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Electricity consumption has stochastic variabilities driven by the energy market volatility. The capability to
predict electricity demand that captures stochastic variances and uncertainties is significantly important in
the planning, operation and regulation of national electricity markets. This study has proposed an explainable
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deeply-fused nets electricity demand prediction model that factors in the climate-based predictors for enhanced
accuracy and energy market insight analysis, generating point-based and confidence interval predictions
of daily electricity demand. The proposed hybrid approach is built using Deeply Fused Nets (FNET) that
comprises of Convolutional Neural Network (CNN) and Bidirectional Long-Short Term Memory (BILSTM)
Network with residual connection. The study then contributes to a new deep fusion model that integrates
intermediate representations of the base networks (fused output being the input of the remaining part of each
base network) to perform these combinations deeply over several intermediate representations to enhance the
demand predictions. The results are evaluated with statistical metrics and graphical representations of predicted
and observed electricity demand, benchmarked with standalone models i.e., BILSTM, LSTMCNN, deep neural
network, multi-layer perceptron, multivariate adaptive regression spline, kernel ridge regression and Gaussian
process of regression. The end part of the proposed FNET model applies residual bootstrapping where final
residuals are computed from predicted and observed demand to generate the 95% prediction intervals, analysed
using probabilistic metrics to quantify the uncertainty associated with FNETS objective model. To enhance the
FNET model’s transparency, the SHapley Additive explanation (SHAP) method has been applied to elucidate the
relationships between electricity demand and climate-based predictor variables. The suggested model analysis
reveals that the preceding hour’s electricity demand and evapotranspiration were the most influential factors
that positively impacting current electricity demand. These findings underscore the FNET model’s capacity to
yield accurate and insightful predictions, advocating its utility in predicting electricity demand and analysis
of energy markets for decision-making.
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1. Introduction

The United Nations advocates for global strategic measures to
mplement the Sustainable Development Goals (SDGs) for the 2030
genda [1]. Out of the 17 Sustainable Development Goals (SDGs),

Goal 7 aims to optimize and improve the energy production and
utilization system globally [1]. Prediction models for electricity de-
mand (𝐺) are a critical component of modern energy systems. For
the construction of an efficient and sustainable energy platform, a
eliable prediction model that incorporates the most relevant climate

and social factors is essential. In addition to short-term (hourly, daily)
and long-term (monthly, seasonal, annual) prediction horizons, 𝐺 mod-
els must include techniques for evaluating uncertainties in electricity
use patterns. However, constructing reliable prediction models poses
significant challenges. These include, but not limited to the variability
of climate conditions, the difficulty to predict social behaviours, and
the integration or availability of diverse data sources. Additionally, due
to the continuous changes in electricity demand, the models must be
robust enough to handle non-linear interactions and adapt to rapidly
changing energy consumption trends.

A number of earlier studies recommended soft computing algo-
rithms based on machine learning (ML) algorithms for 𝐺 predictions.
These include statistical methods [2,3], Kernel models [2], regres-
ion analysis [4], hybrid ML-based nature inspired algorithms [5],

neural network models [3], improved hybrid ML models using data
pre-processing approaches [6], Trees models [6], Extreme Learning
Machine (ELM) [7], Multiple Linear Regression (MLR) [3], and several
others [8,9], Gaussian Process of Regression (GPR) [9] and Maximum
Overlap Discrete Wavelet Transform (MODWT)-OS-ELM [7]. Due to the
diverse capabilities of such ML models, whose accuracy varies based
n data and region, the development of 𝐺 prediction methods and
nderstanding of their predicted uncertainties is an ongoing research
rea.

Recently, deep learning (DL) models have become increasingly pop-
ular for predicting 𝐺. A research study conducted by [10] shows that
LSTM networks, convolutional neural networks (CNNs) and multilayer
perceptrons (MLPs) perform best for 𝐺 prediction. The LSTM models
are widely used because of their ability to handle long-term dependen-
ies [11], whereas in CNNs, convolution operations are used to extract
eatures, which increases the accuracy of time series prediction by cap-
uring high-level feature representations from multiple time series [12].

Locally connected algorithms have global sharing properties, which
reduce training parameters and time, increasing time-series prediction
accuracy [13]. In the study of [14], the authors evaluated the predic-
tion ability of the Factored Conditional Restricted Boltzmann Machine
2 
(FCRBM) in comparison with Mutual Information-based ANNs (MI-
ANNs), Bi-level, LSTM, and ANN-based accurate and fast convergence
(AFC-ANNs). In terms of training time, FCRBM was demonstrated to
be faster and more accurate than alternative models. In addition, the
authors in [15] have connected a CNN and an ANN model to predict
French energy demand. For such prediction tasks, Bidirectional LSTM
(BILSTM), a variant of LSTM, has been demonstrated to be much faster
and more accurate than traditional LSTM models [16]. Bidirectional
memory in the BILSTM model is especially useful for exploring both
revious and upcoming features; see, for instance, the works of [17,18].

To predict the 𝐺 data, [19] applied Bi-LSTM model with attention
mechanisms and compared with an SVR and a conventional Bi-LSTM.
Overall, the study showed that the proposed Bi-LSTM model with an
attention mechanism could be a viable and effective predictive model.

Because of the volatility and instability of electrical loads, stan-
alone ML and DL models occasionally cannot precisely extract com-
lex feature correlations in nonlinear and non-stationary 𝐺 data. Many
esearchers have thus proposed hybrid models combining DL/ML mod-
ls to show promising results through CNN/LSTM methods for elec-
ricity load prediction compared with non-hybrid models [20,21]. In

[22], a hybrid model combining Multilayer Perceptron (MLP), Adap-
tive Network-based Fuzzy Inference System (ANFIS), and Seasonal
Autoregressive Integrated Moving Average (SARIMA) was also pro-
posed where its accuracy was demonstrated by reduced Mean Absolute
Percentage Error and faster convergence rate. Other hybrid models
applied to time-series prediction problems include LSTMs with Extreme
Gradient Boosting (XGBOOST) [23] and the fractional ARIMA with
enhanced Cuckoo search [24], outperforming their standalone coun-
erpart models for electricity load prediction problems. In particular,
L, DL and hybrid models have largely been applied for point-based

𝐺 prediction for distinct, deterministic, and definite outcomes. It is,
however, impossible to completely eliminate prediction errors when 𝐺
is non-stationary and chaotic. Thus, point prediction results can be hard
to use in sound decision-making in critical power system infrastructure
if these models are used. For electricity demand, the quantification of
model uncertainty estimation is crucial in terms of a point-based and
probability interval prediction outcome in order to better understand
the model’s fidelity and variability.

In the light of the aforementioned, the prediction intervals of an
electricity demand model are constructed by assuming specific distri-
bution functions. Due to the chaotic nature of 𝐺 itself, it is typically
impossible to determine the exact distribution and therefore, general
ssumptions must be made. A deviation from such assumptions can

also affect the decisions made using the generated prediction intervals
as well as on the estimated model parameter values, which could
result in an over- or underestimation of the underlying risk of using
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such predicted 𝐺 values in real-time. Fortunately, re-sampling tech-
niques, like Bootstrap (𝐵 𝑆), enable the creation of prediction intervals
without taking any sorts of distributional assumptions. As opposed to
conventional methods such as Lower Upper Bound Estimation (LUBE),

onte Carlo Simulation (MCS), and Quantile Regression (QR), the 𝐵 𝑆
technique uses original samples as a population of resampling.

In [25], a deeply-fused nets (FNET) method which embraces deep
usion or a combination of the intermediate representations of a base

network with various other intermediate representations, was pro-
osed. Importantly, this approach simultaneously learned the represen-
ations of the base networks, to mimic the highly successful methods
uch as GoogLeNet or deeply-supervised nets [26] and variants like

Highway [27] and ResNet [28]. The FNET method was successfully
pplied on the CIFAR-10 and CIFAR-100 image-based datasets, to show
3.77–93.98% for the CIFAR-10 and 72.29–72.64% for the CIFAR-100
atasets with the Deep summation (fusion before ReLU) and the Deep
ummation (fusion after ReLU), respectively. Compared with several
tate-of-the-art algorithms baseline methods, the FNET model demon-
trated significantly better performance. However, the application of
he original FNET model has so far been restricted to only image and
ext-based datasets so its application to the time-series datasets, and
specially in 𝐺 prediction problems could provide new avenues to
apitalize on the merits of the deeply-fused nets method.

In this study, we extend and significantly improve the scope and
practical applicability of FNET [25] for time-series data fusion. We also
adopt residual bootstrapping (𝐵 𝑆) to generate prediction intervals of
lectricity demand in such a way that the proposed 𝐵 𝑆-based FNET
odel does not require prior information about the data distribution

r the model parameters while it seamlessly adopts explainable ar-
tificial intelligence based on Shapley Additive Explanations (SHAP)
to demonstrate an interpretable FNETS model for 𝐺 predictions. The
contributions and the novelty of this research are as follows:

1. To develop for the first time a new approach for electricity
demand prediction by proposing Deeply Fused Network (FNET)
model that seamlessly fuses the CNN and BILSTM algorithms for
the point-based and confidence interval predictions.

2. To improve the efficiency of the proposed FNET model consid-
ering a fused net system with three fusions: a deep base network
(1D-CNN), a set of CNN filters (ranging from 32–128) and a 4-
layer BILSTM network with BILSTM unit (ranging from 16–128).
As a regression model, we then adopt a single BILSTM layer at
the end of the network before the fully connected or dense layer
and apply the Scaled Exponential Linear Units (SeLU) activation
function for 1D-CNN layer and Rectified Linear Unit (ReLU) for
the Dense layer.

3. To evaluate the performance of the proposed FNET model using
deterministic and probabilistic metrics against standalone and
hybrid models (i.e., BILSTM, LSTMCNN, Deep Neural Network
(DNN), Multi-layer Perceptron (MLP), Multivariate Adaptive Re-
gression Spline (MARS), Kernel Ridge Regression (KRR), and
Gaussian Process of Regression (GPR)).

4. To improve the practicality of the proposed FNET model by
generating the interval predictions of electricity demand that
can inform model predicted uncertainties in electricity demand,
enhancing the validity of using FNET in real-life scenarios for
electricity forecasting.

5. To interpret model behaviour and better understand the under-
lying factors influencing electricity demand. Here, we adopted
the Shapley Additive Explanations (SHAP) to reveal the intricate
relationship between key variables and their contribution to the
model’s predictions.

Our study contributes to the development of a robust model that
ncorporates climate predictors for enhanced insights into energy mar-
ets to predict electricity demand daily with confidence intervals and
oint-based prediction. Consequently, this study contributes to a new
3 
deep fusion model that integrates intermediate representations from
ase networks (the fused output is used as input by the rest of the
ase networks) and enhances demand prediction by combining several
ntermediate representations deeply.

To enhance the contribution of this study, we adopted residual
bootstrapping to quantify the uncertainties in the proposed FNET model
to advance its practical implementation as previous studies [25] used
FNET for only point-based predictions. In particular, the network com-
prising substantially fused CNN and BI-LSTM model utilizes the primary
concept, to perform the fusion over intermediate representations of
the base networks rather than just over the final representations. Such
fusions are repeatedly performed at intermediate layers with the fused
output serving as the input of remaining portion of each base network,
and finally the base network is used to generate prediction intervals
on the residuals obtained by the difference between observed 𝐺 and
predicted 𝐺 generated from the proposed FNET model.

To train and evaluate the proposed FNET model, we have utilized
historical (i.e., time-lagged) 𝐺 data as well as respective local climate
variables for Annerley, Heathwood, Laidley and Zillmere substations
located in Queensland, Australia, along with detailed statistical and
probabilistic analysis of model performance (see later, in Table 3).

2. Overview of theoretical frameworks

This section describes the components of the proposed FNET model,
he related theory in detail and benchmark models used to compare
gainst the objective models.

2.1. The proposed Deeply Fused Networks (FNET) model

In this study, we have developed the Deeply Fused Networks (FNET)
model, which is constructed from a series of base networks whose out-
put representations are fused together [25]. In contrast to the shallow
fusion model, as per Fig. 2(a), the deep fusion approach applies the fea-
ure fusion to both the final representation and the intermediate feature
mbedding, as schematized in Fig. 2(b). Typically, there are 𝑁 blocks

(𝑁 ≥ 1) in the proposed FNET model and each block has 𝐿 (𝐿 ≥ 1) base
etworks. Each block fuses the feature representation from several base
etworks together, and the merged feature embedding is then handled

as the input to the succeeding block. Furthermore, the 𝐿 base networks
are composed of various convolutional kernel scales while the number
of convolutional layers can frequently vary [29]. In the study of [25],
the FNET approach has achieved superior performance over Residual
Network [28] and Highway Network [27]. In principle, the deep fusion
pproach can offer numerous advantages over the traditional shallow
usion method [30], which are as follows:

• The information flow during deep fusion can be enhanced regard-
less of whether it comes from the input to the intermediate layers
or from the intermediate to the output layers.

• It is relatively easier to train an FNET model consisting of a very
deep base network (i.e., the first model, CNN) and a shallow
model (e.g., ANN, SVR, etc.) or other deep models (second model,
LSTM, BILSTM, GRU, etc.) compared to a deep base network
alone. Despite having several base networks, the FNET model
does not add more parameters or computational complexity but
it facilitates training process quite seamlessly.

• The two models (deep-shallow or deep-deep) are likely to provide
benefit from each other’s own merits and are therefore trained
simultaneously in order to learn more representative feature em-
bedding.

• Because of its unique structure, the FNET model can extract
multi-scale feature representations.

As a result of the advantages mentioned above, we expect the point-
ased and the interval prediction of daily electricity demand data to

be performed quire satisfactorily by the proposed FNET model.
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Fig. 1. A schematic view of the LSTM, BILSTM, 1D-CNN and DNN models employed to construct the proposed deep hybrid Fused Network (FNET) model for point-based and
interval prediction of daily electricity demand.
Fig. 2(a). The presentation of shallow fusion principle, where different scores from various CNN categories fused once prior the release to the regression analysis. Note that Conv1
is a CNN model, and FC is a fully Connected Layer.
2.2. Benchmark (deep and shallow learning) models

2.2.1. Long-short term memory network
The LSTM Network model, as a benchmark for the proposed FNET

model, is a variation of Recurrent Network (RNN) [31,32]. In com-
parison to RNN, LSTM can manage long-term dependencies as well as
gradient vanishing difficulties. The cell state and the gate structure are
the basic concepts of LSTM, in which cell states are used to communi-
cate information and solve the issues of short-term memory. The LSTM
has three gate structures: input, forgetting, and output gates, each
with its function [33]. The forget gate determines whether information
should be discarded or maintained [34]. The input gate is utilized
to update the state of the cell. The output gate is used to calculate
the value of the next hidden state, which contains the previously
entered data. Fig. 1 (a) depicts the structure and the equations below
(Eqs. (1)–(6)) show the conventional equations for LSTM [35].

( [ ] )
𝑓𝑡 = 𝜎 𝑤𝑓 ∗ ℎ𝑡 − 1, 𝑥𝑡 + 𝑏𝑓 (1)

4 
𝑖𝑡 = 𝜎
(

wi
[

ht − 1, xt
]

+ bi
)

(2)

𝑐𝑡 = t anh (𝑤𝑐 ⋅
[

ℎ𝑡 − 1, 𝑥𝑡
]

+ 𝑏𝑐
)

(3)

𝑐𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶𝑡 (4)

𝑂𝑡 = 𝜎
(

𝑊0 ⋅
[

ℎ𝑡−1,𝑥𝑙
]

+ 𝑏0
)

(5)

ℎ𝑡 = 𝑂𝑡 ∗ t anh
(

𝑐𝑡
)

(6)

where 𝑓𝑡 is the forget gate, 𝜎 is the sigmoid function, 𝑊𝑓 is the weight,
ℎ𝑡−1 is the output of previous block, 𝑋𝑡 is the input vector, and 𝑏𝑓 shows
the bias. The symbol ∗ signifies elementwise multiplication, 𝐶𝑡 is the
Cell state, ℎ𝑡 is the hidden state, 𝑂𝑡 is the output gate and t anh(.) denotes
the hyperbolic tangent activation function.
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Fig. 2(b). Deep fusion principle where features extracted from different CNN branches are fused in a block before entering the intermediate results into the next block for further
feature learning.
2.2.2. Bi-directional LSTM
By examining input vectors in one direction only, the typical LSTM

model may lose crucial feature information in the training process,
preventing the sequence information from being completely evalu-
ated [36]. To overcome this issue, BILSTM is built with a bidirectional
structure to gather both the forward and backward directions of time-
series data representations, as illustrated in Fig. 1(a). As a result, the
BILSTM produces a final output vector 𝑌𝑡 expressed by:

𝑌𝑡 = 𝜎
(

𝑊𝑓 ℎ𝑦ℎ𝑓 (𝑡) +𝑊𝑏ℎ𝑦ℎ𝑏(𝑡) + 𝑏𝑦
)

(7)

This structure enables the internal state to store information in ℎ𝑓 𝑡
from the past time-series values in the forward direction and in ℎ𝑏𝑡
from the future sequence values in the backward direction. The 𝑊𝑓 ℎ𝑦
and 𝑊𝑏ℎ𝑦 symbolize forward and backward weighting scores from the
internal unit to the output, respectively. 𝜎 is set to sigmoid or linear
functions as the output layer activation function and 𝑏𝑦 signifies the
bias vector of the output layer.

2.2.3. Convolution neural network
Convolutional neural networks (CNN) are a type of feedforward

neural network that uses convolutional computing. To extract feature
information, CNN models employ convolution layers and pooling lay-
ers [37]. The core of a CNN model is the convolution layer that reduces
the network’s complexity and parameter numbers by connecting a neu-
ron to only a subset of its neighbours [31]. Further, the pooling layer
minimizes the number of parameters by lowering the dimensionality of
the features. Adding a pooling layer not only speeds up the computation
but also prevents over-fitting [8,38]. This study has employed a one-
dimensional convolutional structure for sequential data (Fig. 1(b)),
where the convolutional kernel is set to 3, depicted by red, orange,
and green colour, and the CNN network structure is shown in Fig. 1(c).

The convolution outputs for each layer after convolution compu-
tation are treated non-linearly using the activation function known as
Scaled Exponential Linear Unit (SeLU). This study has utilized SeLU
because it avoids the self-dying problem associated with Rectified
Linear Unit Activation function (ReLU) [39] and has a self-normalizing
property [40] that makes the neuron activation automatically converge
toward an average of 0 and a variance of 1. Due to this property of
the SeLU activation function, many layers of CNN can be trained more
robustly without gradient vanishing issues. The output 𝑌 (𝑟) of the 𝑟th
convolution layer can be defined as:

𝑌 (𝑟) = 𝑓

( 𝑀
∑

𝑋(𝑟−1)
𝑚 ⊗ 𝑊 (𝑟) + 𝐵(𝑟)

)

(𝑟 = 1, 2,… , 𝑙) (8)

𝑚=1

5 
where the convolution operation is a dot product ⊗ between 𝑀 feature
maps 𝑋(𝑟−1) and a set of filters 𝑊 (𝑟), which is the convolution kernels
of the 𝑟th convolution layer. It is noted that when 𝑟 = 1, 𝑋(𝑟−1) is the
reorganization of the input layer data; otherwise, 𝑋(𝑟−1) is the output
of the 𝑟1𝑡ℎ pooling layer. 𝐵(𝑟) denotes the bias term. The activation
function 𝑓 (𝑥) is the SeLU function defined by following Eq. (9).

SeLU(𝑥) = 𝜆

{

𝑥 if 𝑥 > 0,
𝛼 𝑒𝑥 − 𝛼 if 𝑥 ≤ 0

(9)

where 𝑥 signifies the input to the activation function, 𝜆 ≈ 1.0507 and
𝛼 ≈ 1.6733 [41]. The pooling layer uses the output of the convolution
layer as the input (Fig. 1(b)). The output 𝑋(𝑟) of the 𝑟th pooling layer
can be depicted by Eq. (10).

𝑋(𝑟) = 𝑊 ′(𝑟) ⊕ 𝑌 (𝑟) + 𝐵(𝑟)(𝑟 = 1, 2,… , 𝑙) (10)

where ⊕ denotes the pooling operation ⊗ is the dot product of feature
maps 𝑌 (𝑟) and pooling window 𝑊 (𝑟) with the bias 𝐵(𝑟). The neurons
in all the feature maps of the 𝑙th pooling layer are rasterized and
displayed to one feature map by the full connection layer. After the
transformation, the output 𝑋(𝑙+1) of this layer is used to generate the
final output of the CNN model expressed as:

𝑌 (𝑙+1) = 𝑓
(

𝑋(𝑙+1) ∗ 𝑊 (𝑙+1) + 𝐵(𝑙+1)) (11)

where 𝑊 (𝑙+1) and 𝐵(𝑙+1) represent the weight and bias of the output
layer, respectively.

2.2.4. Multilayer Perceptron and Deep Neural Network
Multi-Layer Perceptrons (MLP) are a versatile and general-purpose

type of Artificial Neural Network (ANN) [42], composed of an input
layer, one or more hidden layers, and an output layer. An MLP network
is comprised of simple neurons called perceptrons [43]. A perceptron
integrates linear relationships based on input weights and even non-
linear transfer functions (e.g., sigmoid or hyperbolic tangent) to form
one output from multiple inputs. Whereas Deep Neural Network (DNN)
is considered an ANN with many hidden layers between the input and
output layers and has a stronger modelling and prediction capability.
In feed-forward DNN, information flows forward from the input layer
via the hidden layers (multiple) to the output layer [44]. As seen
in Fig. 1(d), DNN has several layers stacked together for processing
and learning from data. The output 𝑌 of MLP and DNN models can
be mathematically formulated by the transfer functions 𝐹 of input
variables 𝑋, weights 𝑊 , and bias values 𝐵 with 𝑛 neurons in an input
layer and 𝑚 neurons in the hidden layer as:

(

∑𝑚 (

∑𝑛 ) )
𝑌 = 𝐹
𝑗=1

𝑊𝑘𝑗 ⋅ 𝐹 𝑖=1
𝑊𝑗 𝑖𝑋𝑖 + 𝐵𝑗 + 𝐵𝑘 (12)
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where 𝑘, 𝑗, and 𝑖 refer to the output, hidden, and input layers, respec-
tively.

2.2.5. Multivariate Adaptive Regression Splines
The Multivariate Adaptive Regression Splines (MARS) technique is

 non-linear and non-parametric regression model. This model uses
iece-wise linear splines to evaluate the relationships between the
ependent and independent variables. MARS mimics the model using
asic functions (BFs). BFs are described as pairs based on a knot to
stablish an inflection region [45]. Mathematical derivation of the

model can be found in [46,47]. The elegance of the MARS model is
that no assumptions are required to build a link between the input
nd output variables. Therefore, the MARS model has been applied

in many studies, such as financial management, prediction, and time
series analysis, including solar radiation and wind power [4,48].

2.2.6. Kernel Ridge Regression
Kernel Ridge Regression (KRR), a regularized least squares-based

ethod, is an extension of the conventional Ridge Regression model,
hich is extensively used for regression and classification of highly non-

linear prediction tasks [49] . As a nonlinear procedure, KRR comprises
a set of kernel tricks and RR to reduce over-fitting in nonlinear-large-
multiple regression issues [50,51]. While the KRR model performance
for regression problems is similar to the Support Vector Regression
SVR) [52] model, the key difference between the two models can be
ound in the loss function. More specifically, KRR implements a square
rror loss function, while SVR uses an epsilon-insensitive loss function.
urthermore, KRR fits faster than SVR for a small number of datasets.

Complete mathematical derivation of the KRR model can be found
in [53].

2.2.7. Gaussian Process Regression
Gaussian Process Regression (GPR) is a non-parametric modelling

tool that does not dictate the type of relationship between the input
and output [54]. Numerous applications of GPR have demonstrated its
bility to make accurate probabilistic predictions in complex nonlinear
ituations [55]. Due to the complex relationships between 𝐺 and other

weather variables, a GPR is chosen as the benchmark model to predict
the daily electricity demand. A detailed model description and the
mathematical formulation are provided in [56,57].

2.3. Generating Bootstrap-based prediction intervals

While the aforementioned DL and ML models produce reliable
predictions, these model’s predictions are subject to uncertainty.

o address this issue, the Bootstrap Residual (BSR) method proposed
by [58,59] is employed to quantify the uncertainties by generating
Prediction Interval (𝑃 𝐼) at the 95% confidence level. To implement the
bootstrap prediction of 𝐺, we first generate a bootstrap sample of the
residuals.

Using the residuals
{

𝜖𝑡 ∶ 𝑡 = 1, 2,… , 𝑛}, we define the empirical
distribution 𝐹𝜖 (⋅) [60] by:
̂𝜖 (𝑥) =

1
𝑛
∑𝑛

𝑡=1
I(−∞, ̂𝜖𝑡) (𝑥) (13)

From the empirical distribution 𝐹𝜖 , we draw an independent and
dentically distributed (i.i.d) sequence

{

𝜖∗𝑡 ∶ 𝑡 = 1, 2,…}

, which is used
s a bootstrap sample for constructing a bootstrap prediction interval.
ne-step ahead bootstrap prediction is carried out by:
̂ ∗
𝑛+1 ≡ 𝑋̂∗

𝑛 (1) = 𝜃̂⊤Y𝑛 + 𝜖∗1 (14)

The 100(1 − 𝛼)% bootstrap prediction interval is computed as:
[

𝑋̂∗
𝑛 (1)𝛼∕2, 𝑋̂

∗
𝑛 (1)1−𝛼∕2

]

=
[

𝜃̂⊤Y𝑛 + 𝑞∗𝛼∕2, 𝜃̂
⊤Y𝑛 + 𝑞∗1−𝛼∕2

]

(15)

at 𝛼∕2 and (1 − 𝛼∕2) bootstrap quantiles, denoted as 𝑞∗𝛼∕2 and 𝑞∗1−𝛼∕2,
respectively, of the bootstrap sample

{

𝜖∗𝑡 ∶ 𝑡 = 1, 2,… , 𝑁}

, where 𝑁
indicates the number of bootstrap replications.
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2.4. Model interpretation

To foster transparency and build trust in the model’s decision-
making process, the SHAP (SHapley Additive exPlanations) method was
employed. Rooted in game theory, SHAP offers a robust framework
for understanding feature contributions to model output [61]. By de-
composing the model’s predictions into contributions from individual
features, SHAP empowers stakeholders to comprehend the underlying
logic and rationale behind the model’s decisions. This interpretability
is crucial for sectors such as electricity network operation, demand
response aggregation, and electricity trading, where understanding user
behaviour is paramount for effective strategy development and risk
management.

3. Materials and method

3.1. Research methodology

A systematic methodology was implemented in this study to validate
he efficacy of the proposed FNET for the prediction of daily electricity

demand (𝐺). Fig. 3 depicts the overall framework of the methodology.
It consists mostly of eight major phases, as outlined below:

Phase 1: The data preparation step: the electricity demand (𝐺, 𝑀 𝑊 )
data from 01/07/2011 to 30/06/2021 of the four sub-stations in South-
ast Queensland, Australia are collected from Energex website ().

Phase 2: Feature set scenario development: The collected 𝐺 data were
preprocessed to create the input features for prediction models. The
partial Auto-correlation Function (PACF) and Mutual Information Test
(MIF) are done to identify the suitable lags.

Phase 3: Integration of climate variables: The climate variables from
he Scientific Information for Land Owners (SILO) database are ex-
racted and integrated with lagged 𝐺 data.

Phase 4: Final pre-processing of data: Further pre-processing is done
by normalizing and splitting the data into training, validation and
testing sets.

Phase 5: Predictive Model Development: The proposed model (i.e.,
NET) and benchmark Models (LSTMCNN, DNN, BILSTM, MLP, KRR,
PR and MARS) are developed and trained on training dataset to
redict the daily 𝐺. Additionally, the proposed models have been op-
imized for tuning their hyperparameters (validation data and utilizing
he HyperOpt Algorithm).

Phase 6: Model Evaluation: The prediction accuracy related to the
ight predictive model configurations has been evaluated using several
eterministic metrics.

Phase 7: Residual Bootstrap: The final residual was computed from
the predicted and actual values of 𝐺, and bootstrapping was done to
generate the Prediction Intervals 𝑃 𝐼 at 95% confidence level.

Phase 8: Uncertainty Quantification: the generated 𝑃 𝐼 are analysed
using the probabilistic metrics to quantify the uncertainty associated
with FNET and benchmark models.

The following sections further describe the phases of the Model devel-
opment framework.
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Fig. 3. Schematic diagram of model development.
Table 1
Descriptive statistics of daily electricity demand 𝐺 (MW) at four substations of Southeast
Queensland.

Statistical parameters Annerley Heathwood Laidley Zillmere

Median (MW) 345.39 659.85 193.58 694.43
Mean (MW) 371.62 649.86 195.94 709.37
Standard Deviation (MW) 90.55 113.49 41.22 106.11
Variance 8198.57 12 879.10 1699.27 11 259.13
Maximum (MW) 888.50 1005.26 535.64 1136.41
Minimum (MW) −104.07 99.52 0.00 0.00
Range 888.50 1005.26 535.64 1136.41
Interquartile Range 70.19 127.22 36.41 143.99
Skewness 2.15 −0.30 −0.73 0.35
Kurtosis 8.57 3.38 11.05 4.87

3.1.1. Data preparation and feature scenario development
Since data-driven models (e.g., DL) heavily rely on past progno-

sis, the electricity data for four substations (Fig. 4; (a) Annerley, (b)
Heathwood, (c) Laidley, and (d) Zillmere) in Southeast Queensland,
Australia are collected from Energex website (). The dataset includes
280,560 measurements at a 30-minute sampling rate from 01/07/2011
to 30/06/2021 (120 months or 3653 days). The dataset has been
downsampled from 30-min interval to daily interval using Eq. (16),
where 𝐺𝐷 is a function that employs a set of electricity demand data as
input to down samples to a specific period with a downsampling rate
𝑛 (i.e., for the daily transformation of 30-min data, 𝑛 = 48).

𝐺𝐷 𝑖 =
(𝑖∗𝑛)+𝑛
∑

𝑗=𝑖∗𝑛
𝐺𝐷 𝑖 (16)

It is important to note that for the interpretation of the proposed
model performance in terms of the electricity demand that is typi-
cally measured in 𝑀 𝑊 ℎ, the respective timescale should be used and
appropriate conversions to the time-based usage should be applied.
Table 2 exhibits some descriptive statistics of daily 𝐺 for the selected
substations.

Fig. 5(a) provides further information on the distribution of annual
𝐺 for the four substations. Box plots provide a visual representation
of summary statistics (minimum, maximum, median, first quartile, and
third quartile) for sample data and outliers are indicated with a circle
(‘o’) outside the whisker. Fig. 5(a) shows that there are no significant
differences in the 𝐺 distribution between years for the Laidley substa-
tion, whereas for the Annerley substation, the year 2011 has the highest
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range of 𝐺 variation compared to the period from 2012 to 2021. for the
other two substations (Heathwood and Zillmere), there is an overlap
between each 𝐺 distribution box, indicating the parameters studied are
not significantly different at 5% significance level.

Fig. 5(b) shows a box plot of the 𝐺 for the entire substation monthly.
According to this box plot, the highest and lowest changes of 𝐺 occur
in Autumn (March, April and May) and winter (June, July and August),
respectively. In the summer season (December, January and February),
𝐺 distribution is longer than in other seasons. The medians (generally
close to the average) of Autumn, Spring, and Winter are all at the same
level.

As a starting point for the nonlinear modelling of 𝐺 time series, the
underlying dynamics of the data were firstly examined. In principle,
the PACF can be used to determine the temporal correlation structure
and the lag dimensions of electricity demand dataset used to construct
the proposed FNET model [62]. Fig. 6(a) shows the PACF for 𝐺 data
from 2011 to 2021 for four substations. In all 𝐺 time series, the highest
PACF was acquired at lag 1, which means the antecedent 1-day 𝐺 data
were highly correlated to the current day’s 𝐺 values. This also shows
the classical Auto Regressive rapid decay patterns [63]. Furthermore,
the Mutual Information Function (MIF) is applied to study the chaotic
dynamics of the daily 𝐺 time-series. The choice of the delay time
(𝜏) or the lag is critical to the capturing the processes of correlation
integral calculation and neighbouring trajectory separation within a
minimum embedding space [64]. The first minimum Fig. 6(b) in the
MIF plot generates the state vector that comprises components with
minimal mutual information [65]. The delay times chosen for Annerley,
Heathwood, Laidley and Zillmere are 4, 6, 5 and 6 days, respectively.
The most effective inputs for 𝐺 prediction can be mathematically
expressed as Eqs. (17)–(20) for Annerley, Heathwood, Laidley and
Zillmere, respectively.

𝐺𝐴𝑛𝑛𝑒𝑟𝑙 𝑒𝑦 = 𝑓
(

𝐺𝑡−1, 𝐺𝑡−2, 𝐺𝑡−3, 𝐺𝑡−4
)

(17)

𝐺𝐻 𝑒𝑎𝑡ℎ𝑤𝑜𝑜𝑑 = 𝑓
(

𝐺𝑡−1, 𝐺𝑡−2, 𝐺𝑡−3, 𝐺𝑡−4, 𝐺𝑡−5, 𝐺𝑡−6
)

(18)

𝐺𝐿𝑎𝑖𝑑 𝑙 𝑒𝑦 = 𝑓
(

𝐺𝑡−1, 𝐺𝑡−2, 𝐺𝑡−3, 𝐺𝑡−4, 𝐺𝑡−5
)

(19)

𝐺𝑍 𝑖𝑙 𝑙 𝑚𝑒𝑟𝑒 = 𝑓
(

𝐺𝑡−1, 𝐺𝑡−2, 𝐺𝑡−3, 𝐺𝑡−4, 𝐺𝑡−5, 𝐺𝑡−6
)

(20)
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Fig. 4. Map of the location of the substations in Queensland, Australia where the deep hybrid Fused Network (FNET) model was implemented.
Fig. 5(a). Box plots of annual statistics for 𝐺 at four substations. Note: The box represents the interquartile range, and whiskers extend to the 5th and 95th percentile.
3.1.2. Local climate variables and pre-processing of data
Apart from using the antecedent 𝐺 series to build the proposed

FNET model, this study has used ten different local climate variables
from Scientific Information for Landowners (SILO) repository(). A SILO
database system provides researchers with ’ready-to-use’ climate data
for their predictive models. A comprehensive description of the SILO
database and spatial interpolation of Australian climate data can be
found in [66]. The Queensland Department of Environment and Science
hosts and organizes the SILO datasets.
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Table 1 lists the variables from SILO database and Fig. 7 shows the
heatmap of SILO predictors and the target variable (𝐺) for all substa-
tions. Note that the acronyms used in Fig. 7 are defined in Table 1.
According to Fig. 7, the Mean Sea Level Pressure (𝑀 𝑆 𝐿𝑃 ) is the most
highly correlated predictive variable with 𝐺 for all substations. For
Laidley and Zillmere, the Maximum Temperature (𝑇 𝑚𝑎𝑥) and Vapour
Pressure Deficit (𝑉 𝑃 𝑑) also have a high correlation with 𝐺.

As a further step required in data preprocessing, the min–max data
normalization method (Eq. (21)) was applied to the lagged 𝐷 data
as well as the SILO variables since DL network performance is are
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Fig. 5(b). Box plots of monthly statistics for 𝐺 at four substations. Note: The box represents the interquartile range, and whiskers extend to the 5th and 95th percentile.

Fig. 6(a). PACF plots used for the selection of model degrees of FNET and Benchmark models of (a) Annerley, (b) Heathwood, (c) Laidley, and (d) Zillmere for daily 𝐺 data from
01/07/2011 to 30/06/2021.

Applied Energy 378 (2025) 124763 
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Fig. 6(b). Mutual information (MI) functions and their relative change for 𝐺 time series from 01/07/2011 to 30/06/2021.
Table 2
Description of the pool of local climate predictor variables from Scientific Information
for Landowners (SILO) database used for the point prediction and the interval prediction
of 𝐺(𝑀 𝑊 ) at four substations in southeast Queensland, Australia.

Local climate predictor variables from SILO Acronym

Maximum temperature (◦C) Tmax
Minimum temperature (◦C) Tmin
Vapour pressure (hPa) VP
Vapour pressure deficit (hPa) VPd
Evaporation - synthetic estimate (mm) Esyn
Solar radiation - total incoming
downward shortwave radiation on a horizontal surface (MJ/m2)

GSR

Relative humidity at the time of maximum temperature (%) Rhmax
Relative humidity at the time of minimum temperature (%) Rhmin
Evapotranspiration - Morton’s areal actual evapotranspiration (mm) Etm
Mean sea level pressure (hPa) MSLP

sensitive to the diversity of input data which requires normalization.
After normalizing the data, the input and output matrices were created
as per Eq. (22) and Eq. (23)(e.g. for Annerley)

𝑋𝑛𝑜𝑟𝑚 =

(

𝑋 −𝑋min
)

(

𝑋max −𝑋min
) (21)

where 𝑋 = input/target, 𝑋𝑚𝑖𝑛 = minimum point, 𝑋𝑚𝑎𝑥 = maximum
point and 𝑋𝑛𝑜𝑟𝑚 = anticipated normalized value.

In order to develop the proposed FNET model (and comparative
benchmark models) using historical 𝐺 and local climate variables, a
model input matrix with the predictor variables was created as follows:
𝐼 𝑛𝑝𝑢𝑡 = (𝐺𝑡−1, 𝐺𝑡−2, 𝐺𝑡−3, 𝐺𝑡−4, 𝑇𝑚𝑎𝑥(𝑡−1) ,

𝑇𝑚𝑖𝑛(𝑡−1) , 𝑉𝑝(𝑡−1), 𝑉 𝑃𝑑(𝑡−1),

𝐸𝑠𝑦𝑛(𝑡−1), 𝐺 𝑆 𝑅(𝑡−1), 𝑅ℎ𝑚𝑎𝑥(𝑡−1),
𝑅ℎ𝑚𝑖𝑛(𝑡−1), 𝐸 𝑡𝑚(𝑡−1), 𝑀 𝑆 𝐿𝑃(𝑡−1))

(22)

𝑇 𝑎𝑟𝑔 𝑒𝑡 = (

𝐺𝑡
)

(23)

where 𝐺𝑡 is the current electricity demand, 𝐺𝑡−1, 𝐺𝑡−2, 𝐺𝑡−3, 𝐺𝑡−4,
𝑇𝑚𝑎𝑥(𝑡−1) , 𝑇𝑚𝑖𝑛(𝑡−1) , 𝑉𝑝(𝑡−1), 𝑉 𝑃𝑑(𝑡−1), 𝐸𝑠𝑦𝑛(𝑡−1), 𝐺 𝑆 𝑅(𝑡−1), 𝑅ℎ𝑚𝑎𝑥(𝑡−1),
𝑅ℎ𝑚𝑖𝑛(𝑡−1), 𝐸 𝑡𝑚(𝑡−1) and 𝑀 𝑆 𝐿𝑃(𝑡−1) are the lagged values of electricity
demand, Maximum Temperature, Minimum Temperature, Vapour pres-
sure, Vapour Pressure Deficit, Solar Radiation, Relative Humidity at
Maximum Temperature, Relative Humidity at Maximum Temperature,
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Morton’s Areal Actual Evapo-transpiration and Mean Sea level Pressure,
respectively.

Data are divided into training, validation and testing sets with 90%
of data set from 01/07/2011 to 30/06/2020 (3288 data points) dedi-
cated to model training and validation, while remaining 10% (365 data
points) from 01/07/2020 to 30/06/2021 is used for testing purposes.
The training set is used to train the model learn hidden features or
patterns in the data, while the test set is used to test the model after
the training is complete. During model training, we use a validation set
to validate our model performance, separate from the training set. We
use this validation process to tune the model’s hyperparameters and
configurations accordingly. It acts as a critique that indicates whether
or not the training is progressing properly. In this study, 20% of data
from the training set are used for validation, i.e., 658 data points. Thus,
the input matrix for Annerley substation is [2630 × 14], [658 × 14] and
[365 × 14] for training, validation and testing, respectively. Similarly, for
Heathwood and Zillmere, [2630 × 16], [658 × 16] and [365 × 16] for training,
validation and testing, respectively. However, [2630 × 15], [658 × 15]
and [365 × 15] of data are used for training, validation and testing,
respectively, for the Laidley substation.

3.1.3. Predictive model development and evaluation
The proposed FNET as well as the benchmark models were designed

on the Microsoft Windows 10 platform with an Intel® 𝑐 𝑜𝑟𝑒𝑇 𝑀 i9 Gen-
eration 10 processor operating at 3.8 GHz with 32 GB memory. Models
were designed in Python programming language [67] and MATLAB
R2020b was used for statistical analysis. Tensor Flow [68], Keras [69],
and Scikit-Learn [70] are some of the key and important libraries
available in Python for DL. As mentioned earlier, this study uses the
hybrid Deep Fusion Network (FNET) to predict the Daily 𝐺 at four
substations in Southeast Queensland, Australia.

Fig. 8 shows the FNET model that takes the fused nets with three
fusions composed of a deep base network (1D-CNN) with CNN filters
ranging from 32 to 128 and 4-layer BILSTM network with BILSTM
unit ranging from 16 to 128. Since we are using FNET for regression
purposes, a single BILSTM layer at the end of the network is used before
the fully connected or dense layer. The 𝑆 𝑒𝐿𝑈 was used as the activation
function for the 1D-CNN layer and the 𝑅𝑒𝐿𝑈 is used for the Dense layer
in the proposed FNET model.

The architecture of the proposed FNET (and benchmark models) are
presented in Table 3. It is noteworthy that this paper has selected the
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Fig. 7. Heatmap showing the correlation coefficient of SILO predictors and the target variable (𝐺).
Adam algorithm as the model optimizer for the FNET, LSTMCNN, DNN
and BILSTM models using Mean Square Error as a loss function. The
choice of the Adam algorithm provides the advantage of maintaining
momentum and gradient acceleration by considering both estimations
of the first moment (mean gradient) and the second moment (variance
of the gradient) [71]. This advantage allows enables the model to be
trained faster and to predict the 𝐺 data more accurately. Eq. (24) shows
the back-propagation parameter adjustment using Adam and Eq. (25)
shows the error function.

𝑊𝑡 = 𝑊𝑡−1 − 𝛼
𝑚𝑡

√

𝑣𝑡 + 𝜀
(24)

where 𝑤 = weights of learning model, 𝛼 = learning rate, and 𝑚𝑡 and 𝑣𝑡
= moving average.

𝐿𝑀 𝑆 𝐸 = 1
𝑇
∑𝑇

𝑡=1
(𝑦𝑡 − 𝑦𝐸𝑡 )

2 (25)

where 𝑦𝑡 and 𝑦𝑡𝐸 = measured and predicted 𝐺 at time 𝑡, respectively,
and 𝑇 = total prediction time period.

This study has also adopted the Python Hyperopt library [72]
to deduce optimal hyperparameters, shown in Table 3 for BILSTM,
LSTMCNN, DNN, MARS, MLP, KRR and GPR benchmark models. In
this way, users can select their models or optimize their parameters
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simultaneously in Python programming environment. In fact, Hyperopt
operates as a black box system in which the users can provide an
evaluation function and parameter space to attain the best values based
on the inputs [72]. When selecting an optimization algorithm through
the Hyperopt, the distribution over the choice (‘Adagrad’, ‘Adam’,
‘SGD’, and ‘RMSprop’) is used. This study has used the following
regularization parameters for the proposed FNET and all DL benchmark
models (i.e., BILSTM, LSTMCNN, and DNN).

• Early Stopping (𝑒𝑠): This is used to overcome over-fitting, ter-
minates the training once the performance stops improving on a
validation data after an arbitrary number of epochs (patience).
During training, the best model weights can be saved and updated
with an 𝑒𝑠 regularizer. After a certain number of iterations, the
training is terminated, and the last best parameters are used [73].
One metric to monitor is 𝑀 𝑆 𝐸, which should be minimized.
During training, the model will count the loss at each epoch. In
subsequent epochs, if the 𝑀 𝑆 𝐸 value does not change or the min-
imum value is already calculated, the training will be terminated.
When training the model, the 𝑒𝑠 patience was assumed to be 20.

• ReduceLROnPlateau: This stands for ‘reduce’, ‘learning’, ‘rate’,
‘on’, and ‘plateau’ - indicating the learning rate must be reduced
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Table 3
Architecture of the Deep Hybrid Fused Network (FNET) model vs. LSTMCNN, DNN, BILSTM, MLP, KRR, GPR and MARS models developed for daily electricity demand G (MW)
prediction at four sub-stations of Southeast Queensland. Note: - SeLU = Scaled Exponential Linear Unit; Adam = Adaptive Moment Estimation, ReLU = Rectified Linear Units;
rbf=Radial Basis Function, logistic= Logistic Sigmoid Function, tanh= Hyperbolic Tangent Activation Function.
Predictive models Model Hyperparameters Hyperparameter Selection Annerley Heathwood Laidley Zillmere

Fused Net (FNET) Filter1(CNN) 32
Filter 2 (CNN) 32
Filter 3 (CNN) 128
BILSTM cell 1 (BILSTM) 16
BILSTM cell 2 (BILSTM) 64
Epochs [1000]
Activation function (CNN Layer) [’SeLU’]
Activation function (Dense Layer) [’ReLU’]
Solver [‘adam’]
Batch Size [5]
LSTM cell 1 [50, 60,100,200] 100 60 100 100
LSTM cell 2 [40,50,60,70,130] 40 70 70 60
CNN Filter 1 [50, 60,100,200] 60 50 50 50
CNN Filter 2 [40,50,60,70,130] 40 40 70 50
Activation function [’relu’]
Epochs [1000]

Long Short Term
Memory Network
Integrated with
Convolutional Neural
Network (LSTMCNN)

Batch Size [5,10,15,20,25,30] 10 5 10 5
BILSTM cell 1 [50, 60,100,200] 60 50 50 60
BILSTM cell 2 [40,50,60,70,130] 40 40 60 50
BILSTM cell 3 [20,10,30,5] 30 20 20 10
Activation function [’relu’]
Epochs [1000]

Bi-Directional LSTM
(BILSTM)

Batch Size [5,10,15,20,25,30] 5 10 5 10
Hiddenneuron 1 [60,100,200,250,300,500] 200 250 100 250
Hiddenneuron 2 [20,30,40,50,60,70] 70 50 70 30
Hiddenneuron 3 [10,20,30,40,50] 10 20 10 30
Batch Size [5,10,15,20,25,30] 10 5 10 10
Solver [‘adam’]

Deep Neural Network
(DNN)

Epochs [1000]
Hidden neuron [50,60,70,80,90,100] 90 60 70 90
Activation function [’relu’,’logistic’,’tanh’] relu tanh logistic relu
Learning rate [0.001,0.002,0.005,0.006] 0.002 0.001 0.005 0.001

Multi-Layer Perceptron
(MLP)

Solver [‘adam’]
Kernel [’rbf’]

Kernel Ridge Regression (KRR)
alpha uniform (0,1) 0.0018 0.0021 0.0013 0.0012

Gaussian Process Regression (GPR) The kernel specifying the covariance
function of the Gaussian Process.

[DotProduct, WhiteKernel,
DotProduct+WhiteKernel,

DotProduct + WhiteKernel DotProduct+ WhiteKernel DotProduct+WhiteKernel DotProduct+WhiteKernel

Maximum term generated by
forward pass

[10,20,30] 10 10 10 10
Multivariate Adaptive Regression
Spline (MARS) Maximum degree of terms

generated by forward pass
[5,10,15,20] 10 15 10 10
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Fig. 8. The structure of the proposed FNET model using 1D-CNN and BILSTM layers used in the 𝐺 prediction problem.
upon reaching a certain point. In this model, the regularizer is
used to overcome under-fitting. Whenever the validation loss does
not change, we dynamically update the learning rate [74]. After
ten epochs without improvement during training, the learning
rate will be reduced by 0.2; the lower bound is 0.00001.

• Dropout: Dropout rate (𝐷 𝑂 𝑅) is an effective regularization tool
for dealing with over-fitting. This prevents networks from be-
coming overly reliant on individual neurons. During the training
phase, neurons are multiplied by a random variable following the
Bernoulli distribution with a probability of 𝑝 and the dropout rate
is consistent with (1 −𝑝). As part of this study, the 𝐷 𝑂 𝑅 was set at
0.1 after every layer of the BILSTM, LSTMCNN, and DNN models.

To comprehensively evaluate the FNET model for 𝐺 predictions,
several deterministic metrics are used (see Tables 4(a)–4(c)).

• Class A metrics [Table 4(a)] are indicators of dispersion (or
‘‘error’’) of individually predicted 𝐺 (0 for a perfect model).
13 
According to the study of [78], the relative errors represent
model capability as being excellent (0 ≤ 𝑅𝑅𝑀 𝑆 𝐸 or 𝑅𝑀 𝐴𝐸 ≤
10%), good (10% ≤ 𝑅𝑅𝑀 𝑆 𝐸 or 𝑅𝑀 𝐴𝐸 ≤ 20%), fair (20% ≤
𝑅𝑅𝑀 𝑆 𝐸 or 𝑅𝑀 𝐴𝐸 ≤ 30%) and poor (𝑅𝑅𝑀 𝑆 𝐸 or𝑅𝑀 𝐴𝐸 ≥
30%).

• Class B metrics [Table 4(b)] are the normalized metrics whose
maximum value is 1 for a perfect model [79–81].

• Class C metric [Table 4(b)] uses the 𝐾 𝑆 𝐼 and 𝑂 𝑉 𝐸 𝑅 to indi-
cate the similarities in the distribution of predicted 𝐺 (a lower
value would indicate a better distribution similarity with ob-
served value). In fact, 𝐾 𝑆 𝐼 measures the distance between Cu-
mulative Distribution Function of two datasets whereas 𝑂 𝑉 𝐸 𝑅
measures the distance between them in parts where a critical
value distance exceeds. The study also uses the Combined Perfor-
mance Index (𝐶 𝑃 𝐼), as per [82], to integrate 𝑅𝑀 𝑆 𝐸, 𝐾 𝑆 𝐼 and
𝑂 𝑉 𝐸 𝑅 into a unified model performance indicator.
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Table 4(a)
Class A - Deterministic performance measure.
Note that 𝐺𝑚 and 𝐺𝑝 = observed and predicted G, ⟨𝐺𝑚

⟩ and ⟨𝐺𝑝
⟩ = observed and predicted mean G, 𝑝 = model prediction, 𝑥 = observation, 𝑝𝑟

for perfect prediction (persistence), and 𝑟 for the reference prediction, 𝑉 𝐴𝑅 = variance, 𝑆 𝐷 = standard deviation, 𝑛 = number of predictions
[75].

Deterministic Performance Measure (Class A) Definition

Correlation Coefficient 𝑟 =
∑𝑛

𝑖=1(𝐺
𝑚−⟨𝐺𝑚

⟩)(𝐺𝑝−⟨𝐺𝑝
⟩)

√

∑𝑛
𝑖=1(𝐺𝑚−⟨𝐺𝑚

⟩)2
√

∑𝑛
𝑖=1(𝐺𝑝−⟨𝐺𝑝

⟩)2
(26)

Root Mean Square Error (MW) 𝑅𝑀 𝑆 𝐸 =

√

1
𝑛

𝑛
∑

𝑖=1
(𝐺𝑝 − 𝐺𝑚)2 (27)

Mean Absolute Error (MW) 𝑀 𝐴𝐸 = 1
𝑛

𝑛
∑

𝑖=1
|𝐺𝑝 − 𝐺𝑚

| (28)

Relative Root Mean Square 𝑅𝑅𝑀 𝑆 𝑃 𝐸= 𝑅𝑀 𝑆 𝐸
𝐺𝑚 × 100% (29)

Relative Mean Absolute Percentage Error (%) 𝑅𝑀 𝐴𝑃 𝐸= 𝑀 𝐴𝐸
𝐺𝑚 × 100% (30)

Uncertainty at 95% 𝑈95 = 1.96(𝑆 𝐷2 − 𝑅𝑀 𝑆 𝐸2)0.5 (31)

𝑡-statistic 𝑇 𝑆 =
√

(𝑛−1) × 𝑀 𝐵 𝐸2

𝑅𝑀 𝑆 𝐸2−𝑀 𝐵 𝐸2 (32)

Mean Bias Error (MW) 𝑀 𝐵 𝐸=(100∕ ⟨𝐺𝑚
⟩)
∑𝑖=𝑁

𝑖=1
(

𝐺𝑝
𝑖 − 𝐺𝑚

𝑖
)

(33)

Standard deviation of the Relative Error 𝑆 𝑇 𝐷 𝑅𝐸=
(

1
𝑛−1

∑𝑛
𝑖=1

(

𝐺𝑝−𝐺𝑚

𝐺𝑚

)2
)1∕2

(34)

Explained Variance Score 𝐸𝑣𝑎𝑟 = 1 − Var (𝐺𝑚−𝐺𝑝)
Var (𝐺𝑚)

(35)

Absolute Percentage Bias (%) 𝐴𝑃 𝐵 =
∑𝑛

𝑖=1(𝐺
𝑚−𝐺𝑝)∗100

∑𝑛
𝑖=1 𝐺𝑚 (36)

Skill Score 𝑆 𝑆 = 1 − 𝑅𝑀 𝑆 𝐸(𝑝,𝑥)
𝑅𝑀 𝑆 𝐸(𝑝𝑟,𝑥)

(37)
Table 4(b)
Class B - Deterministic performance measure.
Note that 𝐺𝑚 and 𝐺𝑝 = observed and predicted G, ⟨𝐺𝑚

⟩ and ⟨𝐺𝑝
⟩ = observed and predicted mean G, 𝑛 = number of predictions,

𝐶 𝑉 = Coefficient of Variation.

Deterministic Performance
Measure (Class B)

Definition

Willmot’s Index 𝐸𝑊 𝐼 = 1 −
∑𝑛

𝑖=𝑛(𝐺
𝑚−𝐺𝑝)2

∑𝑛
𝑖=𝑛(|𝐺𝑝−⟨𝐺𝑚

⟩|+|𝐺𝑚−⟨𝐺𝑚
⟩|)2

(38)

Nash–Sutcliffe Equation 𝐸𝑁 𝑆 = 1 −
∑𝑛

𝑖=1(𝐺
𝑚−𝐺𝑝)2

∑𝑛
𝑖=1(𝐺𝑚−⟨𝐺𝑚

⟩)2
(39)

Legates and McCabe’s
Index

𝐸𝐿𝑀 = 1 −
∑𝑛

𝑖=1 |𝐺
𝑚−𝐺𝑝

|

∑𝑛
𝑖=1 |𝐺𝑚−⟨𝐺𝑚

⟩|

(40)

Theil’s Inequality
Coefficient

𝑇 𝐼 𝐶=

√

1
𝑛
×

𝑛
∑

𝑖=1
(𝐺𝑝−𝐺𝑚)2

(√

1
𝑛
×

𝑛
∑

𝑖=1
(𝐺𝑚)2+

√

1
𝑛
×

𝑛
∑

𝑖=1
(𝐺𝑝)2

) (41)

Kling-Gupta Efficiency 𝐾 𝐺 𝐸 = 1 −
√

(𝑟 − 1)2 +
(

⟨𝐺𝑝
⟩

⟨𝐺𝑚
⟩

− 1
)2

+
(

𝐶 𝑉 𝑝

𝐶 𝑉 𝑚

)2
(42)
Table 4(c)
Class C - Deterministic performance measure.
Note that 𝐷𝑛 = absolute difference between calculated and measured CDF. 𝑋𝑚𝑖𝑛 and 𝑋𝑚𝑎𝑥 = minimum and maximum 𝐷𝑛, 𝐴𝑐
= critical area, 𝐷𝑐 = statistical characteristic of the reference distribution or critical value, 𝑁 = number of points and 𝛷(𝑁)
is a pure function of N [76,77].

Deterministic Performance
Measure (Class C)

Definition

KSI 𝐾 𝑆 𝐼 = 100
𝐴𝑐

∫ 𝑋𝑚𝑎𝑥
𝑋𝑚𝑖𝑛

𝐷𝑛𝑑 𝑥 (43)

Critical Limit
Overestimation Index

𝑂 𝑉 𝐸 𝑅 = 100
𝐴𝑐

∫ 𝑋1
𝑋0

max (𝐷𝑛 −𝐷𝑐 , 0)𝑑 𝑥 (44)

where 𝐴𝑐 = 𝐷𝑐 (𝑋𝑚𝑎𝑥𝑋𝑚𝑖𝑛) (45)

where 𝐷𝑐 = 𝛷(𝑁)∕𝑁1∕2 (46)

Combined Performance
index

𝐶 𝑃 𝐼 = 𝐾 𝑆 𝐼+𝑂 𝑉 𝐸 𝑅+2𝑅𝑀 𝑆 𝐸
4

(47)
This study has also used Global Performance Indicator (GPI) as a

metric to rank the models [83] as well as Promoting Percentages (𝜆), L

14 
Directional Symmetry (𝐷 𝑆), Diebold–Mariano (𝐷 𝑀) [84] and Harvey–

eybourne–Newbold (𝐻 𝐿𝑁) test statistics to compare the performance
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Table 4(d)
Probabilistic performance measure (Class D).
Note: 𝑁 denotes the number of test samples, 𝑦𝑖 is the 𝑖th observation, 𝐿(𝐺𝑖) and 𝑈 (𝐺𝑖) represent lower bound and upper
bound of the 𝑖th. G Prediction Interval respectively, 𝐺𝑚 is the observed value of G, 𝑅 is the Range. [86]. In 𝐶 𝑅𝑃 𝑆 metrics,
𝐼 (⋅) is the Heaviside function, it takes the value of 1 when 𝑡 > 𝑦 and equals 0 otherwise.

Deterministic
Performance
Measure (Class D)

Definition

Prediction Interval
Coverage Probability

PICP = 1
𝑁

𝑁
∑

𝑖=1
𝑐𝑖 (54)

𝑤ℎ𝑒𝑟𝑒𝑐𝑖 =

{

1 if 𝑦𝑖 ∈
(

𝑈 (𝐺𝑖), 𝐿(𝐺𝑖)
)

0 otherwise
(55)

Mean Prediction
Interval Width

𝑀 𝑃 𝐼 𝑊 = 1
𝑁

𝑁
∑

𝑖=1
(𝑈 (𝐺𝑖) − 𝐿(𝐺𝑖)) (56)

F Value 𝐹 =
𝑃 𝐼 𝐶 𝑃 × 2 × 1

𝑀 𝑃 𝐼 𝑊
𝑃 𝐼 𝐶 𝑃+ 1

𝑀 𝑃 𝐼 𝑊 (57)

Average Relative
Interval Length

𝐴𝑅𝐼 𝐿 = 1
𝑁

𝑁
∑

𝑖=1

(𝑈(𝐺𝑖)−𝐿(𝐺𝑖))
𝐺𝑚

𝑖
(58)

Winkler Score 𝑊 𝑆 =

⎧

⎪

⎨

⎪

⎩

𝛥𝑖 𝐿
(

𝐺𝑖
)

≤ 𝑦𝑖 ≤ 𝑈
(

𝐺𝑖
)

𝛥𝑖 + 2 (𝐿 (

𝐺𝑖
)

− 𝑦𝑖
)

∕𝛼 𝑦𝑖 < 𝐿 (

𝐺𝑖
)

𝛥𝑖 + 2 (𝑦𝑖 − 𝑈
(

𝐺𝑖
))

∕𝛼 𝑦𝑡 > 𝑈 (

𝐺𝑖
)

(59)

where 𝛥𝑖 = 𝑈 (𝐺𝑖) − 𝐿(𝐺𝑖) (60)

Normalized Mean
Prediction
Interval Width

𝑃 𝐼 𝑁 𝐴𝑊 = 1
𝑁 ⋅𝑅

(

𝑁
∑

𝑖=1

(

𝑈
(

𝐺𝑖
)

− 𝐿
(

𝐺𝑖
))

)

(61)

Continuous Rank
Probability Score (𝑀 𝑊 )

𝐶 𝑅𝑃 𝑆 = 1
𝑁

𝑁
∑

𝑖=1
𝑐 𝑟𝑝𝑠 (𝐹𝑖, 𝑦𝑖

)

(62)

where 𝑐 𝑟𝑝𝑠 (𝐹 , 𝑦) = ∫ ∞
−∞ (𝐹 (𝑡) − 𝐼 (𝑡 − 𝑦))2𝑑 𝑦 (63)
𝑁
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of the proposed FNET model with the benchmark models. The 𝐺 𝑃 𝐼 is
omputed using six performance metrics as follows:

GPI𝑖 =
6
∑

𝑗=1
𝛼𝑗 (𝑔𝑗 − 𝑦𝑖𝑗 ) (48)

where 𝛼𝑗 = median of scaled values 𝑔𝑗 of the statistical indicators 𝑗
or model 𝑖 in which 𝑗 = −1 is for 𝑟 and 𝑗 = 1 for 𝑅𝑀 𝑆 𝐸, 𝑀 𝐴𝐸,
 𝐴𝑃 𝐸, 𝑅𝑅𝑀 𝑆 𝐸 and 𝑀 𝐵 𝐸 (𝑗 = 1, 2, 3, 4, 5). A large 𝐺 𝑃 𝐼 implies good

erformance.
Finally, the Directional Symmetry (DS), Promoting Percentage of

bsolute Percentage Bias (𝜆𝐴𝑃 𝐵), Kling-Gupta Efficiency (𝜆𝐾 𝐺 𝐸) and
oot Mean Square Error (𝜆𝑅𝑀 𝑆 𝐸) [85] are also employed to evaluate

the efficacy of the proposed FNET model:

𝐷 𝑆 = 1
𝑛

𝑛
∑

𝑡=2
𝑑𝑡 × 100% (49)

where,

𝑑𝑡 =

{

1 if (𝐺𝑚
𝑡 − 𝐺𝑚

𝑡−1)(𝐺
𝑝
𝑡 − 𝐺𝑚

𝑡−1) > 0

0 otherwise
(50)

𝜆𝐴𝑃 𝐵 =
|

|

|

|

(𝐴𝑃 𝐵1 − 𝐴𝑃 𝐵2)
𝐴𝑃 𝐵1

|

|

|

|

(51)

𝜆𝐾GE =
|

|

|

|

(𝐾 𝐺 𝐸1 −𝐾 𝐺 𝐸2)
𝐾 𝐺 𝐸1

|

|

|

|

(52)

𝜆𝑅𝑀SE =
|

|

|

|

(𝑅𝑀 𝑆 𝐸1 − 𝑅𝑀 𝑆 𝐸2)
𝑅𝑀 𝑆 𝐸1

|

|

|

|

(53)

where 𝐴𝑃 𝐵1, 𝑅𝑀 𝑆 𝐸1 and 𝐾 𝐺 𝐸1 = objective model performance met-
ric and 𝐴𝑃 𝐵2, 𝑅𝑀 𝑆 𝐸2 and 𝐾 𝐺 𝐸2 = benchmark model performance
metric.
r

15 
3.1.4. Quantifying uncertainty in electricity demand with residual boot-
strapping method

In this study, the proposed FNET model is developed in such a
way that the predicted uncertainties in 𝐺 can be explored in detail
to ascertain the suitability of the method for decision-making in the
electricity industry. To pursue this, the bootstrap technique is adopted
to study the residuals from the point-based 𝐺 predictions to establish
the bootstrap-driven Prediction Intervals (𝑃 𝐼). To generate the 𝑃 𝐼 𝑠, the
95% confidence level or 100(1 −𝛼)% where 𝛼 = 0.05 was selected using

= 1000 bootstrap samples to assess the distribution of uncertainties
enerated by the FNET model.

By re-sampling the predictive model outcomes and analysing the
rrors encountered in several rounds of model emulations used to

generate the predicted electricity demand, bootstrapping allows for the
apture of the predicted uncertainties in electricity demand. After a

trial and error process, we considered 1000 bootstrap samples that
howed no significant difference in predictions beyond this value. Based
n the results of the residual bootstrapping method, we computed sev-
ral probabilistic metrics, as per Table 4(d) in respect to the prediction
ntervals and the model’s uncertainties.

As a crucial measure of the model variability, we have analysed the
rediction Interval Coverage probability (𝑃 𝐼 𝐶 𝑃 ) whereby the probabil-
ty of true 𝐺 value limited by the upper and the lower boundaries of the
redicted 𝐺 values can be studies. Typically, the 𝑃 𝐼 𝐶 𝑃 values range
rom 0 to 1 where a magnitude exceeding the confidence level (i.e.,
.95) is preferred for a robust predictive model. However, increasing
he range of the prediction interval can elevate the PICP while provid-
ng lesser information about the model’s stability in respect to low error
redictions. As a result, we also employed the Mean Prediction Interval
idth (𝑀 𝑃 𝐼 𝑊 ) as a supplemental metric to indicate the capability of

he model to enclose genuine values inside the prediction boundaries.
n general, the model with a lower 𝑀 𝑃 𝐼 𝑊 is expected to have a
educed uncertainty across the models with similar 𝑃 𝐼 𝐶 𝑃 value [87].
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Our study has also employed another comprehensive index, 𝐹 −
𝑣𝑎𝑙 𝑢𝑒 that combined both 𝑃 𝐼 𝐶 𝑃 and 𝑀 𝑃 𝐼 𝑊 to evaluate the perfor-

ance of the model based on 𝑃 𝐼 𝑠. Notably, a larger value of 𝐹 would
indicate a better performance of the prediction interval. Additionally,
the 𝑃 𝐼 Normalized Average Width (𝑃 𝐼 𝑁 𝐴𝑊 ), Average Relative In-
erval Width (𝐴𝑅𝐼 𝐿), Winkler Score (𝑊 𝑆) [88] and the Continuous
ank Probability Score (𝐶 𝑅𝑃 𝑆) were also used to explore various
ther uncertainty measures. It is important to note that in probabilistic
rediction model evaluations, the 𝐶 𝑅𝑃 𝑆 is one of the most commonly
sed error measure as similar to the 𝑀 𝐴𝐸 in deterministic predictions,
his metric can also generalize the 𝑀 𝐴𝐸 as a probabilistic prediction
valuation measure of the proposed FNET model [89].

4. Results and discussion

4.1. Results based on deterministic model evaluation metrics

This section describes the findings by a comparative analysis of
the proposed FNET and the seven benchmark models, i.e., BILSTM,
LSTMCNN, DNN, MLP, KRR, GPR, and MARS. To conduct an accu-
rate evaluation and avoid subjective conclusions, a comprehensive
comparison is performed using a range of deterministic metrics, as
per Table 4(a), Table 4(b), and Table 4(c). In addition, graphic tools
onsisting of bar charts, scatter plots, box plots, Empirical Cumulative
istribution Functions (ECDF) as well as cumulative frequencies and
aylor diagrams are used to support the analysis. In general, the

proposed FNET model shows a persistently superior performance in
espect to the daily 𝐺 prediction problem to supersede the benchmark
odels for all four substations indicated through metrics.

Despite the varied performance of the benchmark models depending
n the metric of choice, our results showed that the BILSTM and
STMCNN model were generally the second-best models, after the
roposed FNET model. However, the deep learning (DNN and the GPR)
odel yielded moderately accurate performance whereas the shallow
odels (MARS, KRR, and MLP) produced the least accurate predicted
values. It is noteworthy that further explanations of these model per-

formance variations (e.g., the causes of model bias and the underlying
physics) is not the primary interest of this study which is focused on
the performance analysis of only the proposed FNET model. However,
clear separation of this statistical performance no doubt highlights the
importance of using a wide range of model metrics to evaluate the
performance of different models, albeit at the same tested site. Next,
we present a detailed evaluation of the model performance discussed
in the following paragraphs.

Table 5 compares the models in terms of 𝑟, 𝑅𝑀 𝑆 𝐸, and 𝑀 𝐴𝐸 as
the most popular first order metrics. Here, the correlation coefficient
measures the closeness between the observed and the predicted points
through a scatter plot to generate a least-square regression line as
shown in Fig. 9. The Root Mean Squared Error is the standard deviation
of the distribution of prediction errors or residuals, while the Mean

bsolute Error is measured as the average of the absolute prediction
rrors. The 𝑅𝑀 𝑆 𝐸 penalizes the large prediction errors compared to
 𝐴𝐸 prediction errors. The values of these statistical performance
etrics indicate a better predictive performance of the proposed FNET

ompared to the alternative models. There is often a direct relationship
mong these scores, for example, if 𝑟 = 1, then 𝑅𝑀 𝑆 𝐸 = 0 when all
oints lie on the regression line; hence, there are no errors. For instance,
he proposed FNET model for the Annerley substation produced higher
cores of 𝑟 (≈ 0.974) and lower scores of 𝑅𝑀 𝑆 𝐸 (≈ 15.136 MW)
nd 𝑀 𝐴𝐸 (≈ 11.641 MW) followed by LSTMCNN and BILSTM models
𝑟 ≈ 0.967 and 0.965; 𝑅𝑀 𝑆 𝐸 ≈ 16.233 and 16.481 MW; 𝑀 𝐴𝐸 ≈ 12.482
nd 12.484 MW, respectively).

It is important to note that the other models such as the MLP, MARS
and KRR, registered the worst performance with 𝑟 ≈ 0.950, 0.936 and
0.926; 𝑅𝑀 𝑆 𝐸 ≈ 19.579, 21.984 and 23.480 MW; 𝑀 𝐴𝐸 ≈ 14.889,
17.219 and 17.593 MW, respectively. Similar results were also found for
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Table 5
The testing performance of the Deep Hybrid Fused Network (FNET) model vs.
benchmark models as measured by Correlation Coefficient (𝑟), Root Mean Square Error
(𝑅𝑀 𝑆 𝐸 , 𝑀 𝑊 ) and Mean Absolute Error (𝑀 𝐴𝐸 , 𝑀 𝑊 ).

Sub-Station Predictive Model Model Performance Metrics

r RMSE MAE

FNET 0.974 15.136 11.641
BILSTM 0.965 16.481 12.484
LSTMCNN 0.967 16.233 12.482
DNN 0.964 16.854 12.900
MLP 0.950 19.579 14.889
KRR 0.926 23.480 17.593
GPR 0.957 18.533 14.110

Annerley

MARS 0.936 21.984 17.219

FNET 0.947 66.045 49.392
BILSTM 0.930 69.167 51.999
LSTMCNN 0.932 71.417 55.177
DNN 0.932 71.264 55.155
MLP 0.931 73.323 57.078
KRR 0.935 73.016 56.945
GPR 0.939 76.208 61.831

Heathwood

MARS 0.939 73.084 57.773

FNET 0.963 13.038 10.266
BILSTM 0.957 14.449 11.488
LSTMCNN 0.961 14.370 11.425
DNN 0.953 14.730 11.655
MLP 0.947 15.325 12.004
KRR 0.937 16.842 13.376
GPR 0.949 15.084 11.726

Laidley

MARS 0.955 15.114 11.768

FNET 0.953 39.808 31.393
BILSTM 0.948 41.254 32.506
LSTMCNN 0.950 41.488 32.176
DNN 0.944 42.657 33.573
MLP 0.923 49.463 39.458
KRR 0.933 46.721 36.709
GPR 0.947 41.621 32.880

Zillmere

MARS 0.947 41.679 32.922

Laidley and Zillmere sub-stations. For the Heathwood site, despite the
roposed FNET model still being the best model, the performance order
f the benchmark models appeared to vary depending on the choice of
he metric. For instance, the BILSTM model was the second-top model
ased on the 𝑅𝑀 𝑆 𝐸 (≈ 69.167 MW) and the 𝑀 𝐴𝐸 (≈ 51.999 MW) but

the worst based on the 𝑟 value (≈ 0.930). By contrast, the GPR model
produced a high 𝑟 (≈ 0.939), just after the proposed FNET model but
also the highest 𝑅𝑀 𝑆 𝐸 (≈ 76.208 MW) and 𝑀 𝐴𝐸 (≈ 61.831 MW). This
variation of the model performance may be partly explained by the
differences in the distributions of 𝐺 dataset in Heathwood, for example,
having a higher standard deviation with extreme values compared with
the other sub-stations (Figs. 5(a) and 5(b)) where the extreme values
may have more influences on the scores using square roots.

Likewise, Table 6 represents the relative error for the testing data
computed for the four substations, shown as the ratio of the 𝑅𝑀 𝑆 𝐸
and the 𝑀 𝐴𝐸 to the mean value of the target variable. The scores
f the Relative Root Mean square Error (𝑅𝑅𝑀 𝑆 𝐸) and Relative Mean

Absolute Error (𝑅𝑀 𝐴𝐸) are therefore consistent with those in Table 5
that show the superior performance of the proposed FNET model.

In respect to the Skill Score (𝑆 𝑆) presented in Fig. 10, we note that
he proposed FNET model has achieved the highest 𝑆 𝑆 value, followed

by a relatively lower value for the BILSTM and LSTMCNN models for all
tested substations while the values for the KRR and GPR model are the
owest particularly at the Annerley substation. Interestingly, all models

based on the 𝑆 𝑆 metric also registered comparative performance for
the Heathwood substation. It should also be noted that the persistence
model is used as the benchmark model for the computation of 𝑆 𝑆.
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Fig. 9. Variation presentation in the form of Scatter plots for the simulated daily 𝐺 at all the modelled stations. The red line shows least-square regression 𝑦 = 𝑚𝑥+ 𝑐, where 𝑦 is
the 𝐺𝑝(𝑝𝑟𝑒𝑑 𝑖𝑐 𝑡𝑒𝑑), 𝑥 is the 𝐺 𝑎(𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑), and 𝑟 is the correlation coefficient. The name of each model is provided in Table 3.
Fig. 10. Bar chart showing Skill Score Metric (𝑆 𝑆) of the proposed FNET and the alternative benchmark models. The persistence model considers that 𝐺 at 𝑡 equals the 𝐺 at 𝑡+ 1
and assumes that electricity use patterns are stationary.
Therefore the persistence model assumes that the 𝐺 at a particular time
will be the same as measured one day before for lead periods up to one
day, one week before for lead times of one week, and one year before
for lead times of one year.

To further explore the efficacy of the proposed FNET model, we
refer to Table 7 that represents the Standard Deviation of the Relative
Error (𝑆 𝑇 𝐷 𝑅𝐸) and the Explained Variance (𝐸𝑣𝑎𝑟) computed for the
testing phase of experiment. As expected, the proposed FNET model
has produced the best scores in terms of both metrics. For example, for
17 
the Laidley substation we note that 𝑆 𝑇 𝐷 𝑅𝐸 ≈ 4.369 and 𝐸 𝑣𝑎𝑟 ≈ 0.860,
compared with the KRR model with 𝑆 𝑇 𝐷 𝑅𝐸 ≈ 5.742 and 𝐸𝑣𝑎𝑟 ≈ 0.764
that appear to indicate the worst model. The distribution of absolute
prediction error (|𝑃 𝐸|) were also visually explored further through the
box plots represented in Fig. 11 and empirical cumulative distribution
function (𝐸 𝐶 𝐷 𝐹 ) in Fig. 12.

In Fig. 11, we note that the proposed FNET model for all substa-
tions documented a smaller |𝑃 𝐸| division, which is in agreement with
Tables 5 and 6. On the other hand, the LSTMCNN model appears to
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Table 6
The geographic comparison of the Deep Hybrid Fused Network (FNET)) model vs.
ther comparative models in terms of the relative errors (𝑅𝑅𝑀 𝑆 𝐸 ,%) and (𝑅𝑀 𝐴𝐸 ,%)
omputed within the test sites. Note that the best model is boldfaced (blue).

Sub-Stations Predictive Model Model Performance Metrics

RRMSE RMAE

FNET 4.48% 3.41%
BILSTM 4.88% 3.67%
LSTMCNN 4.80% 3.67%
DNN 4.99% 3.78%
MLP 5.79% 4.35%
KRR 6.95% 5.13%
GPR 5.48% 4.15%

Annerley

MARS 6.50% 5.10%

FNET 9.32% 7.19%
BILSTM 9.76% 7.75%
LSTMCNN 10.08% 8.09%
DNN 10.05% 8.09%
MLP 10.35% 8.33%
KRR 10.30% 8.26%
GPR 10.75% 8.91%

Heathwood

MARS 10.31% 8.35%

FNET 6.67% 5.43%
BILSTM 7.39% 5.89%
LSTMCNN 7.35% 5.81%
DNN 7.53% 6.19%
MLP 7.84% 6.35%
KRR 8.61% 7.00%
GPR 7.71% 6.14%

Laidley

MARS 7.73% 6.01%

FNET 5.73% 4.55%
BILSTM 5.94% 4.67%
LSTMCNN 5.98% 4.57%
DNN 6.14% 4.84%
MLP 7.12% 5.69%
KRR 6.73% 5.29%
GPR 5.99% 4.77%

Zillmere

MARS 6.00% 4.77%

have an immediate performance compared to the FNET model followed
y the BILSTM, DNN, GPR, MLP, KRR, and the MARS model. On

the contrary, because the distributions created by the proposed FNET
model were evenly dispersed with a limited number of outliers points
for all four substations, the box plots show a clear distinction in the
model performance. In particular, the 𝐸 𝐶 𝐷 𝐹 line plots representing
the benchmark models showed a very close profile for all of the four
substations. The 𝐸 𝐶 𝐷 𝐹 profile of the proposed FNET, on the other
hand, revealed a remarkably narrow profile constrained within the
smallest range at all of the four substations.

We now show Fig. 13 that depict a detailed account of the predictive
skill of the proposed FNET model where the frequency distribution of
|𝑃 𝐸| caused by the FNET vs. the alternative models is shown. Notably,
the value of |𝑃 𝐸| achieved by the proposed FNET model was within the
lowest range for all of the four substations. Consequently, for all four
substations, the box plots in Fig. 11, together with the 𝐸 𝐶 𝐷 𝐹 plots
in Fig. 12, and cumulative frequency plot in Fig. 13 further indicate
the proposed FNET model’s superiority in daily 𝐺 prediction when
compared with the competing benchmark models.

The efficacy of the proposed FNET model was also evaluated using
the Willmott’s Index (𝐸𝑊 𝐼 ), Nash–Sutcliffe Coefficient (𝐸𝑁 𝑆 ) and the
Legates & McCabe’s (𝐸𝐿𝑀 ) index (Table 8). It should be noted that 𝐸𝑊 𝐼
is an improved metric over 𝑅𝑀 𝑆 𝐸 and 𝑀 𝐴𝐸 which aims to over-
come the insensitivity issues when differences between observed and
predicted 𝐺 values are not squared. Considering all four substations, the
proposed FNET model seems to perform the best to attain the highest
𝐸 , 𝐸 , and 𝐸 except for the case of Zillmere sub-station with
𝑊 𝐼 𝑁 𝑆 𝐿𝑀
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Table 7
The testing performance of the Deep Hybrid Fused Network (FNET) model vs.
LSTMCNN, DNN, BILSTM, MLP, KRR, GPR and MARS models as measured by Standard

eviation of Relative Error (𝑆 𝑇 𝐷 𝑅𝐸), and Explained Variance (𝐸𝑣𝑎𝑟).

Sub-stations Predictive Model Model Performance Metrics

STDRE Evar

FNET 2.762 0.889
BILSTM 3.105 0.868
LSTMCNN 2.993 0.872
DNN 3.078 0.865
MLP 3.632 0.814
KRR 4.476 0.733
GPR 3.429 0.834

Annerley

MARS 3.923 0.766

FNET 7.287 0.790
BILSTM 8.128 0.747
LSTMCNN 7.811 0.754
DNN 7.777 0.754
MLP 7.807 0.750
KRR 7.583 0.758
GPR 7.660 0.777

Heathwood

MARS 7.343 0.776

FNET 4.369 0.860
BILSTM 4.571 0.839
LSTMCNN 4.579 0.850
DNN 5.234 0.823
MLP 5.411 0.805
KRR 5.742 0.764
GPR 5.201 0.810

Laidley

MARS 4.849 0.830

FNET 3.555 0.824
BILSTM 3.576 0.808
LSTMCNN 3.570 0.813
DNN 3.764 0.795
MLP 4.202 0.727
KRR 4.109 0.756
GPR 3.669 0.806

Zillmere

MARS 3.646 0.804

𝐸𝑊 𝐼 ≈ 0.878 to fall just after the LSTMCNN model with 𝐸𝑊 𝐼 ≈ 0.884.
For example, at the Laidley study site, the proposed FNET model seems
to yield 𝐸𝑊 𝐼 ≈ 0.891, 𝐸𝑁 𝑆 ≈ 0.859, and 𝐸𝐿𝑀 ≈ 0.603 followed by the
STMCNN model with 𝐸𝑊 𝐼 ≈ 0.891, 𝐸𝑁 𝑆 ≈ 0.832, and 𝐸𝐿𝑀 ≈ 0.558
nd BILSTM with 𝐸𝑊 𝐼 ≈ 0.885, 𝐸𝑁 𝑆 ≈ 0.828, and 𝐸𝐿𝑀 ≈ 0.556.

These metrics when computed for the MLP and KRR model appear to
be the lowest with 𝐸𝑊 𝐼 ≈ 0.870 and 0.869, 𝐸𝑁 𝑆 ≈ 0.804 and 0.764,
nd 𝐸𝐿𝑀 ≈ 0.536 and 0.483, respectively. In corroboration with the
revious findings, the 𝐸𝑊 𝐼 , 𝐸𝑁 𝑆 , and the 𝐸𝐿𝑀 values yield consistent

results and therefore indicate that the deep hybrid FNET model is able
to predict the 𝐺 values more correctly than the benchmark models.

We now revert to Absolute Percentage Bias (𝐴𝑃 𝐵 ,%) and Kling–
Gupta Efficiency (𝐾 𝐺 𝐸), as per Fig. 14(a, and the global performance
indicator (𝐺 𝑃 𝐼), as per Fig. 14(b). With the lowest 𝐴𝑃 𝐵 and the highest

 𝐺 𝐸 and 𝐺 𝑃 𝐼 , we note that the proposed FNET model outperformed
ll benchmark models. According to the 𝐺 𝑃 𝐼 , the lowest performing
odel were the KRR and the MARS model for daily 𝐺 predictions.

Fig. 15 represents the performance comparison using Combined Per-
formance Index (𝐶 𝑃 𝐼), where a lower percentage of 𝐶 𝑃 𝐼 could imply
a more robust model. While the results reconfirmed the superiority of
the proposed FNET model across all substations, it is interesting that the
KRR model, which is the worst model according to the other metrics,
yielded the second-best percentage of 𝐶 𝑃 𝐼 , which lies just after the
value for the proposed FNET model for the Laidley study site. These
findings also reaffirm that the proposed FNET model outperforms the
benchmark models for daily prediction of electricity demand.

Although various error indicators so far showed the differences
in predictive accuracy of models, these results need further careful
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Fig. 11. Box plot exemplifying the veracity of the proposed FNET model in terms of the overall distribution of the Prediction Error (|𝑃 𝐸| (MW)) computed against the alternative
models.(a) Annerley, (b) Heathwood, (c) Laidley, (d) Zillmere sub-station.
Fig. 12. Empirical cumulative distribution function (𝐸 𝐶 𝐷 𝐹 ) for |𝑃 𝐸| (MW) of the 𝐺 predicted by the LSTMCNN, DNN, BILSTM, MLP, KRR, GPR and MARS models against the
proposed FNET model.
consideration as the variations in model accuracy could be driven
by the nature of the data and its features. To address this issue,
we jointly apply the Diebold–Mariano (DM) and Harvey–Leybourne–
Newbold (HLN) statistical test to quantify the differences in accuracy
between these models, aiming to determine whether two predictions
are significantly different.

Tables 9 and 10 show 𝐷 𝑀 , 𝐻 𝐿𝑁 and 𝜆. Importantly, both test
statistics indicate superior performance of the proposed FNET model
relative to the benchmark models, certainly depicts the improvements
made on the LSTMCNN and BILSTM models in accordance with the
absolute values of 𝐷 𝑀 being larger than 1.96 - the 𝑧 − 𝑠𝑐 𝑜𝑟𝑒 of 5%
significance level. The observed differences between LSTMCNN and
FNET models are also quite significant with the absolute value of the
19 
𝐷 𝑀 ≈ 2.9547 > 1.96. Similarly, between the BILSTM and the proposed
FNET model, the absolute value of the 𝐷 𝑀 ≈ 2.1264 > 1.96.

In terms of the 𝜆 shown Table 10, when the LSTMCNN model is
compared with the FNET model, the model improvement is evident in
𝑅𝑀 𝑆 𝐸, 𝐴𝑃 𝐵 and 𝐾 𝐺 𝐸 as being ≈ 7.25%,≈ 7.82%,≈ 7.23%, respec-
tively (Annerley substation), ≈ 8.13%,≈ 1.68%,≈ 11.71%, respectively
(Heathwood substation), ≈ 10.22%,≈ 6.34%,≈ 11.29%, respectively
(Laidley substation) and ≈ .22%,≈ 3.71%,≈ 2.49% (Zillmere substation).
Therefore the 𝐷 𝑀 , 𝐻 𝐿𝑁 and Promoting Percentages further ascertain
that the predictive capability of the FNET model is considerably better
than the benchmark models.

Fig. 16 shows the directional symmetry (DS) criteria whereby the
proposed FNET model scored the highest 𝐷 𝑆 ≈ 87.74%, and this
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Fig. 13. Cumulative frequency of the Prediction Error(|𝑃 𝐸|(MW)) for four substations at (a) Annerley, (b) Heathwood, (c) Laidley and (d) Zillmere.
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Fig. 14. (a) Absolute Percentage Bias (𝐴𝑃 𝐵 ,%) and Kling–Gupta Efficiency (𝐾 𝐺 𝐸), (b) Global Performance Indicator (𝐺 𝑃 𝐼) used to evaluate the proposed FNET model in respect
to several benchmark models.
value remained considerably higher than those of seven other mod-
els by magnitude of 23–26%. Fig. 17 provides additional information
on the performance of the FNET and benchmark models by using
Taylor diagrams. In particular, the Taylor diagram depicts the three
complementary model performance that comprises of the Standard
Deviation, Centralized Root Mean Square Error (𝐶 𝑅𝑀 𝑆 𝐸), and the
Correlation between predicted and observed electricity demand in the
testing phase. The diagrams also indicate that the simulated point by
the FNET model is closer to the observation (OBS) compared with other
21 
benchmark models and implies that the predictions derived from FNET
and the observations have a similar standard deviation and higher
correlation (≈ 0.93), and 𝐶 𝑅𝑀 𝑆 𝐸 is closer to zero. In congruence with
Table 9, Table 10, Figs. 16 and 17, we can confirm that the proposed
FNET model demonstrated better and reliable prediction capability at
all four substations.
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Fig. 15. Bar chart showing the efficacy of the proposed FNET model in terms of Combined Performance Index (𝐶 𝑃 𝐼 , %) for four substations. (a) Annerley, (b) Heathwood, (c)
Laidley, (d) Zillmere.
Fig. 16. The criteria of directional symmetry (𝐷 𝑆) assessment for the introduced model (i.e., FNET) and the benchmark models.
4.1.1. Uncertainty evaluation
To explore the errors encountered in point-based predictions of

daily electricity demand dataset, we now quantify the inherent uncer-
tainties generated by the proposed FNET and benchmark models. We
express this uncertainty as the prediction interval 𝑃 𝐼s of the underlying
distribution of the predictive model errors in the testing phase. While
the 𝑃 𝐼 𝑠 can provide a lower bound and an upper bound for these
predictions, the modelling process described earlier can only provide
a point-based prediction. Therefore, as explained in Section 3.1.4, the
residual bootstrap approach was able to compute the uncertainties for
each model, as shown in Tables 11 and 12.

It is evident that the 𝑃 𝐼 𝐶 𝑃 of the proposed FNET model was not
significantly different from that of the benchmark models evaluated at
the 95% confidence level. However, the 𝑀 𝑃 𝐼 𝑊 values are relatively
higher, and the 𝐹 values are relatively lower. In particular, the 𝑀 𝑃 𝐼 𝑊
value for the daily prediction of 𝐺 emulated by the proposed FNET
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model is ≈ 57.97 for the Annerley substation compared with a value of
≈ 64.92, ≈ 64.90, ≈ 67.44, ≈ 82.83, ≈ 101.24, ≈ 70.65, and ≈ 94.06 for
the BILSTM, LSTMCNN, DNN, MLP, KRR, GPR and the MARS models,
respectively. Among the benchmark models, we note that the KRR
model has attained the highest value of 𝑀 𝑃 𝐼 𝑊 compared with the
other predictive models.

It is important to note that there was an ≈ 11% reduction in the
magnitude of 𝑀 𝑃 𝐼 𝑊 when comparing the proposed FNET model with
the BILSTM and LSTMCNN models. Similarly, for the case of DNN, MLP,
GPR, KRR and MARS models, we noted a reduction in the 𝑀 𝑃 𝐼 𝑊
value of ≈ 14%, ≈ 30%, ≈ 18%, ≈ 38%, and ≈ 42%, respectively, for
the Annerley substation. A similar trend could also be seen for the
Heathwood, Laidley and Zillmere substations.

When referred to the more comprehensive index, which is actually
the weighted harmonic average of the 𝑃 𝐼 𝐶 𝑃 and 1∕𝑀 𝑃 𝐼 𝑊 metrics
used to evaluate the quality of the 𝑃 𝐼 𝑠 ⋅ 𝐹 value, the proposed FNET
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Fig. 17. Two dimension graphical presentation ‘‘Taylor diagram’’ for the predictive FNET model evaluation with the benchmark models of daily 𝐺 over the testing phase.
model registered larger values than that of the benchmark models for
all tested substations. In respect to the sharpness of the generated
𝑃 𝐼 , denoted as the Winkler Score (𝑊 𝑆), the proposed FNET model
also appeared quite superior. In fact, the 𝑊 𝑆 tends to reward the
narrow 𝑃 𝐼 values and penalizes them if the targets are not successfully
captured by the 𝑃 𝐼 value whereas a good quality 𝑃 𝐼 is expected to
have a lower absolute value of the 𝑊 𝑆 for a given confidence level.
Table 12 presents the 𝑊 𝑆 at the 95% confidence level and the Average
Relative Interval Width 𝐴𝑅𝐼 𝐿 value derived from the 𝑃 𝐼 𝑠. Evidently,
the proposed FNET model had a smaller magnitude of 𝑊 𝑆 and 𝐴𝑅𝐼 𝐿
compared with the benchmark models, for example, the Annerley site
where the FNET model generated 𝑊 𝑆 ≈ 68.251 and 𝐴𝑅𝐼 𝐿 ≈ 0.174
compared with a value of 𝑊 𝑆 ≈ 74.54 and 𝐴𝑅𝐼 𝐿 ≈ 0.195 noted for the
second best model (i.e., the LSTMCNN) and a value of 𝑊 𝑆 ≈ 112.162
and 𝐴𝑅𝐼 𝐿 ≈ 0.305 noted for the worst performing (i.e., the KRR) model.

Fig. 18 is a visual representation of the quality of 𝑃 𝐼 𝑠 for eight
models used in daily prediction of 𝐺 in testing phase. It is observable
that the predicted 𝐺 falls within the lower bound and the upper bound,
as shown by the grey area, and thus provides a good probability of the
predicted value - a factor that is significantly beneficial to decision-
makers in the energy industry. In Fig. 18, we also show the Continuous
Ranked Probability Score (𝐶 𝑅𝑃 𝑆) and the 𝑃 𝐼 Normalized Average
Width (𝑃 𝐼 𝑁 𝐴𝑊 ) for all models. Importantly, the proposed FNET
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model has produced the lowest value of 𝐶 𝑅𝑃 𝑆 and 𝑃 𝐼 𝑁 𝐴𝑊 (𝐶 𝑅𝑃 𝑆 ≈
14.536, 𝑃 𝐼 𝑁 𝐴𝑊 ≈ 0.301 for Annerley, 𝐶 𝑅𝑃 𝑆 ≈ 65.302, 𝑃 𝐼 𝑁 𝐴𝑊 ≈
0.387 for Heathwood, 𝐶 𝑅𝑃 𝑆 ≈ 13.415, 𝑃 𝐼 𝑁 𝐴𝑊 ≈ 0.251 for Laidley,
and 𝐶 𝑅𝑃 𝑆 ≈ 38.646, 𝑃 𝐼 𝑁 𝐴𝑊 ≈ 0.244 for Zillmere stations) relative to
all benchmark models. Overall, these results ascertain that the proposed
FNET model has superior performance in terms of both confidence
intervals and point-based prediction of daily electricity demand.

4.1.2. SHAP interpretation of the FNET model
The SHAP violin summary plots (Fig. 19) for the four stations

illustrate the impact of various features on the model’s predictions
(global explanation). The 𝑥−𝑎𝑥𝑖𝑠 represents the SHAP value, indicating
the magnitude and direction of each feature’s impact on the model’s
output. Positive SHAP values suggest that the feature contributes to an
increase in the predicted value, while negative SHAP values indicate
a decrease. The 𝑦 − 𝑎𝑥𝑖𝑠 lists the features in descending order of their
importance, from top to bottom. Each point on the plot corresponds
to an instance from the dataset, with the colour gradient from blue to
red representing the feature value: blue for low values and red for high
values. This colour-coding helps to visualize the relationship between
feature values and their corresponding SHAP values, revealing patterns
and insights about how each feature influences the model’s predictions
across different instances.



S. Ghimire et al. Applied Energy 378 (2025) 124763 
Fig. 18. Daily predicted 𝐺 and 𝑃 𝐼s at the 95% confidence level. Continuously Ranked Probability Score (𝐶 𝑅𝑃 𝑆) and Prediction Interval Normalized Average Width (𝑃 𝐼 𝑁 𝐴𝑊 )
are shown. (a) Annerley, (b) Heathwood, (c) Laidley, (d) Zillmere substations. For conciseness, only the last 60 days of the predicted 𝐺 values are shown.
• Heathwood Substation: The most influential features are 𝐺(𝑡−1),
𝐺(𝑡−6), 𝐺(𝑡−2), 𝐺(𝑡−5), and 𝐸 𝑡𝑛(𝑡−1). The plot indicates that 𝐺(𝑡−1) and
𝐺(𝑡−6) have the largest positive impact on the model output when
their values are high (red points), whereas lower values (blue
points) of these features have a negative impact. 𝑇 𝑚𝑎𝑥(𝑡−1) also
shows a notable impact but to a lesser extent.

• Annerley Substation: Similar to Heathwood, 𝐺(𝑡−1), 𝐺(𝑡−5), and
𝐸 𝑡𝑛(𝑡−1) are key predictors. The 𝐸 𝑠𝑦𝑛(𝑡−1) and 𝑉 𝑃(𝑡−1) features also
play significant roles. The plot shows that high values of 𝐺(𝑡−1)
and 𝐺(𝑡−5) contribute positively to the model output, whereas high
values of 𝐸 𝑡𝑛(𝑡−1) and 𝑉 𝑃 𝑑(𝑡−1) contribute negatively.

• Laidley Substation: Here, 𝐺(𝑡−1), 𝐺(𝑡−6), and 𝐸 𝑡𝑛(𝑡−1) are the most
impactful features. The 𝑇 𝑚𝑎𝑥(𝑡−1) and 𝑇 𝑚𝑖𝑛(𝑡−5) also show consid-
erable influence. High values of 𝐺 and 𝐺 are associated
(𝑡−1) (𝑡−6)
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with a positive impact on the model output, while high values of
𝐸 𝑡𝑛(𝑡−1) tend to have a negative impact.

• Zillmere Substation: In this location, 𝐺(𝑡−1), 𝐺 𝑆 𝑅(𝑡−1), and
𝑇 𝑚𝑖𝑛(𝑡−1) are prominent features. The 𝑉 𝑃(𝑡−1) and 𝑉 𝑃 𝑑(𝑡−1) are
also significant. The plot reveals that high values of 𝐺(𝑡−1) and
𝐺 𝑆 𝑅(𝑡−1) contribute positively to the model output, while high
values of 𝑇 𝑚𝑖𝑛(𝑡−1) and 𝑉 𝑃(𝑡−1) contribute negatively.

For each location, the importance of features such as historical load
values 𝐺, temperature 𝑇 𝑚𝑖𝑛, 𝑇 𝑚𝑎𝑥, and humidity 𝑅ℎ𝑚𝑎𝑥, 𝑅ℎ𝑚𝑖𝑛 varies,
but generally, recent historical load 𝐺(𝑡−1) and evapotranspiration 𝐸 𝑡𝑛
have significant impacts. Features like 𝐺(𝑡−1) and 𝐸 𝑡𝑛 usually have
positive impacts, meaning higher values of these features increase
the model output. Other features like 𝑉 𝑃 and 𝑉 𝑃 𝑑 can have mixed
impacts depending on their values. The impact of each feature can vary
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Fig. 18. (continued).
significantly across different locations, indicating that local conditions
and historical patterns play a crucial role in the model’s predictions.

The SHAP bar plots in Fig. 20 for instance 50 across Heathwood,
Zillmere, Annerley, and Laidley substation provide detailed insights
into the importance and impact of individual features for specific
predictions (local explanation). The analysis is summarized below:

• For Heathwood substation, the most impactful features include
𝐺(𝑡−1), 𝐺 𝑆 𝑅(𝑡−1), and 𝐺(𝑡−2). Among these, 𝐺(𝑡−1) and 𝐺 𝑆 𝑅(𝑡−1)
have positive impacts. This finding is consistent with the global
summary, where historical load values and meteorological vari-
ables such as 𝐺 𝑆 𝑅 and 𝑇 𝑚𝑎𝑥 are consistently important predic-
tors.

• In Zillmere substation, the major contributing features are 𝐺(𝑡−1),
𝐺(𝑡−6), and 𝐺 𝑆 𝑅(𝑡−1). Here, 𝐺(𝑡−1) and 𝐺(𝑡−6) show significant neg-
ative impacts. This observation aligns with the global importance
of historical load values and meteorological features like 𝐸 𝑡𝑛 and
𝑇 𝑚𝑎𝑥.
25 
• For Annerley substation, the dominant features include 𝐺(𝑡−1),
𝐸 𝑡𝑛(𝑡−1), and 𝐺(𝑡−5). In this instance, 𝐺(𝑡−1) and 𝐸 𝑡𝑛(𝑡−1) exhibit
substantial negative impacts, reflecting the global significance of
historical load values and meteorological variables such as 𝑇 𝑚𝑖𝑛
and 𝑅ℎ𝑚𝑎𝑥.

• In Laidley substation, the key features are 𝐺(𝑡−1), 𝑇 𝑚𝑖𝑛, and 𝑉 𝑃 .
Here, 𝐺(𝑡−1) shows a strong positive impact, consistent with the
global importance of historical load values and meteorological
variables like 𝑇 𝑚𝑖𝑛 and 𝐺 𝑆 𝑅.
This comparative analysis highlights the consistency of historical
load values (𝐺) as significant predictors across locations in both
instance-specific and global explanations. The exact impact of fea-
tures varies based on local conditions and specific data patterns.
The detailed instance-specific SHAP values provide insights into
how the model makes predictions for specific instances, while
the global summary plots offer an overarching view of feature
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Fig. 18. (continued).
importance across the dataset. Emphasizing both perspectives is
crucial for comprehensive model interpretability.

The Fig. 21 presents twelve SHAP (SHapley Additive exPlana-
tions) dependence plots, each illustrating the relationship between
various predictors and their influence on the model’s predictions for
the Zillmere sub-station. These plots are organized in a grid layout
to allow for a detailed comparison of multiple features. The analysed
features include lagged values of 𝐺 (e.g., 𝐺(𝑡−1), 𝐺(𝑡−2), and 𝐺(𝑡−3)) as
well as meteorological variables such as maximum temperature, vapour
pressure, and vapour pressure deficit. A key observation is that the
lagged values of 𝐺 show a consistently strong, predominantly positive
impact on the model’s output, with the influence gradually weakening
as the lag increases. For example, the first two rows display dependence
plots for 𝐺 lagged values (e.g., 𝐺(𝑡−1), 𝐺(𝑡−2), and 𝐺(𝑡−3)), revealing a
clear pattern where higher 𝐺 values correspond to larger SHAP values,
26 
which suggests that higher values of 𝐺 enhance the model’s predictions.
This effect is particularly noticeable in the first few lags (𝐺(𝑡−1) to
𝐺(𝑡−4)), where SHAP values increase almost linearly with higher 𝐺
values. In contrast, the meteorological features—such as maximum
temperature, vapour pressure, and vapour pressure deficit—exhibit
more complex, nonlinear contributions to the model’s predictions,
largely depending on their interactions with other variables. The third
row introduces these environmental variables, including 𝑇 𝑚𝑎𝑥(𝑡−1),
𝑉 𝑃(𝑡−1), and 𝑉 𝑃 𝑑(𝑡−1), and reveals intricate, nonlinear relationships
between these features and the SHAP values. For instance, 𝑇 𝑚𝑎𝑥(𝑡−1)
generally displays an increasing trend, indicating that higher tem-
peratures tend to positively contribute to the model’s predictions.
However, the spread in SHAP values suggests that this relationship
is modulated by interactions with other features. Moreover, 𝑉 𝑃(𝑡−1)
and 𝑉 𝑃 𝑑(𝑡−1) show varying contributions, implying that their influence
can shift between positive and negative, depending on interactions
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Fig. 18. (continued).
with other variables. The colour gradients in the plots help visualize
these interactions, highlighting that some features, like 𝐺(𝑡−2) and
𝐺(𝑡−3), display SHAP values that shift based on the influence of another
feature, as shown by the colour scale. Several features, such as 𝐺(𝑡−5)
and 𝑅ℎ𝑚𝑎𝑥(𝑡−1), exhibit more scattered, nonlinear relationships with the
target variable, indicating that their contributions to the model’s pre-
dictions are less straightforward and depend heavily on their specific
values and interactions with other variables.

The SHAP dependence plot for 𝐸 𝑡𝑛(𝑡−1) in Fig. 21 (last row first
column) provides a detailed view of the interaction between 𝐸 𝑡𝑛(𝑡−1)
and 𝐺(𝑡−1), revealing important insights into how these two features
jointly influence the model’s predictions. As the values of 𝐸 𝑡𝑛(𝑡−1) in-
crease, the corresponding SHAP values also rise, signifying a generally
positive contribution of 𝐸 𝑡𝑛(𝑡−1) to the predictions. This trend indicates
that higher levels of 𝐸 𝑡𝑛(𝑡−1) consistently push the model’s output
upward, making 𝐸 𝑡𝑛 a key feature in determining the prediction
(𝑡−1)
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accuracy. What makes this relationship particularly interesting is the
interaction with 𝐺(𝑡−1), which is represented by the colour gradient
in the plot. As the colour shifts from blue to red, corresponding to
increasing values of 𝐺(𝑡−1), it becomes evident that the effect of 𝐸 𝑡𝑛(𝑡−1)
on the model’s predictions intensifies when 𝐺(𝑡−1) is high. Specifically,
when 𝐺(𝑡−1) takes on higher values, the SHAP values for 𝐸 𝑡𝑛(𝑡−1) rise
more steeply, indicating a strong positive interaction between these two
variables. This suggests that the impact of 𝐸 𝑡𝑛(𝑡−1) is not independent;
rather, it is amplified in scenarios where 𝐺(𝑡−1) is elevated, meaning
the two features work together to enhance the model’s predictions.
Additionally, the relationship between 𝐸 𝑡𝑛(𝑡−1) and its SHAP values
is not purely linear. There is a noticeable spread in SHAP values,
particularly at intermediate levels of 𝐸 𝑡𝑛(𝑡−1), which reflects a more
complex interaction. This spread suggests that the influence of 𝐸 𝑡𝑛(𝑡−1)
on the model’s output is modulated by its interaction with 𝐺(𝑡−1), as
well as potentially other features. In particular, as 𝐺 changes, the
(𝑡−1)
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Fig. 19. Violin plots of the SHAP values (Global explanation) computed for each feature in the FNET model trained on different substations dataset. The colours vary from blue
(low feature value) and red (high feature value). The SHAP values indicate the influence of each feature on model prediction. Negative SHAP values indicate that a specific feature
value reduces the model output, while positive ones increase the model output.

Fig. 20. Local explanation bar plot of FNET model showing the contribution of important features for instance 50 (i.e. 50th prediction from FNET model).

Applied Energy 378 (2025) 124763 
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Table 8
The performance of the Deep Hybrid Fused Network (FNET) model vs. LSTMCNN, DNN,

ILSTM, MLP, KRR, GPR and MARS models using the Willmott’s Index (𝐸𝑊 𝐼 ), Nash–
utcliffe Coefficient (𝐸𝑁 𝑆 ), and the Legates & McCabe’s (𝐸𝐿𝑀 ) Index of Agreement.
ote that the best model is boldfaced (blue).

Sub-Station Predictive Model Model Performance Metrics

𝐸𝑊 𝐼 𝐸𝑁 𝑆 𝐸𝐿𝑀

FNET 0.919 0.889 0.676
BILSTM 0.914 0.868 0.653
LSTMCNN 0.910 0.872 0.653
DNN 0.915 0.862 0.641
MLP 0.884 0.814 0.586
KRR 0.827 0.732 0.511
GPR 0.900 0.833 0.608

Annerley

MARS 0.819 0.765 0.521

FNET 0.889 0.760 0.517
BILSTM 0.879 0.732 0.492
LSTMCNN 0.876 0.721 0.461
DNN 0.875 0.722 0.461
MLP 0.870 0.709 0.442
KRR 0.869 0.713 0.443
GPR 0.873 0.700 0.396

Heathwood

MARS 0.878 0.718 0.435

FNET 0.891 0.859 0.603
BILSTM 0.885 0.828 0.556
LSTMCNN 0.891 0.832 0.558
DNN 0.854 0.820 0.549
MLP 0.850 0.804 0.536
KRR 0.806 0.764 0.483
GPR 0.863 0.810 0.546

Laidley

MARS 0.879 0.813 0.545

FNET 0.878 0.821 0.580
BILSTM 0.872 0.807 0.565
LSTMCNN 0.884 0.807 0.570
DNN 0.863 0.794 0.551
MLP 0.798 0.724 0.472
KRR 0.822 0.754 0.509
GPR 0.862 0.804 0.560

Zillmere

MARS 0.869 0.804 0.560

predictive power of 𝐸 𝑡𝑛(𝑡−1) shifts, resulting in varying levels of SHAP
values across different points in the plot. In conclusion, the SHAP de-
pendence plot underscores the synergistic relationship between 𝐸 𝑡𝑛(𝑡−1)
and 𝐺(𝑡−1). While 𝐸 𝑡𝑛(𝑡−1) generally contributes positively to the model’s
predictions, its impact is magnified in the presence of higher 𝐺(𝑡−1)
values. This interaction points to a more intricate and dynamic in-
terplay between these two features, suggesting that both need to be
considered together for a fuller understanding of the model’s behaviour
and predictions.

4.1.3. Computational resource requirements
The computational time of a prediction model is critical for utility

companies, especially in scenarios involving online training. In such
cases, daily electricity demand observations are continually incorpo-
ated into the training dataset for model retraining, making compu-
ational time a key factor. The time required for electricity demand
rediction is influenced by factors such as the length of the moving
indow, the number of predictors, and, most significantly, the choice
f prediction model. Table 13 compares the computation times of
he proposed FNET model with seven benchmark models. The results
ndicate that the proposed model is less computationally efficient than
he others. However, once the model is trained, it remains operational
or an extended period. Additionally, the testing time is under one
inute, making the proposed model suitable for practical applications.
he simulations were performed on an Intel® Core™ i9 10th Generation

rocessor, operating at 3.8 GHz with 32 GB of memory. e

29 
5. Conclusions and future research directions

Based on the historical electricity demand (𝐺) and a set of local
climate data for several substations in Queensland, Australia, a deep
learning-based hybrid Deeply Fused Network (i.e., the FNET model)
has been proposed and evaluated its efficacy for daily electricity de-
mand (𝐺) point-based as well as confidence interval predictions. Using
different statistical evaluation methods, the proposed FNET model was
compared with BILSTM, LSTMCNN, DNN, MARS, MLP, KRR, and GPR
models to determine its ability in predicting the daily 𝐺. According to
the results, the proposed FNET model achieved high accuracy among
all compared models. The main reason behind this is that the FNET
model has high ability in capturing the non-linearity of electricity
demand, local climate data and the long-term temporal dependencies
between the data points. The other models simply could not match the
predictive power of FNET. Furthermore, by employing SHAP analysis,
this study delved into the inner workings of the black-box machine
learning and deep learning models. This method also illuminated the
intricate relationships between variables and their impact on model
predictions. The results underscored the pivotal role of historical load
values (𝐺) and evapotranspiration (𝐸 𝑡𝑛) in shaping electricity demand
prediction.

Based on contributions of this study, we aver that there may be
significant advantages in adopting the proposed FNET model by current
nergy industries. The debates in the energy sector are emphasizing a
eed for decarbonization of the global economy [90–92]. Therefore,

a greater proportion of renewable energies is becoming the norm in
future electricity supply systems. Energy usage in buildings as well
as emissions from vehicles in particular are showing the most signif-
icant potential in cost-effective emissions reductions. For energy use
in buildings, the adoption of the proposed FNET model for electricity
emand management and including key predictor variables such as
ower consumption by building appliances is a crucial factor that can
e included in re-training the proposed FNET model. Likewise, for

the transport sector, the emissions reductions can be met effectively
through a promotion of electric vehicles (EVs) and utilizing solar (or
other forms of renewable energies) for EV charging [93,94]. In order
to create a low carbon roadmap and future a carbon neutral pathway of
he building sector and especially tackling the carbon emission mitiga-
ion in building operations, rooftop solar systems, and large-scale solar
arms supporting both the energy requirements in buildings as well as
hat of the transport sector, could a potential solution. These have been
learly outlined in recent reviews 2024challenges where synergizing
echnical innovation, developing advanced building technologies and
enewable energy solutions have already been outlined. Therefore, the
roposed FNET model may be a contributory automation technology
urther investigated for modelling energy efficiency in buildings, pre-
icting demand and supply of solar (or other renewables) and including
eather variables for short-term and climate variables for long-term
emand modelling.

In the proposed FNET model, uncertainty values associated with
can be addressed statistically by generating interval predictions

hat take into account the variability of data features. In order to
valuate the nature of electricity supply mix, requirements for installed
torage capacities, or financial planning of energy prices or system
osts, it is essential to gain a better understanding of these predicted
ncertainties in electricity demand patterns. Furthermore, the proposed
NET model offers an indication of the extent to which 𝐺 values
re underestimated or overestimated, which can be extremely useful
hen scheduling energy supply reserves, implementing energy policy,
anaging operational demands of the energy sector, etc. The model
ses a combination of machine learning algorithms to identify and
uantify the discrepancies between the observed and predicted energy
onsumption. This information can be used to inform decisions about
nergy supply, policy, and operational management, helping to ensure
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Table 9
The values of the improvement percentages 𝜆 of the proposed and benchmark models over the testing modelling phase. 𝜆𝑅𝑀 𝑆 𝐸 indicates the
Root Mean Square Error, 𝜆𝐾 𝐺 𝐸 indicates the Kling Gupta Efficiency, and 𝜆𝐴𝑃 𝐵 indicates the Absolute Percentage Bias.

Predictive models Annerley Heathwood Laidley Zillmere

𝜆𝑅𝑀 𝑆 𝐸 𝜆𝐴𝑃 𝐵 𝜆𝐾 𝐺 𝐸 𝜆𝑅𝑀 𝑆 𝐸 𝜆𝐴𝑃 𝐵 𝜆𝐾 𝐺 𝐸 𝜆𝑅𝑀 𝑆 𝐸 𝜆𝐴𝑃 𝐵 𝜆𝐾 𝐺 𝐸 𝜆𝑅𝑀 𝑆 𝐸 𝜆𝐴𝑃 𝐵 𝜆𝐾 𝐺 𝐸
BILSTM 8.89 7.24 3.24 4.73 5.28 9.54 10.82 11.90 5.31 3.63 3.55 4.77
LSTMCNN 7.25 7.23 7.82 8.13 11.71 1.68 10.22 11.29 6.34 4.22 2.49 3.71
DNN 11.35 10.81 3.10 7.90 11.67 2.78 12.98 13.52 7.41 7.16 6.94 4.39
MLP 29.35 27.91 3.79 11.02 15.56 3.56 17.54 16.93 6.34 24.25 25.69 11.43
KRR 55.13 51.13 8.38 10.55 15.29 9.08 29.18 30.29 15.97 17.37 16.93 11.61
GPR 22.44 21.21 12.17 15.39 25.18 1.37 15.69 14.22 4.57 4.55 4.74 5.19
MARS 45.24 47.92 12.72 10.66 16.97 2.15 15.92 14.62 5.24 4.70 4.87 2.55
Table 10
Prediction modelling evaluation based on Diebold–Mariano (𝐷 𝑀) Harvey–Leybourne–Newbold (𝐻 𝐿𝑁) over the testing
phase. For the case of positive results, it indicates that rows superior results to the column. However, if it is negative,
then otherwise. Boldfaced blue indicates the best results.

a)

FNET BILSTM LSTMCNN DNN MLP KRR GPR MARS

FNET 2.1264 2.9547 3.4756 5.3419 6.4246 4.109 3.8052
BILSTM 2.8684 3.4618 6.8822 5.0853 3.4455 2.3604
LSTMCNN 1.5211 5.6053 3.8864 3.2022 1.7243
DNN 5.3677 3.6333 2.9941 1.5141
MLP −0.4155 −0.9883 −1.7821
KRR −0.6437 −1.4779
GPR 1.8058

b)

FNET BILSTM LSTMCNN DNN MLP KRR GPR MARS

FNET 2.1602 3.0017 3.5309 5.4269 6.5268 4.1744 3.8657
BILSTM 2.9141 3.5169 6.9917 5.1662 3.5004 2.3979
LSTMCNN 1.5453 5.6945 3.9482 3.2531 1.7518
DNN 5.4531 3.6911 3.0418 1.5382
MLP −0.4221 −1.0041 −1.8105
KRR −0.6539 −1.5014
GPR −1.8345
Table 11
The attained prediction results of 95% Probabilistic confidence with respect to prediction interval coverage probability (𝑃 𝐼 𝐶 𝑃 ), mean prediction interval width (𝑀 𝑃 𝐼 𝑊 ) and 𝐹
ndex for four substations. 𝐹 index is defined as the weighted harmonic average of 𝑃 𝐼 𝐶 𝑃 and 1∕𝑀 𝑃 𝐼 𝑊 and evaluates the quality of interval prediction. Boldfaced blue indicates
he best modelling results.

Predictive models Annerley Heathwood Laidley Zillmere

𝑃 𝐼 𝐶 𝑃 𝑀 𝑃 𝐼 𝑊 𝐹 × 10−2 𝑃 𝐼 𝐶 𝑃 𝑀 𝑃 𝐼 𝑊 𝐹 × 10−2 𝑃 𝐼 𝐶 𝑃 𝑀 𝑃 𝐼 𝑊 𝐹 × 10−2 𝑃 𝐼 𝐶 𝑃 𝑀 𝑃 𝐼 𝑊 𝐹 × 10−2
FNET 95.07 57.97 3.449 95.05 256.63 0.779 95.07 53.42 3.74 94.79 154.58 1.294
BILSTM 95.07 64.92 3.080 95.05 263.14 0.760 95.07 56.21 3.56 95.07 155.69 1.285
LSTMCNN 94.52 64.90 3.081 95.05 258.88 0.773 95.07 54.03 3.70 95.07 158.67 1.260
DNN 95.34 67.44 2.965 95.33 263.10 0.760 95.07 60.40 3.31 94.79 170.18 1.175
MLP 94.79 82.83 2.414 95.05 270.26 0.740 95.07 63.64 3.14 95.07 190.76 1.048
KRR 95.07 101.24 1.975 95.05 267.77 0.747 95.07 71.66 2.79 95.07 187.38 1.067
GPR 95.07 70.65 2.830 95.05 260.40 0.768 95.07 63.97 3.13 94.79 155.09 1.289
MARS 95.07 94.06 2.126 94.78 264.81 0.755 95.07 60.57 3.30 94.79 158.20 1.264
i
d
f
d
a
c
a
e
h
a

that the energy sector can meet its demand in a cost-effective and re-
liable manner. By pairing machine learning algorithms with data from
ources such as weather forecasts, population estimates, and energy
arket trends, the model can accurately predict energy consumption

nd identify areas where energy supply and demand are mismatched.
he obtained information could be utilized as essential input for de-
isions regarding energy supply, policy, and operational management,
hereby helping to ensure the reliability and cost-effectiveness of energy
upplies. Therefore, improved demand forecasting can lead to better
esource allocation, reduced costs, and enhanced grid stability.

By using the Deeply Fusion Network (FNET) modelling approaches
resented in this paper, decision-makers can also gain clearer under-
tanding of the future 𝐺 required for integrating electricity demand
30 
and renewable energy supply, as well as associated uncertainty factors,
n a highly stochastic environment, enabling more informed business
ecisions in terms of capacity and quality. Future research work may
ocus on the effect of integrated human behaviour on point and confi-
ence interval predictions, for example the effects of social gatherings
nd seasonal effects on the prediction of electricity demand and what
hanges may be required in the proposed FNET model in order to
ccount for these influences. Furthermore, evapotranspiration (Etn),
vaporation (Esyn) and vapour pressure (VP) for Annerley and Laidley
ad a major influence on FNET model output, but not for Heathwood
nd Zillmere (see Fig. 19). Despite the fact that the exact reason for

this is not clear from the present study, we note the significant effect
of evapotranspiration on electricity demand in this area could inform
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Fig. 21. SHAP dependence plot. Interaction effects of predictors for 𝐺 prediction for Zillmere sub-station.
energy policies and strategies. The reasons for this are that differential
effects of climate change on average and peak demand for heating and
cooling have already been noted, for example, across the contiguous
USA [95]. In one study [96], researchers found that humidity plays
a crucial role in predicting summer electricity demand. According to
their study, air temperature factor was necessary but not sufficient to
characterize residential space cooling demand during summer months,
but humidity levels played a critical role in capturing true heat sen-
sations. The use of air conditioning may therefore be affected by such
a sensation, for example, in Annerley and Laidley where Etn and VP
were pivotal indicators. Therefore, not taking humidity into account
when modelling electricity demand can lead to underestimation of
climate sensitivity and have an impact on key decisions. Further studies
are warranted to specifically examine why evaporation (and vapour
pressure) had a significant impact on electricity demand while solar
radiation and maximum temperature did not. As a result, we acknowl-
edge these limitations, so a future study could provide insights that
could be utilized by utilities and market regulators to help them make
informed decisions in these regions where evaporation (and vapour
pressure) are significant determinants of electricity demand.

For future studies related to expanding the practicality of the model
and methods presented, one may also argue that the proposed FNET
model should be improved with more diverse input from local re-
newable energy platforms to create a more dynamic and responsive
model for predictive modelling in a mixed grid. Thus, the FNET model
can offer significant scientific evidence to help energy market workers
achieve high-performance quality with sound energy policy decisions.
Likewise, exploring the use of other climate variables, extending the
31 
FNET model to other geographical regions and incorporating addi-
tional machine learning techniques, would provide valuable insights for
further advancing the field of electricity demand prediction.

In this study, we have used 11 different climate-based predictors
to build the FNET model. However, the model’s effectiveness might
heavily rely on the quality and availability of climate data especially
for other regions not tested in this study. Therefore, addressing the
potential data scarcity or variability in different regions in future
studies would strengthen the application of the study. This could in-
clude capturing wider satellite data for short-term demand predictions,
particularly, using Himawari satellite variables (at 10-minute scales),
medium-scale (hourly or daily) variables from the European Centre
for Medium Range Weather Forecasting (ECMWF) and other ground
measurement sites where available. Another limitation of this study is
the restricted testing of the proposed FNET model to specifically 4 study
sites (i.e., Annerley, Heathwood, Laidley and Zillmere). Therefore,
testing the model on additional datasets from various geographical
locations could demonstrate its generalizability and robustness across
different energy markets. In this study, we have already presented
comparisons of FNET model with 7 different models. However, given
the rapidly evolving area of artificial intelligence, in future studies, one
may test the proposed FNET with several models, including newer or
alternative models for a more comprehensive benchmark.

The proposed FNET model uses residual bootstrapping for uncer-
tainty estimation, however exploring other techniques might provide
additional insights into model confidence and reliability. Among these
methods are jackknife resampling, in which one observation is sys-
tematically left out and the model is calculated every time, Bayesian
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Table 12
The attained prediction results of the Probabilistic for 95% confidence based on the
Winkler score (𝑊 𝑆) and the average relative interval length (𝐴𝑅𝐼 𝐿) for the modelled
substations. Boldfaced blue indicate the best results.

Study site Predictive model Model Performance Metrics

WS ARIL

FNET 68.251 0.174
BILSTM 75.246 0.195
LSTMCNN 74.540 0.195
DNN 77.278 0.203
MLP 92.966 0.249
KRR 112.162 0.305
GPR 84.084 0.213

Annerley

MARS 103.254 0.283

FNET 307.252 0.378
BILSTM 312.481 0.387
LSTMCNN 308.814 0.381
DNN 311.791 0.387
MLP 310.630 0.398
KRR 312.499 0.394
GPR 309.803 0.383

Heathwood

MARS 309.732 0.390

FNET 58.103 0.054
BILSTM 61.553 0.067
LSTMCNN 59.321 0.059
DNN 64.916 0.057
MLP 69.660 0.062
KRR 77.522 0.061
GPR 70.506 0.058

Laidley

MARS 65.386 0.080

FNET 173.923 0.227
BILSTM 174.667 0.228
LSTMCNN 176.950 0.233
DNN 184.750 0.249
MLP 212.497 0.280
KRR 202.654 0.275
GPR 178.459 0.229

Zillmere

MARS 181.202 0.232

Table 13
Average of computation time.

Model Construction time
(Training and
Validation)

Testing

FNET 89 min 54 s
BILSTM 17 min 42 s
LSTMCNN 18 min 44 s
DNN 10 min 17 s
MLP 8 min 14 s
KRR 7 min 14 s
GPR 15 min 25 s
MARS 8 min 18 s

methods with a probabilistic framework for estimating uncertainty,
and ensemble methods in which multiple models (ensembles) are gen-
erated by training on different subsets of data or with a variety of
andom initializations, in order to estimate uncertainties based on a
pread of predictions. It is also possible to estimate the conditional
uantiles of the response variable instead of estimating a single value.
ther potential candidates include conformal prediction where a non-

parametric approach is used to estimate uncertainty, variance estimates
from gradient boosting, and Bayesian Neural Networks that can intro-
duce uncertainty into the model weights themselves by placing prior
distributions on the weights are useful candidates for future tests on
uncertainty estimation of the proposed FNET model. Finally, from a
practical point of view, the integration of CNN and BILSTM may be
32 
practically difficult although study has demonstrated its efficacy for 4
of the study sites in Queensland. To address this limitation, we need
o further test the integrated CNN-BILSTM models for a wider range if
tudy sites, to fully ascertain their practical deployment.
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