooling layer uses the output of the convolution
layer as the input (Fig. 1(b)). The output X’ of the rth pooling layer
can be depicted by Eq. (10).

XD =wiaeY® +BO(r=12,..,1) (10)

where @ denotes the pooling operation ® is the dot product of feature
maps Y and pooling window W with the bias B"). The neurons
in all the feature maps of the /th pooling layer are rasterized and
displayed to one feature map by the full connection layer. After the
transformation, the output XU+ of this layer is used to generate the
final output of the CNN model expressed as:

YD = f (XD s D 4 gD an

where W(+D and BU*D represent the weight and bias of the output
layer, respectively.

2.2.4. Multilayer Perceptron and Deep Neural Network

Multi-Layer Perceptrons (MLP) are a versatile and general-purpose
type of Artificial Neural Network (ANN) [42], composed of an input
layer, one or more hidden layers, and an output layer. An MLP network
is comprised of simple neurons called perceptrons [43]. A perceptron
integrates linear relationships based on input weights and even non-
linear transfer functions (e.g., sigmoid or hyperbolic tangent) to form
one output from multiple inputs. Whereas Deep Neural Network (DNN)
is considered an ANN with many hidden layers between the input and
output layers and has a stronger modelling and prediction capability.
In feed-forward DNN, information flows forward from the input layer
via the hidden layers (multiple) to the output layer [44]. As seen
in Fig. 1(d), DNN has several layers stacked together for processing
and learning from data. The output Y of MLP and DNN models can
be mathematically formulated by the transfer functions F of input
variables X, weights W, and bias values B with n neurons in an input
layer and m neurons in the hidden layer as:

Y=F(Z;~n:1 Wk/"”(Z?:] "Vjin+B,~)+Bk) 12)
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where k, j, and i refer to the output, hidden, and input layers, respec-
tively.

2.2.5. Multivariate Adaptive Regression Splines

The Multivariate Adaptive Regression Splines (MARS) technique is
a non-linear and non-parametric regression model. This model uses
piece-wise linear splines to evaluate the relationships between the
dependent and independent variables. MARS mimics the model using
basic functions (BFs). BFs are described as pairs based on a knot to
establish an inflection region [45]. Mathematical derivation of the
model can be found in [46,47]. The elegance of the MARS model is
that no assumptions are required to build a link between the input
and output variables. Therefore, the MARS model has been applied
in many studies, such as financial management, prediction, and time
series analysis, including solar radiation and wind power [4,48].

2.2.6. Kernel Ridge Regression

Kernel Ridge Regression (KRR), a regularized least squares-based
method, is an extension of the conventional Ridge Regression model,
which is extensively used for regression and classification of highly non-
linear prediction tasks [49] . As a nonlinear procedure, KRR comprises
a set of kernel tricks and RR to reduce over-fitting in nonlinear-large-
multiple regression issues [50,51]. While the KRR model performance
for regression problems is similar to the Support Vector Regression
(SVR) [52] model, the key difference between the two models can be
found in the loss function. More specifically, KRR implements a square
error loss function, while SVR uses an epsilon-insensitive loss function.
Furthermore, KRR fits faster than SVR for a small number of datasets.
Complete mathematical derivation of the KRR model can be found
in [53].

2.2.7. Gaussian Process Regression

Gaussian Process Regression (GPR) is a non-parametric modelling
tool that does not dictate the type of relationship between the input
and output [54]. Numerous applications of GPR have demonstrated its
ability to make accurate probabilistic predictions in complex nonlinear
situations [55]. Due to the complex relationships between G and other
weather variables, a GPR is chosen as the benchmark model to predict
the daily electricity demand. A detailed model description and the
mathematical formulation are provided in [56,57].

2.3. Generating Bootstrap-based prediction intervals

While the aforementioned DL and ML models produce reliable
G predictions, these model’s predictions are subject to uncertainty.
To address this issue, the Bootstrap Residual (BSR) method proposed
by [58,59] is employed to quantify the uncertainties by generating
Prediction Interval (PI) at the 95% confidence level. To implement the
bootstrap prediction of G, we first generate a bootstrap sample of the
residuals.

Using the residuals {¢ :1=1,2,...,n}, we define the empirical
distribution F, (-) [60] by:

From the empirical distribution F,., we draw an independent and
identically distributed (i.i.d) sequence {&" : 1 =1,2,...}, which is used
as a bootstrap sample for constructing a bootstrap prediction interval.
One-step ahead bootstrap prediction is carried out by:

X =Xr)=0"Y, +¢ a4

The 100(1 — a)% bootstrap prediction interval is computed as:
[)2:(1)41/2’ )2:(1)1—41/2] = [éTYn + QZ/Q’ éTYn + QT_Q/z] (15)
at @/2 and (1 — a/2) bootstrap quantiles, denoted as ¢ P and q 2

respectively, of the bootstrap sample {&* : t=1,2,..., N}, where N
indicates the number of bootstrap replications.
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2.4. Model interpretation

To foster transparency and build trust in the model’s decision-
making process, the SHAP (SHapley Additive exPlanations) method was
employed. Rooted in game theory, SHAP offers a robust framework
for understanding feature contributions to model output [61]. By de-
composing the model’s predictions into contributions from individual
features, SHAP empowers stakeholders to comprehend the underlying
logic and rationale behind the model’s decisions. This interpretability
is crucial for sectors such as electricity network operation, demand
response aggregation, and electricity trading, where understanding user
behaviour is paramount for effective strategy development and risk
management.

3. Materials and method

3.1. Research methodology

A systematic methodology was implemented in this study to validate
the efficacy of the proposed FNET for the prediction of daily electricity
demand (G). Fig. 3 depicts the overall framework of the methodology.
It consists mostly of eight major phases, as outlined below:

Phase 1: The data preparation step: the electricity demand (G, M W)
data from 01/07/2011 to 30/06/2021 of the four sub-stations in South-
east Queensland, Australia are collected from Energex website ().

Phase 2: Feature set scenario development: The collected G data were
preprocessed to create the input features for prediction models. The
partial Auto-correlation Function (PACF) and Mutual Information Test
(MIF) are done to identify the suitable lags.

Phase 3: Integration of climate variables: The climate variables from
the Scientific Information for Land Owners (SILO) database are ex-
tracted and integrated with lagged G data.

Phase 4: Final pre-processing of data: Further pre-processing is done
by normalizing and splitting the data into training, validation and
testing sets.

Phase 5: Predictive Model Development: The proposed model (ie.,
FNET) and benchmark Models (LSTMCNN, DNN, BILSTM, MLP, KRR,
GPR and MARS) are developed and trained on training dataset to
predict the daily G. Additionally, the proposed models have been op-
timized for tuning their hyperparameters (validation data and utilizing
the HyperOpt Algorithm).

Phase 6: Model Evaluation: The prediction accuracy related to the
eight predictive model configurations has been evaluated using several
deterministic metrics.

Phase 7: Residual Bootstrap: The final residual was computed from
the predicted and actual values of G, and bootstrapping was done to
generate the Prediction Intervals PI at 95% confidence level.

Phase 8: Uncertainty Quantification: the generated PI are analysed
using the probabilistic metrics to quantify the uncertainty associated
with FNET and benchmark models.

The following sections further describe the phases of the Model devel-
opment framework.
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Fig. 3. Schematic diagram of model development.

Table 1
Descriptive statistics of daily electricity demand G (MW) at four substations of Southeast
Queensland.

Statistical parameters Annerley Heathwood Laidley Zillmere
Median (MW) 345.39 659.85 193.58 694.43
Mean (MW) 371.62 649.86 195.94 709.37
Standard Deviation (MW) 90.55 113.49 41.22 106.11
Variance 8198.57 12879.10 1699.27 11259.13
Maximum (MW) 888.50 1005.26 535.64 1136.41
Minimum (MW) —-104.07 99.52 0.00 0.00
Range 888.50 1005.26 535.64 1136.41
Interquartile Range 70.19 127.22 36.41 143.99
Skewness 2.15 -0.30 -0.73 0.35
Kurtosis 8.57 3.38 11.05 4.87

3.1.1. Data preparation and feature scenario development

Since data-driven models (e.g., DL) heavily rely on past progno-
sis, the electricity data for four substations (Fig. 4; (a) Annerley, (b)
Heathwood, (c) Laidley, and (d) Zillmere) in Southeast Queensland,
Australia are collected from Energex website (). The dataset includes
280,560 measurements at a 30-minute sampling rate from 01/07/2011
to 30/06/2021 (120 months or 3653 days). The dataset has been
downsampled from 30-min interval to daily interval using Eq. (16),
where G, is a function that employs a set of electricity demand data as
input to down samples to a specific period with a downsampling rate
n (i.e., for the daily transformation of 30-min data, n = 48).

(ixn)+n

Gp; = Z Gp; (16)

Jj=i*n

It is important to note that for the interpretation of the proposed
model performance in terms of the electricity demand that is typi-
cally measured in M W h, the respective timescale should be used and
appropriate conversions to the time-based usage should be applied.
Table 2 exhibits some descriptive statistics of daily G for the selected
substations.

Fig. 5(a) provides further information on the distribution of annual
G for the four substations. Box plots provide a visual representation
of summary statistics (minimum, maximum, median, first quartile, and
third quartile) for sample data and outliers are indicated with a circle
(‘0’) outside the whisker. Fig. 5(a) shows that there are no significant
differences in the G distribution between years for the Laidley substa-
tion, whereas for the Annerley substation, the year 2011 has the highest

range of G variation compared to the period from 2012 to 2021. for the
other two substations (Heathwood and Zillmere), there is an overlap
between each G distribution box, indicating the parameters studied are
not significantly different at 5% significance level.

Fig. 5(b) shows a box plot of the G for the entire substation monthly.
According to this box plot, the highest and lowest changes of G occur
in Autumn (March, April and May) and winter (June, July and August),
respectively. In the summer season (December, January and February),
G distribution is longer than in other seasons. The medians (generally
close to the average) of Autumn, Spring, and Winter are all at the same
level.

As a starting point for the nonlinear modelling of G time series, the
underlying dynamics of the data were firstly examined. In principle,
the PACF can be used to determine the temporal correlation structure
and the lag dimensions of electricity demand dataset used to construct
the proposed FNET model [62]. Fig. 6(a) shows the PACF for G data
from 2011 to 2021 for four substations. In all G time series, the highest
PACF was acquired at lag 1, which means the antecedent 1-day G data
were highly correlated to the current day’s G values. This also shows
the classical Auto Regressive rapid decay patterns [63]. Furthermore,
the Mutual Information Function (MIF) is applied to study the chaotic
dynamics of the daily G time-series. The choice of the delay time
() or the lag is critical to the capturing the processes of correlation
integral calculation and neighbouring trajectory separation within a
minimum embedding space [64]. The first minimum Fig. 6(b) in the
MIF plot generates the state vector that comprises components with
minimal mutual information [65]. The delay times chosen for Annerley,
Heathwood, Laidley and Zillmere are 4, 6, 5 and 6 days, respectively.
The most effective inputs for G prediction can be mathematically
expressed as Egs. (17)-(20) for Annerley, Heathwood, Laidley and
Zillmere, respectively.

G punertey = f (Gi-1, G122, G,_3,G,_y) 17)
Geathwood = f (Gi_1,G1_2,G,_3,G,_4,G,_5,G,_g) (18)
Graidiey = f (Gi—1G1-2.G,_3.G,_4.G,_s5) 19)
Gitimere = f (G_1,G,_2.G,_3,G,_4,G,_5,G,_g) (20)
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Fig. 4. Map of the location of the substations in Queensland, Australia where the deep hybrid Fused Network (FNET) model was implemented.
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Fig. 5(a). Box plots of annual statistics for G at four substations. Note: The box represents the interquartile range, and whiskers extend to the 5th and 95th percentile.

3.1.2. Local climate variables and pre-processing of data

Apart from using the antecedent G series to build the proposed
FNET model, this study has used ten different local climate variables
from Scientific Information for Landowners (SILO) repository(). A SILO

database system provides researchers with ’ready-to-use’ climate data
for their predictive models. A comprehensive description of the SILO
database and spatial interpolation of Australian climate data can be
found in [66]. The Queensland Department of Environment and Science

hosts and organizes the SILO datasets.

Table 1 lists the variables from SILO database and Fig. 7 shows the
heatmap of SILO predictors and the target variable (G) for all substa-
tions. Note that the acronyms used in Fig. 7 are defined in Table 1.
According to Fig. 7, the Mean Sea Level Pressure (M S LP) is the most
highly correlated predictive variable with G for all substations. For
Laidley and Zillmere, the Maximum Temperature (Tmax) and Vapour
Pressure Deficit (V' Pd) also have a high correlation with G.

As a further step required in data preprocessing, the min-max data
normalization method (Eq. (21)) was applied to the lagged D data
as well as the SILO variables since DL network performance is are
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Table 2

Description of the pool of local climate predictor variables from Scientific Information
for Landowners (SILO) database used for the point prediction and the interval prediction
of G(MW) at four substations in southeast Queensland, Australia.

Local climate predictor variables from SILO Acronym
Maximum temperature (°C) Tmax
Minimum temperature (°C) Tmin
Vapour pressure (hPa) VP
Vapour pressure deficit (hPa) VPd
Evaporation - synthetic estimate (mm) Esyn
Solar radiation - total incoming GSR
downward shortwave radiation on a horizontal surface (MJ/m?)

Relative humidity at the time of maximum temperature (%) Rhmax
Relative humidity at the time of minimum temperature (%) Rhmin
Evapotranspiration - Morton’s areal actual evapotranspiration (mm) Etm
Mean sea level pressure (hPa) MSLP

sensitive to the diversity of input data which requires normalization.
After normalizing the data, the input and output matrices were created
as per Eq. (22) and Eq. (23)(e.g. for Annerley)
(X -X min)

(X max X
where X = input/target, X,,, = minimum point, X,,, = maximum
point and X,,,,, = anticipated normalized value.

In order to develop the proposed FNET model (and comparative
benchmark models) using historical G and local climate variables, a
model input matrix with the predictor variables was created as follows:

Input = (G,_,G,_»,G,_3,G,_4, T,

norm —

(21

min )

ax(—1)’

Tmin(,_l) ) Vp(r—l)’ VPd(r—l)’ (22)
Esyn(r—l)’ GSR(I—I)’ Rhmax(r—])7
Rhyyii—1y> Etm_1y, MSLP;_y))
Target = (G,) (23
where G, is the current electricity demand, G,_;, G,,, G,_3.G,_y,

maxq_yy>  Dming_1y> Vo1 VPag-1 Esyng-1)y GSReoyy Rhyax—1)s
Rhyin-1ys Etm_;y and MSLP,_;, are the lagged values of electricity
demand, Maximum Temperature, Minimum Temperature, Vapour pres-
sure, Vapour Pressure Deficit, Solar Radiation, Relative Humidity at
Maximum Temperature, Relative Humidity at Maximum Temperature,
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Morton’s Areal Actual Evapo-transpiration and Mean Sea level Pressure,
respectively.

Data are divided into training, validation and testing sets with 90%
of data set from 01/07/2011 to 30/06/2020 (3288 data points) dedi-
cated to model training and validation, while remaining 10% (365 data
points) from 01/07/2020 to 30/06/2021 is used for testing purposes.
The training set is used to train the model learn hidden features or
patterns in the data, while the test set is used to test the model after
the training is complete. During model training, we use a validation set
to validate our model performance, separate from the training set. We
use this validation process to tune the model’s hyperparameters and
configurations accordingly. It acts as a critique that indicates whether
or not the training is progressing properly. In this study, 20% of data
from the training set are used for validation, i.e., 658 data points. Thus,
the input matrix for Annerley substation is [2630 x 14], [658 x 14] and
[365x14] for training, validation and testing, respectively. Similarly, for
Heathwood and Zillmere, [2630x16], [658x16] and [365x16] for training,
validation and testing, respectively. However, [2630 x 15], [658 x 15]
and [365 x 15] of data are used for training, validation and testing,
respectively, for the Laidley substation.

3.1.3. Predictive model development and evaluation

The proposed FNET as well as the benchmark models were designed
on the Microsoft Windows 10 platform with an Intel® core™ i9 Gen-
eration 10 processor operating at 3.8 GHz with 32 GB memory. Models
were designed in Python programming language [67] and MATLAB
R2020b was used for statistical analysis. Tensor Flow [68], Keras [69],
and Scikit-Learn [70] are some of the key and important libraries
available in Python for DL. As mentioned earlier, this study uses the
hybrid Deep Fusion Network (FNET) to predict the Daily G at four
substations in Southeast Queensland, Australia.

Fig. 8 shows the FNET model that takes the fused nets with three
fusions composed of a deep base network (1D-CNN) with CNN filters
ranging from 32 to 128 and 4-layer BILSTM network with BILSTM
unit ranging from 16 to 128. Since we are using FNET for regression
purposes, a single BILSTM layer at the end of the network is used before
the fully connected or dense layer. The SeLU was used as the activation
function for the 1D-CNN layer and the ReLU is used for the Dense layer
in the proposed FNET model.

The architecture of the proposed FNET (and benchmark models) are
presented in Table 3. It is noteworthy that this paper has selected the
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Adam algorithm as the model optimizer for the FNET, LSTMCNN, DNN
and BILSTM models using Mean Square Error as a loss function. The
choice of the Adam algorithm provides the advantage of maintaining
momentum and gradient acceleration by considering both estimations
of the first moment (mean gradient) and the second moment (variance
of the gradient) [71]. This advantage allows enables the model to be
trained faster and to predict the G data more accurately. Eq. (24) shows
the back-propagation parameter adjustment using Adam and Eq. (25)

shows the error function.

m
@4

W,=W,_ —a—
v, +¢€
where w = weights of learning model, a = learning rate, and m, and v,
= moving average.
Lyse= lzT - yE)2
T hedt=1""1 t

where y, and y,r = measured and predicted G at time ¢, respectively,
and T = total prediction time period.

This study has also adopted the Python Hyperopt library [72]
to deduce optimal hyperparameters, shown in Table 3 for BILSTM,

LSTMCNN, DNN, MARS, MLP, KRR and GPR benchmark models. In
this way, users can select their models or optimize their parameters

(25)
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simultaneously in Python programming environment. In fact, Hyperopt
operates as a black box system in which the users can provide an
evaluation function and parameter space to attain the best values based
on the inputs [72]. When selecting an optimization algorithm through
the Hyperopt, the distribution over the choice (‘Adagrad’, ‘Adam’,
‘SGD’, and ‘RMSprop’) is used. This study has used the following
regularization parameters for the proposed FNET and all DL benchmark
models (i.e., BILSTM, LSTMCNN, and DNN).

+ Early Stopping (es): This is used to overcome over-fitting, ter-
minates the training once the performance stops improving on a
validation data after an arbitrary number of epochs (patience).
During training, the best model weights can be saved and updated
with an es regularizer. After a certain number of iterations, the
training is terminated, and the last best parameters are used [73].
One metric to monitor is M.SE, which should be minimized.
During training, the model will count the loss at each epoch. In
subsequent epochs, if the M .S E value does not change or the min-
imum value is already calculated, the training will be terminated.
When training the model, the es patience was assumed to be 20.
ReduceLROnPlateau: This stands for ‘reduce’, ‘learning’, ‘rate’,
‘on’, and ‘plateaw’ - indicating the learning rate must be reduced



Table 3

Architecture of the Deep Hybrid Fused Network (FNET) model vs. LSTMCNN, DNN, BILSTM, MLP, KRR, GPR and MARS models developed for daily electricity demand G (MW)
prediction at four sub-stations of Southeast Queensland. Note: - SeLU = Scaled Exponential Linear Unit; Adam = Adaptive Moment Estimation, ReLU = Rectified Linear Units;
rbf=Radial Basis Function, logistic= Logistic Sigmoid Function, tanh= Hyperbolic Tangent Activation Function.

o 30 2y S

[

Predictive models

Model Hyperparameters | Hyperparameter Selection | Annerley | Heathwood Laidley Zillmere
Fused Net (FNET) Filter1 (CNN) 32
Filter 2 (CNN) 32
Filter 3 (CNN) 128
BILSTM cell 1 (BILSTM) 16
BILSTM cell 2 (BILSTM) 64
Epochs [1000]
Activation function (CNN Layer) ['seLU’]
Activation function (Dense Layer) [ReLU’]
Solver [‘adam’]
Batch Size 151
LSTM cell 1 [50, 60,100,200] 100 60 100 100
Long Short Term LSTM cell 2 [40,50,60,70,130] 40 70 70 60
Memory Network CNN Filter 1 [50, 60,100,200] 60 50 50 50
Integrated with CNN Filter 2 [40,50,60,70,130] 40 40 70 50
Convolutional Neural Activation function [relu’]
Network (LSTMCNN) Epochs [1000]
Batch Size 15,10,15,20,25,30] 10 5 10 5
BILSTM cell 1 [50, 60,100,200] 60 50 50 60
BILSTM cell 2 [40,50,60,70,130] 40 40 60 50
Bi-Directional LSTM BILSTM cell 3 [20,10,30,5] 30 20 20 10
(BILSTM) Activation function [relw]
Epochs [1000]
Batch Size 15,10,15,20,25,30] 5 10 5 10
Hiddenneuron 1 [60,100,200,250,300,500] 200 250 100 250
Hiddenneuron 2 [20,30,40,50,60,70] 70 50 70 30
Deep Neural Network Hiddenneuron 3 [10,20,30,40,50] 10 20 10 30
(DNN) Batch Size 15,10,15,20,25,30] 10 5 10 10
Solver [‘adam’]
Epochs [1000]
Hidden neuron [50,60,70,80,90,100] 90 60 70 90
Multi-Layer Perceptron Activation function P’relw, logistic’, tanh’] relu tanh logistic relu
(MLP) Learning rate [0.001,0.002,0.005,0.006] 0.002 0.001 0.005 0.001
Solver [‘adam’]
Kernel Ridge Regression (KRR) Kernel Lrbe]
alpha uniform (0,1) 0.0018 0.0021 0.0013 0.0012
Gaussian Process Regression (GPR) [The kernel specifying the covariance [i , Whi + i i i
function of the Gaussian Process. DotProduct+WhiteKernel,
[Maximum term generated by [10,20,30] 10 10 10 10
Multivariate Adaptive Regression forward pass
Spline (MARS) aximum degree of terms [5,10,15,20] 10 15 10 10
enerated by forward pass

£9/bZ1 (5202) 8.€ Bsoug ponddy
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Fig. 8. The structure of the proposed FNET model using 1D-CNN and BILSTM layers used in the G prediction problem.

upon reaching a certain point. In this model, the regularizer is
used to overcome under-fitting. Whenever the validation loss does
not change, we dynamically update the learning rate [74]. After
ten epochs without improvement during training, the learning
rate will be reduced by 0.2; the lower bound is 0.00001.

Dropout: Dropout rate (DOR) is an effective regularization tool
for dealing with over-fitting. This prevents networks from be-
coming overly reliant on individual neurons. During the training
phase, neurons are multiplied by a random variable following the
Bernoulli distribution with a probability of p and the dropout rate
is consistent with (1—p). As part of this study, the DOR was set at
0.1 after every layer of the BILSTM, LSTMCNN, and DNN models.

To comprehensively evaluate the FNET model for G predictions,
several deterministic metrics are used (see Tables 4(a)-4(c)).

» Class A metrics [Table 4(a)] are indicators of dispersion (or
“error”) of individually predicted G (0 for a perfect model).

13

According to the study of [78], the relative errors represent
model capability as being excellent (0 < RRMSE or RMAE <
10%), good (10% < RRMSE or RMAE < 20%), fair (20% <
RRMSE or RMAE < 30%) and poor (RRMSE orRMAE >
30%).

Class B metrics [Table 4(b)] are the normalized metrics whose
maximum value is 1 for a perfect model [79-81].

Class C metric [Table 4(b)] uses the K.SI and OV ER to indi-
cate the similarities in the distribution of predicted G (a lower
value would indicate a better distribution similarity with ob-
served value). In fact, K.ST measures the distance between Cu-
mulative Distribution Function of two datasets whereas OV ER
measures the distance between them in parts where a critical
value distance exceeds. The study also uses the Combined Perfor-
mance Index (CPI), as per [82], to integrate RMSE, KSI and
OV ER into a unified model performance indicator.

A
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Table 4(a)

Class A - Deterministic performance measure.

Note that G™ and G? = observed and predicted G, (G") and (G”) = observed and predicted mean G, p = model prediction, x = observation, pr
for perfect prediction (persistence), and r for the reference prediction, VAR = variance, SD = standard deviation, » = number of predictions

[75].
Deterministic Performance Measure (Class A) Definition
Correlation Coefficient r= __ZL@CG@NGG) (26)
V 2 G =GP ZL (Gr=(Gr)?
n
Root Mean Square Error (MW) RMSE = i (G? — Gm)? 27)
i=1
Mean Absolute Error (MW) MAE = '; >|G? - G™| (28)
i=1
Relative Root Mean Square RRM SPE=W¥ X 100% (29)
Relative Mean Absolute Percentage Error (%) RM APE=% x 100% (30)
Uncertainty at 95% Uys = 1.96(SD? — RM SE?)®S (31)
. e _ (n—1) X MBE?
t-statistic TS =\ ssense (32)
Mean Bias Error (MW) M BE=(100/ (G™)) Zj.jv (67, -Gm) (33)
o\ 172
Standard deviation of the Relative Error STDRE=<$ P (G"G’f > ) 34
. . _ 1 _ Va(G"-G?)
Explained Variance Score B =1- G (35)
Absolute Percentage Bias (%) APB = w (36)
i=1
. _ 1 _ RMSE(px)
Skill Score S8 =1- 2istors 37

Table 4(b)

Class B - Deterministic performance measure.

Note that G™ and G? = observed and predicted G, (G™) and (G”) = observed and predicted mean G, n = number of predictions,
CV = Coefficient of Variation.

Deterministic Performance Definition
Measure (Class B)

_ , o (G -GPY
Willmot’s Index Ey,=1 TG (GM G =GR (38)
. : : _q_ ZL@n-ey?
Nash-Sutcliffe Equation Eyng =1 ST Gy 39
Legates and McCabe’s E py=1- % (40)
Index !
4/ 1><i (GP—G™)?
Theil’s Inequality TIC= L— (41)
Coefficient <\/%X§1(GM)2+\/5X§I (G,,)z>
. - > (G 2 (o, \?
Kling-Gupta Efficiency KGE=1-1/(r—-1)"+ (m - > + (#) 42)
Table 4(c)

Class C - Deterministic performance measure.

Note that D, = absolute difference between calculated and measured CDF. X, and X, = minimum and maximum D,, A,
= critical area, D, = statistical characteristic of the reference distribution or critical value, N = number of points and @(N)
is a pure function of N [76,77].

max

Deterministic Performance Definition
Measure (Class C)

KSI KSI =10 [ p ax 43
Critical Limit OVER =12 [ max(D, - D,,0)dx (44)
Overestimation Index ‘
where A, = D.(X,,,c X in) (45)
where D, = ®(N)/N'/? (46)
Combined Performance CPJ = KSIHOVERIRMSE 47)

) 4
index

This study has also used Global Performance Indicator (GPI) as a Directional Symmetry (DS), Diebold-Mariano (D M) [84] and Harvey—
metric to rank the models [83] as well as Promoting Percentages (1), Leybourne-Newbold (H L N) test statistics to compare the performance
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Table 4(d)
Probabilistic performance measure (Class D).
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Note: N denotes the number of test samples, y, is the ith observation, L(G;) and U(G;) represent lower bound and upper
bound of the ith. G Prediction Interval respectively, G™ is the observed value of G, R is the Range. [86]. In CRPS metrics,
I(-) is the Heaviside function, it takes the value of 1 when 7> y and equals O otherwise.

Deterministic Definition
Performance
Measure (Class D)
N
Prediction Interval PICP = % Y 54
Coverage Probability =l
1 if y, € (U(G)), L(G;)
wherec; = i’ ( ) (55)
0 otherwise
N
Mean Prediction MPIW = % > (U(G)) - L(G))) (56)
Interval Width =l
~ 1
F Value F= X2 X e (57)
PICP+ WPTW
N
Average Relative ARIL = % > w (58)
Interval Length =l '
4, L(G,) <y <U(G)
Winkler Score WS={ A+2(L(G)-y)/a y, < L(G,) (59)
A,+2(y,—U(G,-))/a y,>U(Gi)
where 4, = U(G,) - L(G,;) (60)
| N
Normalized Mean PINAW = —— | ¥ (U (G;) - L (G})) (61)
Prediction =l
Interval Width
N
Continuous Rank CRPS = # crps (F. ;) (62)
Probability Score (M W) =l
where crps(F,y) = [ (F () —1(t—y)*dy (63)

of the proposed FNET model with the benchmark models. The GPI is

computed using six performance metrics as follows:
6

GPL; = )" a;(g; = viy)
j=1

(48)

where «; = median of scaled values g; of the statistical indicators j
for model i in which j —1 is for r and j 1 for RMSE, MAE,
MAPE, RRMSE and MBE (j = 1,2,3,4,5). Alarge GPI implies good
performance.

Finally, the Directional Symmetry (DS), Promoting Percentage of
Absolute Percentage Bias (1,pp), Kling-Gupta Efficiency (Agqp) and
Root Mean Square Error (Ag,,s5) [85] are also employed to evaluate
the efficacy of the proposed FNET model:

n
Ds=13%4, x 100% (49)
n =2
where,
: P
‘- 1 1f(G:"—G;’L])(G,—G:'11).>O 50)
0 otherwise
(APB, — APB,)
A = 51
APB APB, (51)
o _|(KGE, - KGEy) G2)
KGE= | ™ pep E,
(RMSE, — RMSE,)
A = 53
RMSE RMSE, (53)

where APB;, RMSE; and KGE, = objective model performance met-
ric and APB,, RMSE, and KGE, = benchmark model performance
metric.
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3.1.4. Quantifying uncertainty in electricity demand with residual boot-
strapping method

In this study, the proposed FNET model is developed in such a
way that the predicted uncertainties in G can be explored in detail
to ascertain the suitability of the method for decision-making in the
electricity industry. To pursue this, the bootstrap technique is adopted
to study the residuals from the point-based G predictions to establish
the bootstrap-driven Prediction Intervals (PI). To generate the PIs, the
95% confidence level or 100(1 — a)% where a = 0.05 was selected using
N = 1000 bootstrap samples to assess the distribution of uncertainties
generated by the FNET model.

By re-sampling the predictive model outcomes and analysing the
errors encountered in several rounds of model emulations used to
generate the predicted electricity demand, bootstrapping allows for the
capture of the predicted uncertainties in electricity demand. After a
trial and error process, we considered 1000 bootstrap samples that
showed no significant difference in predictions beyond this value. Based
on the results of the residual bootstrapping method, we computed sev-
eral probabilistic metrics, as per Table 4(d) in respect to the prediction
intervals and the model’s uncertainties.

As a crucial measure of the model variability, we have analysed the
Prediction Interval Coverage probability (PIC P) whereby the probabil-
ity of true G value limited by the upper and the lower boundaries of the
predicted G values can be studies. Typically, the PICP values range
from 0 to 1 where a magnitude exceeding the confidence level (ie.,
0.95) is preferred for a robust predictive model. However, increasing
the range of the prediction interval can elevate the PICP while provid-
ing lesser information about the model’s stability in respect to low error
predictions. As a result, we also employed the Mean Prediction Interval
Width (M PIW) as a supplemental metric to indicate the capability of
the model to enclose genuine values inside the prediction boundaries.
In general, the model with a lower M PIW is expected to have a
reduced uncertainty across the models with similar PICP value [87].
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Our study has also employed another comprehensive index, F —
value that combined both PICP and M PIW to evaluate the perfor-
mance of the model based on PIs. Notably, a larger value of F would
indicate a better performance of the prediction interval. Additionally,
the PI Normalized Average Width (PINAW), Average Relative In-
terval Width (ARI L), Winkler Score (W) [88] and the Continuous
Rank Probability Score (CRPS) were also used to explore various
other uncertainty measures. It is important to note that in probabilistic
prediction model evaluations, the CRPS is one of the most commonly
used error measure as similar to the M AE in deterministic predictions,
this metric can also generalize the M AE as a probabilistic prediction
evaluation measure of the proposed FNET model [89].

4. Results and discussion
4.1. Results based on deterministic model evaluation metrics

This section describes the findings by a comparative analysis of
the proposed FNET and the seven benchmark models, ie., BILSTM,
LSTMCNN, DNN, MLP, KRR, GPR, and MARS. To conduct an accu-
rate evaluation and avoid subjective conclusions, a comprehensive
comparison is performed using a range of deterministic metrics, as
per Table 4(a), Table 4(b), and Table 4(c). In addition, graphic tools
consisting of bar charts, scatter plots, box plots, Empirical Cumulative
Distribution Functions (ECDF) as well as cumulative frequencies and
Taylor diagrams are used to support the analysis. In general, the
proposed FNET model shows a persistently superior performance in
respect to the daily G prediction problem to supersede the benchmark
models for all four substations indicated through metrics.

Despite the varied performance of the benchmark models depending
on the metric of choice, our results showed that the BILSTM and
LSTMCNN model were generally the second-best models, after the
proposed FNET model. However, the deep learning (DNN and the GPR)
model yielded moderately accurate performance whereas the shallow
models (MARS, KRR, and MLP) produced the least accurate predicted
G values. It is noteworthy that further explanations of these model per-
formance variations (e.g., the causes of model bias and the underlying
physics) is not the primary interest of this study which is focused on
the performance analysis of only the proposed FNET model. However,
clear separation of this statistical performance no doubt highlights the
importance of using a wide range of model metrics to evaluate the
performance of different models, albeit at the same tested site. Next,
we present a detailed evaluation of the model performance discussed
in the following paragraphs.

Table 5 compares the models in terms of r, RMSE, and M AE as
the most popular first order metrics. Here, the correlation coefficient
measures the closeness between the observed and the predicted points
through a scatter plot to generate a least-square regression line as
shown in Fig. 9. The Root Mean Squared Error is the standard deviation
of the distribution of prediction errors or residuals, while the Mean
Absolute Error is measured as the average of the absolute prediction
errors. The RM SE penalizes the large prediction errors compared to
M AE prediction errors. The values of these statistical performance
metrics indicate a better predictive performance of the proposed FNET
compared to the alternative models. There is often a direct relationship
among these scores, for example, if » = 1, then RMSE = 0 when all
points lie on the regression line; hence, there are no errors. For instance,
the proposed FNET model for the Annerley substation produced higher
scores of r (~ 0.974) and lower scores of RMSE (~ 15.136 MW)
and M AE (~ 11.641 MW) followed by LSTMCNN and BILSTM models
(r 2 0.967 and 0.965; RM SE ~ 16.233 and 16.481 MW; M AE ~ 12.482
and 12.484 MW, respectively).

It is important to note that the other models such as the MLP, MARS
and KRR, registered the worst performance with r = 0.950, 0.936 and
0.926; RMSE =~ 19.579, 21.984 and 23.430 MW; MAE =~ 14.889,
17.219 and 17.593 MW, respectively. Similar results were also found for
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Table 5

The testing performance of the Deep Hybrid Fused Network (FNET) model vs.
benchmark models as measured by Correlation Coefficient (), Root Mean Square Error
(RMSE,MW) and Mean Absolute Error (M AE, MW).

Predictive Model

Sub-Station Model Performance Metrics

r RMSE MAE

FNET 0.974 15.136 11.641

BILSTM 0.965 16.481 12.484

LSTMCNN 0.967 16.233 12.482

Annerley DNN 0.964 16.854 12.900
MLP 0.950 19.579 14.889

KRR 0.926 23.480 17.593

GPR 0.957 18.533 14.110

MARS 0.936 21.984 17.219

FNET 0.947 66.045 49.392

BILSTM 0.930 69.167 51.999

LSTMCNN 0.932 71.417 55.177

Heathwood DNN 0.932 71.264 55.155
MLP 0.931 73.323 57.078

KRR 0.935 73.016 56.945

GPR 0.939 76.208 61.831

MARS 0.939 73.084 57.773

FNET 0.963 13.038 10.266

BILSTM 0.957 14.449 11.488

LSTMCNN 0.961 14.370 11.425

Laidley DNN 0.953 14.730 11.655
MLP 0.947 15.325 12.004

KRR 0.937 16.842 13.376

GPR 0.949 15.084 11.726

MARS 0.955 15.114 11.768

FNET 0.953 39.808 31.393

BILSTM 0.948 41.254 32.506

LSTMCNN 0.950 41.488 32.176

Zillmere DNN 0.944 42.657 33.573
MLP 0.923 49.463 39.458

KRR 0.933 46.721 36.709

GPR 0.947 41.621 32.880

MARS 0.947 41.679 32.922

Laidley and Zillmere sub-stations. For the Heathwood site, despite the
proposed FNET model still being the best model, the performance order
of the benchmark models appeared to vary depending on the choice of
the metric. For instance, the BILSTM model was the second-top model
based on the RM SE (~ 69.167 MW) and the M AE (~ 51.999 MW) but
the worst based on the r value (~ 0.930). By contrast, the GPR model
produced a high r (~ 0.939), just after the proposed FNET model but
also the highest RM SE (~ 76.208 MW) and M AE (~ 61.831 MW). This
variation of the model performance may be partly explained by the
differences in the distributions of G dataset in Heathwood, for example,
having a higher standard deviation with extreme values compared with
the other sub-stations (Figs. 5(a) and 5(b)) where the extreme values
may have more influences on the scores using square roots.

Likewise, Table 6 represents the relative error for the testing data
computed for the four substations, shown as the ratio of the RMSE
and the M AE to the mean value of the target variable. The scores
of the Relative Root Mean square Error (RRM S E) and Relative Mean
Absolute Error (RM AE) are therefore consistent with those in Table 5
that show the superior performance of the proposed FNET model.

In respect to the Skill Score (SS) presented in Fig. 10, we note that
the proposed FNET model has achieved the highest .S.S value, followed
by a relatively lower value for the BILSTM and LSTMCNN models for all
tested substations while the values for the KRR and GPR model are the
lowest particularly at the Annerley substation. Interestingly, all models
based on the S.S metric also registered comparative performance for
the Heathwood substation. It should also be noted that the persistence
model is used as the benchmark model for the computation of SS.
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Fig. 9. Variation presentation in the form of Scatter plots for the simulated daily G at all the modelled stations. The red line shows least-square regression y = mx + ¢, where y is
the G, (predicted), x is the Ga(observed), and r is the correlation coefficient. The name of each model is provided in Table 3.
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Fig. 10. Bar chart showing Skill Score Metric (S'S) of the proposed FNET and the alternative benchmark models. The persistence model considers that G at  equals the G at r+1

and assumes that electricity use patterns are stationary.

Therefore the persistence model assumes that the G at a particular time
will be the same as measured one day before for lead periods up to one
day, one week before for lead times of one week, and one year before
for lead times of one year.

To further explore the efficacy of the proposed FNET model, we
refer to Table 7 that represents the Standard Deviation of the Relative
Error (STDRE) and the Explained Variance (E,,) computed for the
testing phase of experiment. As expected, the proposed FNET model
has produced the best scores in terms of both metrics. For example, for
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the Laidley substation we note that STDRE =~ 4.369 and Evar ~ 0.860,
compared with the KRR model with STDRE ~ 5.742 and E,,, ~ 0.764
that appear to indicate the worst model. The distribution of absolute
prediction error (| PE|) were also visually explored further through the
box plots represented in Fig. 11 and empirical cumulative distribution
function (ECDF) in Fig. 12.

In Fig. 11, we note that the proposed FNET model for all substa-
tions documented a smaller | PE| division, which is in agreement with
Tables 5 and 6. On the other hand, the LSTMCNN model appears to
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Table 6

The geographic comparison of the Deep Hybrid Fused Network (FNET)) model vs.
other comparative models in terms of the relative errors (RRM SE, %) and (RM AE, %)
computed within the test sites. Note that the best model is boldfaced (blue).
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Table 7

The testing performance of the Deep Hybrid Fused Network (FNET) model vs.
LSTMCNN, DNN, BILSTM, MLP, KRR, GPR and MARS models as measured by Standard
Deviation of Relative Error (STDRE), and Explained Variance (E,,,).

Sub-Stations Predictive Model Model Performance Metrics

Sub-stations Predictive Model Model Performance Metrics

RRMSE RMAE STDRE Evar

FNET 4.48% 3.41% FNET 2.762 0.889

BILSTM 4.88% 3.67% BILSTM 3.105 0.868

LSTMCNN 4.80% 3.67% LSTMCNN 2.993 0.872

Annerley DNN 4.99% 3.78% Annerley DNN 3.078 0.865
MLP 5.79% 4.35% MLP 3.632 0.814

KRR 6.95% 5.13% KRR 4.476 0.733

GPR 5.48% 4.15% GPR 3.429 0.834

MARS 6.50% 5.10% MARS 3.923 0.766

FNET 9.32% 7.19% FNET 7.287 0.790

BILSTM 9.76% 7.75% BILSTM 8.128 0.747

LSTMCNN 10.08% 8.09% LSTMCNN 7.811 0.754

DNN 10.05% 8.09% DNN 7.777 0.754

Heathwood MLP 10.35% 8.33% Heathwood MLP 7.807 0.750
KRR 10.30% 8.26% KRR 7.583 0.758

GPR 10.75% 8.91% GPR 7.660 0.777

MARS 10.31% 8.35% MARS 7.343 0.776

FNET 6.67% 5.43% FNET 4.369 0.860

BILSTM 7.39% 5.89% BILSTM 4571 0.839

LSTMCNN 7.35% 5.81% LSTMCNN 4579 0.850

Laidiey DNN 7.53% 6.19% Laidiey DNN 5.234 0.823
MLP 7.84% 6.35% MLP 5.411 0.805

KRR 8.61% 7.00% KRR 5.742 0.764

GPR 7.71% 6.14% GPR 5.201 0.810

MARS 7.73% 6.01% MARS 4.849 0.830

FNET 5.73% 4.55% FNET 3.555 0.824

BILSTM 5.94% 4.67% BILSTM 3.576 0.808

LSTMCNN 5.98% 4.57% LSTMCNN 3.570 0.813

Jilmere DNN 6.14% 4.84% Jillmere DNN 3.764 0.795
MLP 7.12% 5.69% MLP 4202 0.727

KRR 6.73% 5.29% KRR 4109 0.756

GPR 5.99% 477% GPR 3.669 0.806

MARS 6.00% 477% MARS 3.646 0.804

have an immediate performance compared to the FNET model followed
by the BILSTM, DNN, GPR, MLP, KRR, and the MARS model. On
the contrary, because the distributions created by the proposed FNET
model were evenly dispersed with a limited number of outliers points
for all four substations, the box plots show a clear distinction in the
model performance. In particular, the ECDF line plots representing
the benchmark models showed a very close profile for all of the four
substations. The ECDF profile of the proposed FNET, on the other
hand, revealed a remarkably narrow profile constrained within the
smallest range at all of the four substations.

We now show Fig. 13 that depict a detailed account of the predictive
skill of the proposed FNET model where the frequency distribution of
| PE| caused by the FNET vs. the alternative models is shown. Notably,
the value of | PE| achieved by the proposed FNET model was within the
lowest range for all of the four substations. Consequently, for all four
substations, the box plots in Fig. 11, together with the ECDF plots
in Fig. 12, and cumulative frequency plot in Fig. 13 further indicate
the proposed FNET model’s superiority in daily G prediction when
compared with the competing benchmark models.

The efficacy of the proposed FNET model was also evaluated using
the Willmott’s Index (Ey, ), Nash-Sutcliffe Coefficient (Eyg) and the
Legates & McCabe’s (E; ;,) index (Table 8). It should be noted that Ey,,
is an improved metric over RMSE and M AE which aims to over-
come the insensitivity issues when differences between observed and
predicted G values are not squared. Considering all four substations, the
proposed FNET model seems to perform the best to attain the highest
Ey, Eys, and E;,, except for the case of Zillmere sub-station with
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Ey; ~ 0.878 to fall just after the LSTMCNN model with Ey,; ~ 0.884.
For example, at the Laidley study site, the proposed FNET model seems
to yield Ey,; ~ 0.891, Eyg =~ 0.859, and E;,, ~ 0.603 followed by the
LSTMCNN model with Ey,; ~ 0.891, Eyg ~ 0.832, and E,,; ~ 0.558
and BILSTM with Ey,; =~ 0.885, Eyg ~ 0.828, and E;,, = 0.556.
These metrics when computed for the MLP and KRR model appear to
be the lowest with Ej,; ~ 0.870 and 0.869, Eyg ~ 0.804 and 0.764,
and E;, =~ 0.536 and 0.483, respectively. In corroboration with the
previous findings, the Ey,;, Eyg, and the E;,, values yield consistent
results and therefore indicate that the deep hybrid FNET model is able
to predict the G values more correctly than the benchmark models.
We now revert to Absolute Percentage Bias (APB, %) and Kling—
Gupta Efficiency (KGE), as per Fig. 14(a, and the global performance
indicator (GPI), as per Fig. 14(b). With the lowest AP B and the highest
KGE and GPI, we note that the proposed FNET model outperformed
all benchmark models. According to the GPI, the lowest performing
model were the KRR and the MARS model for daily G predictions.
Fig. 15 represents the performance comparison using Combined Per-
formance Index (CPI), where a lower percentage of CPI could imply
a more robust model. While the results reconfirmed the superiority of
the proposed FNET model across all substations, it is interesting that the
KRR model, which is the worst model according to the other metrics,
yielded the second-best percentage of CPI, which lies just after the
value for the proposed FNET model for the Laidley study site. These
findings also reaffirm that the proposed FNET model outperforms the
benchmark models for daily prediction of electricity demand.
Although various error indicators so far showed the differences
in predictive accuracy of models, these results need further careful
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consideration as the variations in model accuracy could be driven
by the nature of the data and its features. To address this issue,
we jointly apply the Diebold-Mariano (DM) and Harvey-Leybourne—
Newbold (HLN) statistical test to quantify the differences in accuracy
between these models, aiming to determine whether two predictions
are significantly different.

Tables 9 and 10 show DM, HLN and A. Importantly, both test
statistics indicate superior performance of the proposed FNET model
relative to the benchmark models, certainly depicts the improvements
made on the LSTMCNN and BILSTM models in accordance with the
absolute values of DM being larger than 1.96 - the z — score of 5%
significance level. The observed differences between LSTMCNN and
FNET models are also quite significant with the absolute value of the
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predicted by the LSTMCNN, DNN, BILSTM, MLP, KRR, GPR and MARS models against the
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DM =~ 2.9547 > 1.96. Similarly, between the BILSTM and the proposed
FNET model, the absolute value of the DM ~ 2.1264 > 1.96.

In terms of the A shown Table 10, when the LSTMCNN model is
compared with the FNET model, the model improvement is evident in
RMSE, APB and KGE as being ~ 7.25%,~ 7.82%,~ 7.23%, respec-
tively (Annerley substation), ~ 8.13%,~ 1.68%,~ 11.71%, respectively
(Heathwood substation), ~ 10.22%,~ 6.34%,~ 11.29%, respectively
(Laidley substation) and =~ .22%, ~ 3.71%, ~ 2.49% (Zillmere substation).
Therefore the DM, HLN and Promoting Percentages further ascertain
that the predictive capability of the FNET model is considerably better
than the benchmark models.

Fig. 16 shows the directional symmetry (DS) criteria whereby the
proposed FNET model scored the highest DS 87.74%, and this

~
~
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Fig. 13. Cumulative frequency of the Prediction Error(|PE|(MW)) for four substations at (a) Annerley, (b) Heathwood, (c) Laidley and (d) Zillmere.
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Fig. 14. (a) Absolute Percentage Bias (APB, %) and Kling-Gupta Efficiency (KGE), (b) Global Performance Indicator (GPI) used to evaluate the proposed FNET model in respect

to several benchmark models.

value remained considerably higher than those of seven other mod-
els by magnitude of 23-26%. Fig. 17 provides additional information
on the performance of the FNET and benchmark models by using
Taylor diagrams. In particular, the Taylor diagram depicts the three
complementary model performance that comprises of the Standard
Deviation, Centralized Root Mean Square Error (CRM SE), and the
Correlation between predicted and observed electricity demand in the
testing phase. The diagrams also indicate that the simulated point by
the FNET model is closer to the observation (OBS) compared with other
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benchmark models and implies that the predictions derived from FNET
and the observations have a similar standard deviation and higher
correlation (~ 0.93), and CRM SE is closer to zero. In congruence with
Table 9, Table 10, Figs. 16 and 17, we can confirm that the proposed
FNET model demonstrated better and reliable prediction capability at
all four substations.
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Fig. 16. The criteria of directional symmetry (D.S) assessment for the introduced model (i.e., FNET) and the benchmark models.

4.1.1. Uncertainty evaluation

To explore the errors encountered in point-based predictions of
daily electricity demand dataset, we now quantify the inherent uncer-
tainties generated by the proposed FNET and benchmark models. We
express this uncertainty as the prediction interval PIs of the underlying
distribution of the predictive model errors in the testing phase. While
the PIs can provide a lower bound and an upper bound for these
predictions, the modelling process described earlier can only provide
a point-based prediction. Therefore, as explained in Section 3.1.4, the
residual bootstrap approach was able to compute the uncertainties for
each model, as shown in Tables 11 and 12.

It is evident that the PICP of the proposed FNET model was not
significantly different from that of the benchmark models evaluated at
the 95% confidence level. However, the M PIW values are relatively
higher, and the F values are relatively lower. In particular, the M PIW
value for the daily prediction of G emulated by the proposed FNET

22

model is ~ 57.97 for the Annerley substation compared with a value of
~ 64.92, ~ 64.90, ~ 67.44, ~ 82.83, ~ 101.24, ~ 70.65, and ~ 94.06 for
the BILSTM, LSTMCNN, DNN, MLP, KRR, GPR and the MARS models,
respectively. Among the benchmark models, we note that the KRR
model has attained the highest value of M PIW compared with the
other predictive models.

It is important to note that there was an ~ 11% reduction in the
magnitude of M PIW when comparing the proposed FNET model with
the BILSTM and LSTMCNN models. Similarly, for the case of DNN, MLP,
GPR, KRR and MARS models, we noted a reduction in the M PIW
value of ~ 14%, ~ 30%, ~ 18%, ~ 38%, and ~ 42%, respectively, for
the Annerley substation. A similar trend could also be seen for the
Heathwood, Laidley and Zillmere substations.

When referred to the more comprehensive index, which is actually
the weighted harmonic average of the PICP and 1/M PIW metrics
used to evaluate the quality of the PIs - F value, the proposed FNET
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Fig. 17. Two dimension graphical presentation “Taylor diagram” for the predictive FNET model evaluation with the benchmark models of daily G over the testing phase.

model registered larger values than that of the benchmark models for
all tested substations. In respect to the sharpness of the generated
PI, denoted as the Winkler Score (W.S), the proposed FNET model
also appeared quite superior. In fact, the WS tends to reward the
narrow PJ values and penalizes them if the targets are not successfully
captured by the PI value whereas a good quality PI is expected to
have a lower absolute value of the WS for a given confidence level.
Table 12 presents the WS at the 95% confidence level and the Average
Relative Interval Width ARI L value derived from the PIs. Evidently,
the proposed FNET model had a smaller magnitude of WS and ARIL
compared with the benchmark models, for example, the Annerley site
where the FNET model generated WS ~ 68.251 and ARIL ~ 0.174
compared with a value of W.S ~ 74.54 and ARIL ~ 0.195 noted for the
second best model (i.e., the LSTMCNN) and a value of WS ~ 112.162
and ARI L ~ 0.305 noted for the worst performing (i.e., the KRR) model.

Fig. 18 is a visual representation of the quality of PIs for eight
models used in daily prediction of G in testing phase. It is observable
that the predicted G falls within the lower bound and the upper bound,
as shown by the grey area, and thus provides a good probability of the
predicted value - a factor that is significantly beneficial to decision-
makers in the energy industry. In Fig. 18, we also show the Continuous
Ranked Probability Score (CRPS) and the PI Normalized Average
Width (PINAW) for all models. Importantly, the proposed FNET
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model has produced the lowest value of CRP.S and PIN AW (CRPS ~
14.536, PINAW =~ 0.301 for Annerley, CRPS ~ 65302, PIN AW
0.387 for Heathwood, CRPS ~ 13.415, PINAW =~ 0.251 for Laidley,
and CRPS ~ 38.646, PIN AW = 0.244 for Zillmere stations) relative to
all benchmark models. Overall, these results ascertain that the proposed
FNET model has superior performance in terms of both confidence
intervals and point-based prediction of daily electricity demand.

~

4.1.2. SHAP interpretation of the FNET model

The SHAP violin summary plots (Fig. 19) for the four stations
illustrate the impact of various features on the model’s predictions
(global explanation). The x —axis represents the SHAP value, indicating
the magnitude and direction of each feature’s impact on the model’s
output. Positive SHAP values suggest that the feature contributes to an
increase in the predicted value, while negative SHAP values indicate
a decrease. The y — axis lists the features in descending order of their
importance, from top to bottom. Each point on the plot corresponds
to an instance from the dataset, with the colour gradient from blue to
red representing the feature value: blue for low values and red for high
values. This colour-coding helps to visualize the relationship between
feature values and their corresponding SHAP values, revealing patterns
and insights about how each feature influences the model’s predictions
across different instances.
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Fig. 18. Daily predicted G and PIs at the 95% confidence level. Continuously Ranked Probability Score (CRPS) and Prediction Interval Normalized Average Width (PINAW)
are shown. (a) Annerley, (b) Heathwood, (c) Laidley, (d) Zillmere substations. For conciseness, only the last 60 days of the predicted G values are shown.

+ Heathwood Substation: The most influential features are G,_,), with a positive impact on the model output, while high values of
G(_6)» G2y G(—s), and Etng,_,,. The plot indicates that G,_,, and Etn,_;, tend to have a negative impact.
G(,_¢) have the largest positive impact on the model output when * Zillmere Substation: In this location, G,_;, GSR,_;, and
their values are high (red points), whereas lower values (blue Tmin_,, are prominent features. The V P,_,, and V Pd,,_,, are
points) of these features have a negative impact. Tmax,_,, also also significant. The plot reveals that high values of G,_,, and
shows a notable impact but to a lesser extent. GSR_,, contribute positively to the model output, while high
+ Annerley Substation: Similar to Heathwood, G_,), G_s), and values of Tmin_,y and V P,_,, contribute negatively.

Etn_;, are key predictors. The Esyn,_;, and V P,_;, features also
play significant roles. The plot shows that high values of G,_;,
and G(,_s, contribute positively to the model output, whereas high

For each location, the importance of features such as historical load
values G, temperature Tmin, Tmax, and humidity Rhmax, Rhmin varies,
but generally, recent historical load G,_,, and evapotranspiration Etn

values of Etn_;) and V' Pd,_, contribute negatively. have significant impacts. Features like G,_j, and Etn usually have
+ Laidley Substation: Here, G,_,), G,_g), and Etn,_,, are the most positive impacts, meaning higher values of these features increase
impactful features. The Tmax_,, and Tmin_s, also show consid- the model output. Other features like V' P and V Pd can have mixed

erable influence. High values of G,_,, and G_, are associated impacts depending on their values. The impact of each feature can vary
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Fig. 18. (continued).

significantly across different locations, indicating that local conditions
and historical patterns play a crucial role in the model’s predictions.
The SHAP bar plots in Fig. 20 for instance 50 across Heathwood,
Zillmere, Annerley, and Laidley substation provide detailed insights
into the importance and impact of individual features for specific
predictions (local explanation). The analysis is summarized below:

» For Heathwood substation, the most impactful features include
G-y GSR(_;), and G(,_,. Among these, G,_;, and GSR,_;,
have positive impacts. This finding is consistent with the global
summary, where historical load values and meteorological vari-
ables such as G.SR and Tmax are consistently important predic-
tors.

In Zillmere substation, the major contributing features are G,_),
G(—¢)» and GSR,_,,. Here, G,_, and G,_g) show significant neg-
ative impacts. This observation aligns with the global importance
of historical load values and meteorological features like Ern and
Tmax.

25

* For Annerley substation, the dominant features include G,_,),
Etng_,), and G(,._s,. In this instance, G,_, and Etn;,_,, exhibit
substantial negative impacts, reflecting the global significance of
historical load values and meteorological variables such as Tmin
and Rhmax.

In Laidley substation, the key features are G,_,,, Tmin, and V P.
Here, G,_;, shows a strong positive impact, consistent with the
global importance of historical load values and meteorological
variables like Tmin and GSR.

This comparative analysis highlights the consistency of historical
load values (G) as significant predictors across locations in both
instance-specific and global explanations. The exact impact of fea-
tures varies based on local conditions and specific data patterns.

The detailed instance-specific SHAP values provide insights into
how the model makes predictions for specific instances, while
the global summary plots offer an overarching view of feature
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Fig. 18. (continued).

importance across the dataset. Emphasizing both perspectives is
crucial for comprehensive model interpretability.

The Fig. 21 presents twelve SHAP (SHapley Additive exPlana-
tions) dependence plots, each illustrating the relationship between
various predictors and their influence on the model’s predictions for
the Zillmere sub-station. These plots are organized in a grid layout
to allow for a detailed comparison of multiple features. The analysed
features include lagged values of G (e.g., G(_y), Gz, and G,_3)) as
well as meteorological variables such as maximum temperature, vapour
pressure, and vapour pressure deficit. A key observation is that the
lagged values of G show a consistently strong, predominantly positive
impact on the model’s output, with the influence gradually weakening
as the lag increases. For example, the first two rows display dependence
plots for G lagged values (e.g., G(_y), Gy_,), and G(,_3)), revealing a
clear pattern where higher G values correspond to larger SHAP values,
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which suggests that higher values of G enhance the model’s predictions.
This effect is particularly noticeable in the first few lags (G_, to
G(,_4)), where SHAP values increase almost linearly with higher G
values. In contrast, the meteorological features—such as maximum
temperature, vapour pressure, and vapour pressure deficit—exhibit
more complex, nonlinear contributions to the model’s predictions,
largely depending on their interactions with other variables. The third
row introduces these environmental variables, including Tmax_;),
V P,_y), and V Pd_,,, and reveals intricate, nonlinear relationships
between these features and the SHAP values. For instance, Tmax_i,
generally displays an increasing trend, indicating that higher tem-
peratures tend to positively contribute to the model’s predictions.
However, the spread in SHAP values suggests that this relationship
is modulated by interactions with other features. Moreover, V P,_j,
and V Pd,,_,, show varying contributions, implying that their influence
can shift between positive and negative, depending on interactions
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Fig. 18. (continued).

with other variables. The colour gradients in the plots help visualize
these interactions, highlighting that some features, like G,_,, and
G(;_3), display SHAP values that shift based on the influence of another
feature, as shown by the colour scale. Several features, such as G,_s,
and Rhmax,_;), exhibit more scattered, nonlinear relationships with the
target variable, indicating that their contributions to the model’s pre-
dictions are less straightforward and depend heavily on their specific
values and interactions with other variables.

The SHAP dependence plot for Etn;_;, in Fig. 21 (last row first
column) provides a detailed view of the interaction between Etn_j,
and G_,, revealing important insights into how these two features
jointly influence the model’s predictions. As the values of En,_;, in-
crease, the corresponding SHAP values also rise, signifying a generally
positive contribution of Etn,_,, to the predictions. This trend indicates
that higher levels of Ein_;, consistently push the model’s output
upward, making Etn_;, a key feature in determining the prediction

27

accuracy. What makes this relationship particularly interesting is the
interaction with G(_,), which is represented by the colour gradient
in the plot. As the colour shifts from blue to red, corresponding to
increasing values of G,_), it becomes evident that the effect of Etn_;,
on the model’s predictions intensifies when G,_,, is high. Specifically,
when G,_,, takes on higher values, the SHAP values for En,_;) rise
more steeply, indicating a strong positive interaction between these two
variables. This suggests that the impact of Etn,_;, is not independent;
rather, it is amplified in scenarios where G,_;, is elevated, meaning
the two features work together to enhance the model’s predictions.
Additionally, the relationship between Etn,_;, and its SHAP values
is not purely linear. There is a noticeable spread in SHAP values,
particularly at intermediate levels of Etn_,), which reflects a more
complex interaction. This spread suggests that the influence of Etn_,,
on the model’s output is modulated by its interaction with G,_;), as
well as potentially other features. In particular, as G,_,, changes, the
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Table 8

The performance of the Deep Hybrid Fused Network (FNET) model vs. LSTMCNN, DNN,
BILSTM, MLP, KRR, GPR and MARS models using the Willmott’s Index (Ey, ), Nash—
Sutcliffe Coefficient (Eyg), and the Legates & McCabe’s (E,,,) Index of Agreement.
Note that the best model is boldfaced (blue).

Sub-Station Predictive Model

Model Performance Metrics

EWI ENS ELM
ENET 0.919 0.889  0.676
BILSTM 0914  0.868  0.653
LSTMCNN 0910  0.872  0.653
Annerley DNN 0915  0.862  0.641
MLP 0884 0814  0.586
KRR 0827 0732 0511
GPR 0900 0833  0.608
MARS 0819 0765  0.521
FNET 0.889 0760  0.517
BILSTM 0879 0732  0.492
LSTMCNN 0876 0721  0.461
DNN 0875 0722  0.461
Heathwood 0870  0.709  0.442
KRR 0869 0713  0.443
GPR 0873 0700  0.39
MARS 0878 0718  0.435
FNET 0.891  0.859  0.603
BILSTM 0885  0.828  0.556
LSTMCNN 0891 0832 0558
Laidley DNN 0854  0.820  0.549
MLP 0850  0.804  0.536
KRR 0.806  0.764  0.483
GPR 0863  0.810  0.546
MARS 0879 0813  0.545
FNET 0878  0.821  0.580
BILSTM 0872  0.807  0.565
LSTMCNN 0.884  0.807  0.570
Jillmere DNN 0863 0794  0.551
MLP 0798 0724  0.472
KRR 0822 0754  0.509
GPR 0862  0.804  0.560
MARS 0869  0.804  0.560

predictive power of Etn_j, shifts, resulting in varying levels of SHAP
values across different points in the plot. In conclusion, the SHAP de-
pendence plot underscores the synergistic relationship between Etn,_,,
and G,_,,. While Etn,_,, generally contributes positively to the model’s
predictions, its impact is magnified in the presence of higher G_j,
values. This interaction points to a more intricate and dynamic in-
terplay between these two features, suggesting that both need to be
considered together for a fuller understanding of the model’s behaviour
and predictions.

4.1.3. Computational resource requirements

The computational time of a prediction model is critical for utility
companies, especially in scenarios involving online training. In such
cases, daily electricity demand observations are continually incorpo-
rated into the training dataset for model retraining, making compu-
tational time a key factor. The time required for electricity demand
prediction is influenced by factors such as the length of the moving
window, the number of predictors, and, most significantly, the choice
of prediction model. Table 13 compares the computation times of
the proposed FNET model with seven benchmark models. The results
indicate that the proposed model is less computationally efficient than
the others. However, once the model is trained, it remains operational
for an extended period. Additionally, the testing time is under one
minute, making the proposed model suitable for practical applications.
The simulations were performed on an Intel® Core™ i9 10th Generation
processor, operating at 3.8 GHz with 32 GB of memory.
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5. Conclusions and future research directions

Based on the historical electricity demand (G) and a set of local
climate data for several substations in Queensland, Australia, a deep
learning-based hybrid Deeply Fused Network (i.e., the FNET model)
has been proposed and evaluated its efficacy for daily electricity de-
mand (G) point-based as well as confidence interval predictions. Using
different statistical evaluation methods, the proposed FNET model was
compared with BILSTM, LSTMCNN, DNN, MARS, MLP, KRR, and GPR
models to determine its ability in predicting the daily G. According to
the results, the proposed FNET model achieved high accuracy among
all compared models. The main reason behind this is that the FNET
model has high ability in capturing the non-linearity of electricity
demand, local climate data and the long-term temporal dependencies
between the data points. The other models simply could not match the
predictive power of FNET. Furthermore, by employing SHAP analysis,
this study delved into the inner workings of the black-box machine
learning and deep learning models. This method also illuminated the
intricate relationships between variables and their impact on model
predictions. The results underscored the pivotal role of historical load
values (G) and evapotranspiration (Etn) in shaping electricity demand
prediction.

Based on contributions of this study, we aver that there may be
significant advantages in adopting the proposed FNET model by current
energy industries. The debates in the energy sector are emphasizing a
need for decarbonization of the global economy [90-92]. Therefore,
a greater proportion of renewable energies is becoming the norm in
future electricity supply systems. Energy usage in buildings as well
as emissions from vehicles in particular are showing the most signif-
icant potential in cost-effective emissions reductions. For energy use
in buildings, the adoption of the proposed FNET model for electricity
demand management and including key predictor variables such as
power consumption by building appliances is a crucial factor that can
be included in re-training the proposed FNET model. Likewise, for
the transport sector, the emissions reductions can be met effectively
through a promotion of electric vehicles (EVs) and utilizing solar (or
other forms of renewable energies) for EV charging [93,94]. In order
to create a low carbon roadmap and future a carbon neutral pathway of
the building sector and especially tackling the carbon emission mitiga-
tion in building operations, rooftop solar systems, and large-scale solar
farms supporting both the energy requirements in buildings as well as
that of the transport sector, could a potential solution. These have been
clearly outlined in recent reviews 2024challenges where synergizing
technical innovation, developing advanced building technologies and
renewable energy solutions have already been outlined. Therefore, the
proposed FNET model may be a contributory automation technology
further investigated for modelling energy efficiency in buildings, pre-
dicting demand and supply of solar (or other renewables) and including
weather variables for short-term and climate variables for long-term
demand modelling.

In the proposed FNET model, uncertainty values associated with
G can be addressed statistically by generating interval predictions
that take into account the variability of data features. In order to
evaluate the nature of electricity supply mix, requirements for installed
storage capacities, or financial planning of energy prices or system
costs, it is essential to gain a better understanding of these predicted
uncertainties in electricity demand patterns. Furthermore, the proposed
FNET model offers an indication of the extent to which G values
are underestimated or overestimated, which can be extremely useful
when scheduling energy supply reserves, implementing energy policy,
managing operational demands of the energy sector, etc. The model
uses a combination of machine learning algorithms to identify and
quantify the discrepancies between the observed and predicted energy
consumption. This information can be used to inform decisions about
energy supply, policy, and operational management, helping to ensure
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The values of the improvement percentages A of the proposed and benchmark models over the testing modelling phase. A, s, indicates the
Root Mean Square Error, g, indicates the Kling Gupta Efficiency, and 1,,, indicates the Absolute Percentage Bias.

Predictive models  Annerley Heathwood Laidley Zillmere

ArmsE  Aapp AkGeE  ARMSE  “apB Ak  ArmSE  “apB AkGE  ArmMSE  AapB AkGE
BILSTM 8.89 7.24 3.24 4.73 5.28 9.54 10.82 11.90 5.31 3.63 3.55 4.77
LSTMCNN 7.25 7.23 7.82 8.13 11.71 1.68 10.22 11.29 6.34 4.22 2.49 3.71
DNN 11.35 10.81 3.10 7.90 11.67 2.78 1298 13.52 7.41 7.16 6.94 4.39
MLP 29.35 2791 3.79 11.02 15.56 3.56 17.54 1693 6.34 24.25 25.69 11.43
KRR 55.13 51.13 8.38 10.55 15.29 9.08 29.18 30.29 15.97 17.37 16.93 11.61
GPR 22.44 21.21 12.17 15.39 25.18 1.37 15.69 14.22 4.57 4.55 4.74 5.19
MARS 45.24 47.92 12,72 10.66 16.97 2.15 1592 14.62 5.24 4.70 4.87 2.55

Table 10

Prediction modelling evaluation based on Diebold-Mariano (DM) Harvey-Leybourne-Newbold (H LN) over the testing
phase. For the case of positive results, it indicates that rows superior results to the column. However, if it is negative,

then otherwise. Boldfaced blue indicates the best results.

a)

FNET | BILSTM | LSTMCNN | DNN MLP KRR GPR MARS
FNET 2.1264 | 2.9547 3.4756 | 5.3419 | 6.4246 4.109 3.8052
BILSTM 2.8684 3.4618 | 6.8822 | 5.0853 3.4455 2.3604
LSTMCNN 1.5211 | 5.6053 | 3.8864 3.2022 1.7243
DNN 5.3677 | 3.6333 2.9941 1.5141
MLP —0.4155 | —0.9883 | —1.7821
KRR —-0.6437 | —1.4779
GPR 1.8058
b)

FNET | BILSTM | LSTMCNN | DNN MLP KRR GPR MARS
FNET 2.1602 | 3.0017 3.5309 | 5.4269 | 6.5268 4.1744 3.8657
BILSTM 2.9141 3.5169 | 6.9917 | 5.1662 3.5004 2.3979
LSTMCNN 1.5453 | 5.6945 | 3.9482 3.2531 1.7518
DNN 5.4531 | 3.6911 3.0418 1.5382
MLP —0.4221 | -1.0041 | -1.8105
KRR -0.6539 | —-1.5014
GPR —-1.8345

Table 11

The attained prediction results of 95% Probabilistic confidence with respect to prediction interval coverage probability (PICP), mean prediction interval width (M PIW) and F
index for four substations. F index is defined as the weighted harmonic average of PICP and 1/M PIW and evaluates the quality of interval prediction. Boldfaced blue indicates

the best modelling results.

Predictive models ~ Annerley Heathwood Laidley Zillmere
PICP MPIW Fx 1072 PICP MPIW F x 1072 PICP MPIW F x 1072 PICP MPIW F x 1072

FNET 95.07 57.97 3.449 95.05 256.63 0.779 95.07 53.42 3.74 94.79 154.58 1.294
BILSTM 95.07 64.92 3.080 95.05 263.14 0.760 95.07 56.21 3.56 95.07 155.69 1.285
LSTMCNN 94.52 64.90 3.081 95.05 258.88 0.773 95.07 54.03 3.70 95.07 158.67 1.260
DNN 95.34 67.44 2.965 95.33 263.10 0.760 95.07 60.40 3.31 94.79 170.18 1.175
MLP 94.79 82.83 2.414 95.05 270.26 0.740 95.07 63.64 3.14 95.07 190.76 1.048
KRR 95.07 101.24 1.975 95.05 267.77 0.747 95.07 71.66 2.79 95.07 187.38 1.067
GPR 95.07 70.65 2.830 95.05 260.40 0.768 95.07 63.97 3.13 94.79 155.09 1.289
MARS 95.07 94.06 2.126 94.78 264.81 0.755 95.07 60.57 3.30 94.79 158.20 1.264

that the energy sector can meet its demand in a cost-effective and re-
liable manner. By pairing machine learning algorithms with data from
sources such as weather forecasts, population estimates, and energy
market trends, the model can accurately predict energy consumption
and identify areas where energy supply and demand are mismatched.
The obtained information could be utilized as essential input for de-
cisions regarding energy supply, policy, and operational management,
thereby helping to ensure the reliability and cost-effectiveness of energy
supplies. Therefore, improved demand forecasting can lead to better
resource allocation, reduced costs, and enhanced grid stability.

By using the Deeply Fusion Network (FNET) modelling approaches
presented in this paper, decision-makers can also gain clearer under-
standing of the future G required for integrating electricity demand

and renewable energy supply, as well as associated uncertainty factors,
in a highly stochastic environment, enabling more informed business
decisions in terms of capacity and quality. Future research work may
focus on the effect of integrated human behaviour on point and confi-
dence interval predictions, for example the effects of social gatherings
and seasonal effects on the prediction of electricity demand and what
changes may be required in the proposed FNET model in order to
account for these influences. Furthermore, evapotranspiration (Etn),
evaporation (Esyn) and vapour pressure (VP) for Annerley and Laidley
had a major influence on FNET model output, but not for Heathwood
and Zillmere (see Fig. 19). Despite the fact that the exact reason for
this is not clear from the present study, we note the significant effect
of evapotranspiration on electricity demand in this area could inform
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Fig. 21. SHAP dependence plot. Interaction effects of predictors for G prediction for Zillmere sub-station.

energy policies and strategies. The reasons for this are that differential
effects of climate change on average and peak demand for heating and
cooling have already been noted, for example, across the contiguous
USA [95]. In one study [96], researchers found that humidity plays
a crucial role in predicting summer electricity demand. According to
their study, air temperature factor was necessary but not sufficient to
characterize residential space cooling demand during summer months,
but humidity levels played a critical role in capturing true heat sen-
sations. The use of air conditioning may therefore be affected by such
a sensation, for example, in Annerley and Laidley where Etn and VP
were pivotal indicators. Therefore, not taking humidity into account
when modelling electricity demand can lead to underestimation of
climate sensitivity and have an impact on key decisions. Further studies
are warranted to specifically examine why evaporation (and vapour
pressure) had a significant impact on electricity demand while solar
radiation and maximum temperature did not. As a result, we acknowl-
edge these limitations, so a future study could provide insights that
could be utilized by utilities and market regulators to help them make
informed decisions in these regions where evaporation (and vapour
pressure) are significant determinants of electricity demand.

For future studies related to expanding the practicality of the model
and methods presented, one may also argue that the proposed FNET
model should be improved with more diverse input from local re-
newable energy platforms to create a more dynamic and responsive
model for predictive modelling in a mixed grid. Thus, the FNET model
can offer significant scientific evidence to help energy market workers
achieve high-performance quality with sound energy policy decisions.
Likewise, exploring the use of other climate variables, extending the
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FNET model to other geographical regions and incorporating addi-
tional machine learning techniques, would provide valuable insights for
further advancing the field of electricity demand prediction.

In this study, we have used 11 different climate-based predictors
to build the FNET model. However, the model’s effectiveness might
heavily rely on the quality and availability of climate data especially
for other regions not tested in this study. Therefore, addressing the
potential data scarcity or variability in different regions in future
studies would strengthen the application of the study. This could in-
clude capturing wider satellite data for short-term demand predictions,
particularly, using Himawari satellite variables (at 10-minute scales),
medium-scale (hourly or daily) variables from the European Centre
for Medium Range Weather Forecasting (ECMWF) and other ground
measurement sites where available. Another limitation of this study is
the restricted testing of the proposed FNET model to specifically 4 study
sites (i.e., Annerley, Heathwood, Laidley and Zillmere). Therefore,
testing the model on additional datasets from various geographical
locations could demonstrate its generalizability and robustness across
different energy markets. In this study, we have already presented
comparisons of FNET model with 7 different models. However, given
the rapidly evolving area of artificial intelligence, in future studies, one
may test the proposed FNET with several models, including newer or
alternative models for a more comprehensive benchmark.

The proposed FNET model uses residual bootstrapping for uncer-
tainty estimation, however exploring other techniques might provide
additional insights into model confidence and reliability. Among these
methods are jackknife resampling, in which one observation is sys-
tematically left out and the model is calculated every time, Bayesian
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Table 12

The attained prediction results of the Probabilistic for 95% confidence based on the
Winkler score (W.S) and the average relative interval length (ARIL) for the modelled
substations. Boldfaced blue indicate the best results.

Study site Predictive model Model Performance Metrics
WS ARIL

FNET 68.251 0.174

BILSTM 75.246 0.195

LSTMCNN 74.540 0.195
Annerley DNN 77.278 0.203

MLP 92.966 0.249

KRR 112.162 0.305

GPR 84.084 0.213

MARS 103.254 0.283

FNET 307.252 0.378

BILSTM 312.481 0.387

LSTMCNN 308.814 0.381

DNN 311.791 0.387
Heathwood 310.630 0.398

KRR 312.499 0.394

GPR 309.803 0.383

MARS 309.732 0.390

FNET 58.103 0.054

BILSTM 61.553 0.067

LSTMCNN 59.321 0.059
Laidley DNN 64.916 0.057

MLP 69.660 0.062

KRR 77.522 0.061

GPR 70.506 0.058

MARS 65.386 0.080

FNET 173.923 0.227

BILSTM 174.667 0.228

LSTMCNN 176.950 0.233
Zillmere DNN 184.750 0.249

MLP 212.497 0.280

KRR 202.654 0.275

GPR 178.459 0.229

MARS 181.202 0.232

Table 13
Average of computation time.
Model Construction time Testing
(Training and
Validation)

FNET 89 min 54 s
BILSTM 17 min 42s
LSTMCNN 18 min 44 s
DNN 10 min 17 s
MLP 8 min 14 s
KRR 7 min 14 s
GPR 15 min 25s
MARS 8 min 18 s

methods with a probabilistic framework for estimating uncertainty,
and ensemble methods in which multiple models (ensembles) are gen-
erated by training on different subsets of data or with a variety of
random initializations, in order to estimate uncertainties based on a
spread of predictions. It is also possible to estimate the conditional
quantiles of the response variable instead of estimating a single value.
Other potential candidates include conformal prediction where a non-
parametric approach is used to estimate uncertainty, variance estimates
from gradient boosting, and Bayesian Neural Networks that can intro-
duce uncertainty into the model weights themselves by placing prior
distributions on the weights are useful candidates for future tests on
uncertainty estimation of the proposed FNET model. Finally, from a
practical point of view, the integration of CNN and BILSTM may be
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practically difficult although study has demonstrated its efficacy for 4
of the study sites in Queensland. To address this limitation, we need
to further test the integrated CNN-BILSTM models for a wider range if
study sites, to fully ascertain their practical deployment.

CRediT authorship contribution statement

Sujan Ghimire: Writing — original draft, Validation, Software, Re-
sources, Project administration, Methodology, Investigation, Funding
acquisition, Formal analysis, Data curation, Conceptualization. Mo-
hanad S. AL-Musaylh: Writing - review & editing, Visualization, Val-
idation. Thong Nguyen-Huy: Writing — review & editing, Visualiza-
tion, Validation, Investigation. Ravinesh C. Deo: Writing — review &
editing, Visualization, Supervision, Resources, Project administration.
Rajendra Acharya: Writing — review & editing. David Casillas-Pérez:
Writing — review & editing. Zaher Mundher Yaseen: Writing — review
& editing. Sancho Salcedo-Sanz: Writing — review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

Data were acquired from ENERGEX (https://www.energex.com.au).

References
[1]1 Assembly UNG, et al. Resolution adopted by the general assembly on 25
september 2015. 2015, Washington: United Nations.
Al-Musaylh MS, Deo RC, Adamowski JF, Li Y. Short-term electricity demand
forecasting with MARS, SVR and ARIMA models using aggregated demand data
in Queensland, Australia. Adv Eng Inform 2018;35:1-16.
Al-Musaylh MS, Deo RC, Adamowski JF, Li Y. Short-term electricity demand fore-
casting using machine learning methods enriched with ground-based climate and
ECMWF reanalysis atmospheric predictors in southeast Queensland, Australia.
Renew Sustain Energy Rev 2019;113:109293.
Balalla DT, Nguyen-Huy T, Deo R. MARS model for prediction of short-and long-
term global solar radiation. In: Predictive modelling for energy management and
power systems engineering. Elsevier; 2021, p. 391-436.
Mohanad SA-M, Ravinesh CD, Yan L. Particle swarm optimized-support vector
regression hybrid model for daily horizon electricity demand forecasting using
climate dataset. In: E3S web of conferences. Vol. 64, EDP Sciences; 2018, p.
08001.
Al-Musaylh MS, Deo RC, Li Y, Adamowski JF. Two-phase particle swarm
optimized-support vector regression hybrid model integrated with improved em-
pirical mode decomposition with adaptive noise for multiple-horizon electricity
demand forecasting. Appl Energy 2018;217:422-39.
Al-Musaylh MS, Deo RC, Li Y. Electrical energy demand forecasting model devel-
opment and evaluation with maximum overlap discrete wavelet transform-online
sequential extreme learning machines algorithms. Energies 2020;13(9):2307.
Ghimire S, Bhandari B, Casillas-Pérez D, Deo RC, Salcedo-Sanz S. Hybrid deep
CNN-SVR algorithm for solar radiation prediction problems in Queensland,
Australia. Eng Appl Artif Intell 2022;112:104860.
Jamei M, Ahmadianfar I, Olumegbon IA, Karbasi M, Asadi A. On the as-
sessment of specific heat capacity of nanofluids for solar energy applications:
Application of Gaussian process regression (GPR) approach. J Energy Storage
2021;33:102067.
Adewuyi SA, Aina S, Oluwaranti Al. A deep learning model for electricity
demand forecasting based on a tropical data. Appl Comput Sci 2020;16(1).
Zhang M, Li J, Li Y, Xu R. Deep learning for short-term voltage stability
assessment of power systems. IEEE Access 2021;9:29711-8.
Wang K, Qi X, Liu H. Photovoltaic power forecasting based LSTM-convolutional
network. Energy 2019;189:116225.
Qu J, Qian Z, Pei Y. Day-ahead hourly photovoltaic power forecasting using
attention-based CNN-LSTM neural network embedded with multiple relevant and
target variables prediction pattern. Energy 2021;232:120996.
Hafeez G, Alimgeer KS, Khan I. Electric load forecasting based on deep
learning and optimized by heuristic algorithm in smart grid. Appl Energy
2020;269:114915.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[91

[10]

[11]

[12]

[13]

[14]


https://www.energex.com.au
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb1
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb1
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb1
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb2
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb2
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb2
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb2
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb2
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb3
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb3
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb3
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb3
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb3
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb3
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb3
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb4
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb4
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb4
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb4
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb4
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb5
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb5
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb5
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb5
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb5
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb5
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb5
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb6
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb6
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb6
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb6
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb6
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb6
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb6
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb7
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb7
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb7
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb7
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb7
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb8
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb8
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb8
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb8
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb8
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb9
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb9
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb9
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb9
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb9
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb9
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb9
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb10
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb10
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb10
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb11
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb11
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb11
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb12
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb12
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb12
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb13
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb13
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb13
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb13
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb13
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb14
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb14
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb14
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb14
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb14

S. Ghimire et al.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

del Real AJ, Dorado F, Duran J. Energy demand forecasting using deep learning:
applications for the french grid. Energies 2020;13(9):2242.

Zhang L, Liu P, Zhao L, Wang G, Zhang W, Liu J. Air quality predictions
with a semi-supervised bidirectional LSTM neural network. Atmos Pollut Res
2021;12(1):328-39.

Dolatabadi A, Abdeltawab H, Mohamed YA-RI. Hybrid deep learning-based
model for wind speed forecasting based on DWPT and bidirectional LSTM
network. IEEE Access 2020;8:229219-32.

Cheng H, Xie Z, Wu L, Yu Z, Li R. Data prediction model in wireless sensor
networks based on bidirectional LSTM. EURASIP J Wireless Commun Networking
2019;2019(1):1-12.

Wang S, Wang X, Wang S, Wang D. Bi-directional long short-term memory
method based on attention mechanism and rolling update for short-term load
forecasting. Int J Electr Power Energy Syst 2019;109:470-9.

Shao Z, Chao F, Yang S-L, Zhou K-L. A review of the decomposition methodology
for extracting and identifying the fluctuation characteristics in electricity demand
forecasting. Renew Sustain Energy Rev 2017;75:123-36.

Rafi SH, Deeba SR, Hossain E, et al. A short-term load forecasting method using
integrated CNN and LSTM network. IEEE Access 2021;9:32436-48.

Zhang J, Wei Y-M, Li D, Tan Z, Zhou J. Short term electricity load forecasting
using a hybrid model. Energy 2018;158:774-81.

Li C, Chen Z, Liu J, Li D, Gao X, Di F, et al. Power load forecasting based
on the combined model of LSTM and XGBoost. In: Proceedings of the 2019 the
international conference on pattern recognition and artificial intelligence. 2019,
p. 46-51.

Wu F, Cattani C, Song W, Zio E. Fractional ARIMA with an improved cuckoo
search optimization for the efficient short-term power load forecasting. Alex Eng
J 2020;59(5):3111-8.

Wang J, Wei Z, Zhang T, Zeng W. Deeply-fused nets. 2016, arXiv preprint
arXiv:1605.07716.

Lee C-Y, Xie S, Gallagher P, Zhang Z, Tu Z. Deeply-supervised nets. In: Artificial
intelligence and statistics. Pmlr; 2015, p. 562-70.

Srivastava RK, Greff K, Schmidhuber J. Training very deep networks. Adv Neural
Inf Process Syst 2015;28.

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
2016, p. 770-8.

Zhao L, Wang J, Li X, Tu Z, Zeng W. On the connection of deep fusion to
ensembling. 2016, arXiv preprint arXiv:1611.07718.

Li J, Li X, Jing X. Deeply-fused human motion recognition network in radar
for in-home monitoring. In: 2019 IEEE symposium series on computational
intelligence. SSCI, IEEE; 2019, p. 584-7.

Ghimire S, Nguyen-Huy T, Deo RC, Casillas-Perez D, Salcedo-Sanz S. Efficient
daily solar radiation prediction with deep learning 4-phase convolutional neural
network, dual stage stacked regression and support vector machine CNN-REGST
hybrid model. Sustain Mater Technol 2022;32:e00429.

Ghimire S, Nguyen-Huy T, Prasad R, Deo RC, Casillas-Pérez D, Salcedo-Sanz S,
et al. Hybrid convolutional neural network-multilayer perceptron model for solar
radiation prediction. Cogn Comput 2022;1-27.

Ghimire S, Deo RC, Wang H, Al-Musaylh MS, Casillas-Pérez D, Salcedo-Sanz S.
Stacked LSTM sequence-to-sequence autoencoder with feature selection for
daily solar radiation prediction: A review and new modeling results. Energies
2022;15(3):1061.

Ghimire S, Yaseen ZM, Farooque AA, Deo RC, Zhang J, Tao X. Streamflow
prediction using an integrated methodology based on convolutional neural
network and long short-term memory networks. Sci Rep 2021;11(1):1-26.
Ghimire S. Predictive modelling of global solar radiation with artificial intel-
ligence approaches using MODIS satellites and atmospheric reanalysis data for
Australia (Ph.D. thesis), University of Southern Queensland; 2019.

Ghimire S, Deo RC, Casillas-Pérez D, Salcedo-Sanz S. Improved complete ensem-
ble empirical mode decomposition with adaptive noise deep residual model for
short-term multi-step solar radiation prediction. Renew Energy 2022;190:408-24.
Gu J, Wang Z, Kuen J, Ma L, Shahroudy A, Shuai B, et al. Recent advances in
convolutional neural networks. Pattern Recognit 2018;77:354-77.

Ghimire S, Nguyen-Huy T, AL-Musaylh MS, Deo RC, Casillas-Pérez D, Salcedo-
Sanz S. A novel approach based on integration of convolutional neural
networks and echo state network for daily electricity demand prediction. En-
ergy 2023;127430. http://dx.doi.org/10.1016/j.energy.2023.127430, URL https:
//www.sciencedirect.com/science/article/pii/S0360544223008241.

Pedamonti D. Comparison of non-linear activation functions for deep neural
networks on MNIST classification task. 2018, arXiv preprint arXiv:1804.02763.
Nwankpa C, [jomah W, Gachagan A, Marshall S. Activation functions: Compar-
ison of trends in practice and research for deep learning. 2018, arXiv preprint
arXiv:1811.03378.

Klambauer G, Unterthiner T, Mayr A, Hochreiter S. Self-normalizing neural
networks. Adv Neural Inf Process Syst 2017;30.

Ghimire S, Nguyen-Huy T, Prasad R, Deo RC, Casillas-Pérez D, Salcedo-Sanz S,
et al. Hybrid convolutional neural network-multilayer perceptron model for solar
radiation prediction. Cogn Comput 2022;1-27.

33

[43]

[44]

[45]

[46]
[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

Applied Energy 378 (2025) 124763

Ghimire S, Deo RC, Casillas-Pérez D, Salcedo-Sanz S, Sharma E, Ali M. Deep
learning CNN-LSTM-MLP hybrid fusion model for feature optimizations and daily
solar radiation prediction. Measurement 2022;111759.

Ghimire S, Deo RC, Casillas-Pérez D, Salcedo-Sanz S. Boosting solar radiation
predictions with global climate models, observational predictors and hybrid
deep-machine learning algorithms. Appl Energy 2022;316:119063.

Mansouri I, Ozbakkaloglu T, Kisi O, Xie T. Predicting behavior of FRP-confined
concrete using neuro fuzzy, neural network, multivariate adaptive regression
splines and M5 model tree techniques. Mater Struct 2016;49(10):4319-34.
Friedman JH. Multivariate adaptive regression splines. Ann Stat 1991;19(1):1-67.
Meyer H, Kithnlein M, Appelhans T, Nauss T. Comparison of four machine
learning algorithms for their applicability in satellite-based optical rainfall
retrievals. Atmos Res 2016;169:424-33.

An J, Yin F, Wu M, She J, Chen X. Multisource wind speed fusion method for
short-term wind power prediction. IEEE Trans Ind Inf 2020;17(9):5927-37.
Ahmed AM, Sharma E, Jui SJJ, Deo RC, Nguyen-Huy T, Ali M. Kernel ridge
regression hybrid method for wheat yield prediction with satellite-derived
predictors. Remote Sens 2022;14(5):1136.

Esfe MH, Motallebi SM, Toghraie D. Investigation of thermophysical properties
of MWCNT-MgO (1: 1)/10W40 hybrid nanofluid by focusing on the rheolog-
ical behavior: Sensitivity analysis and price-performance investigation. Powder
Technol 2022;405:117472.

Esfe MH. The dual behavior of the dynamic viscosity of multiwalled carbon
nanotubes-Al203 (3: 7)/ethylene glycol hybrid nanofluids: an experimental
study. Eur Phys J Plus 2022;137(6):1-13.

Prasad SMM, Nguyen-Huy T, Deo R. Support vector machine model for multistep
wind speed forecasting. In: Predictive modelling for energy management and
power systems engineering. Elsevier; 2021, p. 335-89.

Shahsavar A, Jamei M, Karbasi M. Experimental evaluation and development of
predictive models for rheological behavior of aqueous Fe304 ferrofluid in the
presence of an external magnetic field by introducing a novel grid optimization
based-Kernel ridge regression supported by sensitivity analysis. Powder Technol
2021;393:1-11.

Sheng H, Xiao J, Cheng Y, Ni Q, Wang S. Short-term solar power forecast-
ing based on weighted Gaussian process regression. IEEE Trans Ind Electron
2017;65(1):300-8.

Castillo-Botén C, Casillas-Pérez D, Casanova-Mateo C, Ghimire S, Cerro-Prada E,
Gutierrez P, et al. Machine learning regression and classification methods for fog
events prediction. Atmos Res 2022;272:106157.

Rohani A, Taki M, Abdollahpour M. A novel soft computing model (Gaussian
process regression with K-fold cross validation) for daily and monthly solar
radiation forecasting (part: I). Renew Energy 2018;115:411-22.

Ghimire S, Deo RC, Downs NJ, Raj N. Global solar radiation prediction by ANN
integrated with European Centre for medium range weather forecast fields in
solar rich cities of Queensland Australia. J Clean Prod 2019;216:288-310.

de Almeida MR, Correa DN, Rocha WF, Scafi FJ, Poppi RJ. Discrimination
between authentic and counterfeit banknotes using Raman spectroscopy and
PLS-DA with uncertainty estimation. Microchem J 2013;109:170-7.

Pullanagari RR, Li M. Uncertainty assessment for firmness and total soluble solids
of sweet cherries using hyperspectral imaging and multivariate statistics. J Food
Eng 2021;289:110177.

Hwang E. Prediction intervals of the COVID-19 cases by HAR models with
growth rates and vaccination rates in top eight affected countries: Bootstrap
improvement. Chaos Solitons Fractals 2022;155:111789.

Lundberg SM, Lee S-I. A unified approach to interpreting model predictions. Adv
Neural Inf Process Syst 2017;30.

Wu C, Chau K-W. Data-driven models for monthly streamflow time series
prediction. Eng Appl Artif Intell 2010;23(8):1350-67.

Durdu OF. Application of linear stochastic models for drought forecasting in
the Biiyitk Menderes river basin, western Turkey. Stoch Environ Res Risk Assess
2010;24(8):1145-62.

Sivakumar B, Woldemeskel FM, Puente CE. Nonlinear analysis of rainfall
variability in Australia. Stoch Environ Res Risk Assess 2014;28(1):17-27.
Sivakumar B. Chaos theory in hydrology: important issues and interpretations. J
Hydrol 2000;227(1-4):1-20.

Jeffrey SJ, Carter JO, Moodie KB, Beswick AR. Using spatial interpolation to
construct a comprehensive archive of Australian climate data. Environ Model
Softw 2001;16(4):309-30.

Sanner MF, et al. Python: a programming language for software integration and
development. J Mol Graph Model 1999;17(1):57-61.

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. {TensorFlow}:
a system for {large-scale} machine learning. In: 12th USeNIX symposium on
operating systems design and implementation (OSDI 16). 2016, p. 265-83.
Ketkar N. Introduction to keras. In: Deep learning with python. Springer; 2017,
p. 97-111.

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al.
Scikit-learn: Machine learning in Python. J Mach Learn Res 2011;12:2825-30.
Brownlee J. Gentle introduction to the adam optimization algorithm for deep
learning. Machine Learning Mastery 2017;3.


http://refhub.elsevier.com/S0306-2619(24)02146-9/sb15
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb15
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb15
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb16
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb16
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb16
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb16
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb16
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb17
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb17
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb17
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb17
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb17
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb18
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb18
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb18
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb18
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb18
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb19
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb19
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb19
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb19
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb19
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb20
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb20
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb20
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb20
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb20
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb21
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb21
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb21
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb22
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb22
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb22
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb23
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb23
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb23
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb23
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb23
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb23
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb23
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb24
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb24
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb24
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb24
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb24
http://arxiv.org/abs/1605.07716
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb26
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb26
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb26
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb27
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb27
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb27
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb28
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb28
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb28
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb28
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb28
http://arxiv.org/abs/1611.07718
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb30
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb30
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb30
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb30
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb30
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb31
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb31
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb31
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb31
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb31
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb31
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb31
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb32
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb32
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb32
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb32
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb32
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb33
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb33
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb33
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb33
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb33
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb33
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb33
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb34
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb34
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb34
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb34
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb34
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb35
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb35
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb35
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb35
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb35
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb36
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb36
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb36
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb36
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb36
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb37
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb37
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb37
http://dx.doi.org/10.1016/j.energy.2023.127430
https://www.sciencedirect.com/science/article/pii/S0360544223008241
https://www.sciencedirect.com/science/article/pii/S0360544223008241
https://www.sciencedirect.com/science/article/pii/S0360544223008241
http://arxiv.org/abs/1804.02763
http://arxiv.org/abs/1811.03378
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb41
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb41
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb41
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb42
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb42
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb42
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb42
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb42
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb43
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb43
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb43
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb43
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb43
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb44
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb44
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb44
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb44
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb44
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb45
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb45
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb45
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb45
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb45
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb46
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb47
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb47
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb47
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb47
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb47
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb48
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb48
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb48
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb49
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb49
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb49
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb49
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb49
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb50
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb50
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb50
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb50
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb50
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb50
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb50
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb51
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb51
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb51
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb51
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb51
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb52
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb52
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb52
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb52
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb52
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb53
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb53
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb53
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb53
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb53
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb53
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb53
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb53
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb53
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb54
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb54
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb54
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb54
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb54
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb55
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb55
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb55
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb55
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb55
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb56
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb56
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb56
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb56
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb56
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb57
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb57
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb57
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb57
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb57
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb58
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb58
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb58
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb58
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb58
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb59
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb59
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb59
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb59
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb59
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb60
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb60
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb60
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb60
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb60
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb61
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb61
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb61
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb62
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb62
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb62
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb63
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb63
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb63
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb63
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb63
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb64
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb64
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb64
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb65
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb65
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb65
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb66
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb66
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb66
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb66
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb66
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb67
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb67
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb67
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb68
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb68
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb68
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb68
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb68
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb69
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb69
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb69
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb70
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb70
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb70
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb71
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb71
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb71

S. Ghimire et al.

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

Bergstra J, Yamins D, Cox DD, et al. Hyperopt: A python library for optimizing
the hyperparameters of machine learning algorithms. In: Proceedings of the 12th
python in science conference. Vol. 13, Citeseer; 2013, p. 20.

Han Y, Lee K. Convolutional neural network with multiple-width frequency-delta
data augmentation for acoustic scene classification. In: IEEE AASP challenge on
detection and classification of acoustic scenes and events. 2016.

Wang J, Cao J. Data-driven S-wave velocity prediction method via a
deep-learning-based deep convolutional gated recurrent unit fusion network.
Geophysics 2021;86(6):M185-96.

Deo RC, Ghimire S, Downs NJ, Raj N. Optimization of windspeed prediction
using an artificial neural network compared with a genetic programming model.
In: Research anthology on multi-industry uses of genetic programming and
algorithms. IGI Global; 2021, p. 116-47.

Marsaglia G, Tsang WW, Wang J. Evaluating Kolmogorov’s distribution. J Stat
Softw 2003;8:1-4.

Alothman T, Alsaif SA, Alfakhri A, Alfadda A. Performance assessment of
25 global horizontal irradiance clear sky models in riyadh. In: 2022 IEEE
international conference on environment and electrical engineering and 2022
IEEE industrial and commercial power systems europe (EEEIC/I&CPS europe).
IEEE; 2022, p. 1-6.

Li M-F, Tang X-P, Wu W, Liu H-B. General models for estimating daily global
solar radiation for different solar radiation zones in mainland China. Energy
Convers Manag 2013;70:139-48.

Willmott CJ. On the evaluation of model performance in physical geography. In:
Spatial statistics and models. Springer; 1984, p. 443-60.

Legates DR, McCabe Jr. GJ. Evaluating the use of “goodness-of-fit” mea-
sures in hydrologic and hydroclimatic model validation. Water Resour Res
1999;35(1):233-41.

Dawson CW, Abrahart RJ, See LM. HydroTest: a web-based toolbox of evaluation
metrics for the standardised assessment of hydrological forecasts. Environ Model
Softw 2007;22(7):1034-52.

Gueymard CA. A review of validation methodologies and statistical performance
indicators for modeled solar radiation data: Towards a better bankability of solar
projects. Renew Sustain Energy Rev 2014;39:1024-34.

34

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

Applied Energy 378 (2025) 124763

Despotovic M, Nedic V, Despotovic D, Cvetanovic S. Review and statistical
analysis of different global solar radiation sunshine models. Renew Sustain
Energy Rev 2015;52:1869-80.

Mariano RS, Preve D. Statistical tests for multiple forecast comparison. J
Econometrics 2012;169(1):123-30.

Liu H, Mi X, Li Y. Smart deep learning based wind speed prediction model using
wavelet packet decomposition, convolutional neural network and convolutional
long short term memory network. Energy Convers Manage 2018;166:120-31.
Bottieau J, Wang Y, De Gréve Z, Vallée F, Toubeau J-F. Interpretable transformer
model for capturing regime switching effects of real-time electricity prices. IEEE
Trans Power Syst 2022.

Dogulu N, Lépez Lépez P, Solomatine D, Weerts A, Shrestha D. Estimation
of predictive hydrologic uncertainty using the quantile regression and UNEEC
methods and their comparison on contrasting catchments. Hydrol Earth Syst Sci
2015;19(7):3181-201.

Ni Q, Zhuang S, Sheng H, Kang G, Xiao J. An ensemble prediction intervals
approach for short-term PV power forecasting. Sol Energy 2017;155:1072-83.
Singla P, Duhan M, Saroha S. Review of different error metrics: A case of solar
forecasting. AIUB J Sci Eng (AJSE) 2021;20(4):158-65.

Yan R, Ma M, Zhou N, Feng W, Xiang X, Mao C. Towards COP27: Decar-
bonization patterns of residential building in China and India. Appl Energy
2023;352:122003.

Zhang S, Ma M, Zhou N, Yan J, Feng W, Yan R, et al. Estimation of global
building stocks by 2070: Unlocking renovation potential. Nexus 2024.

Ma M, Zhou N, Feng W, Yan J. Challenges and opportunities in the global
net-zero building sector. Cell Reports Sustain 2024.

Deng Y, Ma M, Zhou N, Ma Z, Yan R, Ma X. Chinas plug-in hybrid electric
vehicle transition: An operational carbon perspective. Energy Convers Manage
2024;320:119011.

Yuan H, Ma M, Zhou N, Xie H, Ma Z, Xiang X, et al. Battery electric vehicle
charging in China: Energy demand and emissions trends in the 2020s. Appl
Energy 2024;365:123153.

Amonkar Y, Doss-Gollin J, Farnham DJ, Modi V, Lall U. Differential effects of
climate change on average and peak demand for heating and cooling across the
contiguous USA. Commun Earth Environ 2023;4(1):402.

Maia-Silva D, Kumar R, Nateghi R. The critical role of humidity in mod-
eling summer electricity demand across the United States. Nat Commun
2020;11(1):1686.


http://refhub.elsevier.com/S0306-2619(24)02146-9/sb72
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb72
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb72
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb72
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb72
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb73
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb73
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb73
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb73
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb73
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb74
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb74
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb74
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb74
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb74
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb75
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb75
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb75
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb75
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb75
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb75
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb75
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb76
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb76
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb76
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb77
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb77
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb77
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb77
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb77
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb77
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb77
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb77
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb77
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb78
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb78
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb78
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb78
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb78
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb79
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb79
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb79
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb80
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb80
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb80
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb80
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb80
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb81
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb81
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb81
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb81
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb81
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb82
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb82
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb82
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb82
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb82
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb83
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb83
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb83
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb83
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb83
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb84
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb84
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb84
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb85
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb85
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb85
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb85
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb85
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb86
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb86
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb86
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb86
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb86
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb87
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb87
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb87
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb87
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb87
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb87
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb87
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb88
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb88
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb88
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb89
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb89
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb89
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb90
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb90
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb90
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb90
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb90
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb91
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb91
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb91
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb92
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb92
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb92
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb93
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb93
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb93
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb93
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb93
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb94
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb94
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb94
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb94
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb94
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb95
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb95
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb95
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb95
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb95
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb96
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb96
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb96
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb96
http://refhub.elsevier.com/S0306-2619(24)02146-9/sb96

	Explainable deeply-fused nets electricity demand prediction model: Factoring climate predictors for accuracy and deeper insights with probabilistic confidence interval and point-based forecasts
	Introduction
	Overview of Theoretical Frameworks
	The Proposed Deeply Fused Networks (FNET) model
	Benchmark (Deep and Shallow Learning) Models
	Long-Short Term Memory Network
	Bi-Directional LSTM
	Convolution Neural Network
	Multilayer Perceptron and Deep Neural Network
	Multivariate Adaptive Regression Splines
	Kernel Ridge Regression
	Gaussian Process Regression

	Generating Bootstrap-based Prediction Intervals
	Model Interpretation

	Materials and Method
	Research Methodology
	Data Preparation and Feature Scenario Development
	Local Climate Variables and Pre-processing of Data
	Predictive Model Development and Evaluation
	Quantifying Uncertainty in Electricity Demand with Residual Bootstrapping Method


	Results and Discussion
	Results based on Deterministic Model Evaluation Metrics
	Uncertainty Evaluation
	SHAP interpretation of the FNET model
	Computational Resource Requirements


	Conclusions and Future Research Directions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


