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A B S T R A C T

This paper aims to propose a hybrid deep learning (DL) model that combines a convolutional neural network
(CNN) with a bi-directional long-short term memory (BiLSTM) for week-ahead prediction of daily flood index (IF)
for Bangladesh. The neighbourhood component analysis (NCA) is assigned for significant feature selection with
synoptic-scale climatic indicators. The results successfully reveal that the hybrid CNN-BiLSTM model out-
performs the respective benchmark models based on forecasting capability, as supported by a minimal mean
absolute error and high-efficiency metrics. With respect to IF prediction, the hybrid CNN-BiLSTM model shows
over 98% of the prediction errors were less than 0.015, resulting in a low relative error and superiority per-
formance against the benchmark models in this study. The adaptability and potential utility of the suggested
model may be helpful in subsequent flood monitoring and may also be beneficial to policymakers at the federal
and state levels.

1. Introduction

Floods cause considerable damage in South Asia than in any part of
the world (Matheswaran et al., 2018). The most affected areas are
grasslands, mountain forest ecosystems of the Himalayas, and the Sun-
darbans (Hasnat et al., 2018). Bangladesh lies geographically at the
confluence of three large rivers, the Ganges, Brahmaputra, and Meghna,
with about 92.5% of the basin area outside its boundaries (Khairul et al.,
2022). Most of the monsoon rainfall and its water runoff flow through its
river network, which might severely exceed the capacity of the drainage
channels and cause flooding. Examples of major flood events are 1954,
1955, 1974, 1987, 1988, 1998, 2004, 2007, and 2012, which inundated
from 20.5 % up to 70 % of the country on average (Alam et al., 2021).
Therefore, it is essential to quantify the direct and indirect costs and
hazards of floods to take primitive measures before the events, which
requires predictive information of flood characteristics, for example, the

start time (flood onset), duration, volume, and peak level.
Because of the high probability and massive impact of flood events,

the success of seasonal forecasts and the warning system is critical in
seasonal flood management in Bangladesh (Chowdhury, 2005). Accu-
rate and timely prediction of floods can help the relevant stakeholders
minimize their drastic effects. Furthermore, government policies can be
drawn to identify various options for mitigation. For example, successful
flood policies will strengthen relevant planning and implantation
agencies (Brammer, 1990). Thus, there is tremendous potential for hy-
drologic models to be helpful in various applications, particularly in the
context of flood preparedness and planning for future climate
variability.

Many flood inundation models have been developed recently and
effectively implemented in various parts (Bhagabati and Kawasaki,
2017). Despite such models can simulate detailed flood dynamics, they
suffer from several significant shortcomings. The significant restrictions
of flood inundation models consist of the requirement of complicated
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data inputs, computational effort, and differences in modelling results
(Teng et al., 2017).

The flood index (IF) is an alternative candidate for supporting
disaster management and flood risk assessment in simplicity and prac-
tical applicability (Cian et al., 2018). The development of IF often re-
quires simple inputs such as streamflow or precipitation. The IF has been
demonstrated to be a reliable and effective mathematical tool for
determining whether or not a given area is flooded at a specific time and
location (Quintero et al., 2020). The IF has also been successfully
implemented to monitor flood conditions and characteristics (Moishin
et al., 2021b). The reliable and accurate prediction of IF is critical for
early warnings that different societies can use for better management
and mitigation.

Prediction of IF using artificial intelligence methods has developed
rapidly in recent years. For example, Prasad et al. (2021a) proposed an
M5 tree-based machine learning (ML) model integrated with advanced
multivariate empirical mode decomposition to predict daily IF values in
Lockyer Valley in southeast Queensland, Australia. Moishin et al.
(2021a) developed a hybrid deep learning (DL) model, combining
Convolutional Neural Network (CNN) and Long Short-Term Memory
(LSTM) to predict the daily IF in Fiji. The results indicated that the
hybrid DL model outperformed the standalone model (LSTM) and ma-
chine learning model (Support Vector Regression). Technically, DL
models employ many feature extraction layers to efficiently extract non-
linear and complex compound connections from data (Ghimire et al.,
2022). Additionally, DL algorithms are highly effective in extracting
data attributes when handling enormous volumes of complicated data
and possessing strong computational and sophisticated mapping capa-
bilities (Ghimire et al., 2023c).

Several studies have demonstrated the influence of large-scale
climate indices on monsoon precipitation in the Indian subcontinent,
however varying depending on the geographic variation of the region
(Kumar et al., 1999; Roy and Tedeschi, 2016; Xavier et al., 2007). Han
and Webster (2002) showed that the Indian Ocean Dipole (IOD) oc-
currences significantly influence sea-level changes in the Bay of Bengal

and that sea level anomalies in the northern bay may be a predictor of
flooding and cholera outbreaks in Bangladesh. Gill et al. (2015) studied
correlations between seasonal rainfall and Pacific Sea surface tempera-
tures (SSTs) to reveal spatially distinct relationships between El
Niño–Southern Oscillation (ENSO) and Indian summer monsoon rainfall
over the entire monsoon season, as well as three sub-seasons. Further-
more, the interactions between large-scale climate indices, e.g., IOD and
ENSO can affect the relationship between individual climate indices (e.
g., ENSO) and Indian summer monsoon rainfall (Nguyen-Huy, 2020;
Pothapakula et al., 2020). Because of the well-known complicated
relationship between the monsoon season and ENSO, the large-scale
climate drivers likely have a significant role in regulating the food po-
tential of Bangladesh (Ghose et al., 2021; Islam et al., 2021).

This research aims to examine how the extreme phases of climate
indices affect the week ahead IF in the region of Bangladesh. We
developed a novel hybrid DLmodel (i.e., CNN-BiLSTM) by incorporating
a Neighbourhood Component Analysis (NCA) algorithm to optimise the
significant predictors. The DL methods such as LSTM and gated recur-
rent networks (GRU) have shown an effective predictive methodology in
hydrology and water resources (Ahmed et al., 2021a; Ahmed et al.,
2021b). Moreover, the CNN algorithm can extract relevant features of
the predictor variables (Ghimire et al., 2023b). In the past research
(Ahmed et al., 2021a; Ghimire et al., 2023a), incorporating CNN and an
LSTM or GRU model has shown significant performance in predicting
hydrological variables. Nonetheless, to our best knowledge, such
incorporation has not been piloted in IF prediction yet, particularly in
Bangladesh. Thus, this research addresses the gap in research that needs
to be taken for developing countries such as Bangladesh using advanced
DL methodology for extreme weather events.

2. Theoretical overview of data intelligent models

2.1. Convolutional neural network (CNN)

The Convolutional Neural Network (CNN) is proposed by LeCun

Nomenclature

ABMR All Bangladesh Monsoon Rainfall
ACF Autocorrelation Function
ANN Artificial Neural Network
AO Arctic Oscillation
AWRI Available Water Resources Index
BiLSTM Bi-directional Long Short-Term Memory
BMD Bangladesh Meteorological Department
BOB Bay of Bengal
BOM Australian Bureau of Meteorology
BWDB Bangladesh Water Development Board
CNN-BiLSTM Hybrid Model integrating the CNN with BiLSTM
CCF Cross Correction Function
CNN Convolutional Neural Network
DL Deep Learning
DMI Dipole Model Index
EMI El Niño Southern Oscillation Modoki Index
ENSO El Niño Southern Oscillation
EPI East Pole Index
EP Effective Precipitation
FC Fully Connected
GBI Greenland Block Index
GRU Gated Recurrent Unit
IF Flood Index
IOD Indian Ocean Dipole
IPO Interdecadal Pacific Oscillation

KNMI Royal Netherlands Meteorological Institute
LM Legates-McCabe’s Index
LSTM Long Short-Term Memory
MAE Mean Absolute Error
MAPE Mean Absolute Percentage Error
MSE Mean Squared Error
NAO North Atlantic Oscillation
NCA Neighbourhood Component Analysis
NOAA National Oceanic and Atmospheric Administration
NSE Nash–Sutcliffe Efficiency
NSW New South Wales
PACF Partial Autocorrelation Function
PDO Pacific Decadal Oscillation
QGIS Quantum GIS
r Correlation Coefficient
RAM Random Access Memory
ReLU Rectified Linear Unit
RMSE Root-Mean-Square-Error
SAM Southern Annular Mode
SGD Stochastic Gradient Descent Optimization
SOI Southern Oscillation Index
SST Sea Surface Temperature
STR Subtropical Ridge
SVR Support Vector Regression
TPI Tri-pole Index
WPI West Pole Index
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et al. (1989). CNN reduces parameters and overfitting risk by processing
input data via local connections and parameter sharing (Zang et al.,
2020). CNN has been extensively used in image recognition, natural
language processing, and time series prediction (Ahmed et al., 2021a;
Ahmed et al., 2021b; Cannizzaro et al., 2021).

A convolutional layer in CNN incorporates various convolution
kernels for extracting different features. Convolutional and pooling
layers combine to minimise parameters and accelerate computations
(Ghimire et al., 2022). The fully connected layer then uses the convo-
lution kernel’s features to calculate the final prediction. Additionally, in
the fully connected layer of the architecture, all of the parameters for
logic inference are learned from training data (Ghimire et al., 2023b).
The mathematical notation of feature extraction by one-dimensional
convolution is explained as:

a(l+1)j (τ) = σ(blj +
∑Fl

f=1
Kl
jf (τ)*alf (τ)) = σ(blj +

∑Fl

f=1
[
∑p

l

p=1
Kl
jf (p)a

l
f (τ − p)]) (1)

where a(l+1)j (τ) denotes feature map j in layer l, σ means non-linear
function, Fl denotes number of feature maps in layer l, Kl

jf denotes the
kernel convolved over feature map f in layer l to create the feature map j
in layer l + 1, pl denotes the length of kernels in layer l and blj denotes a
bias vector. Fig. 1 provides the basic architecture of CNN model.

2.2. Bi-directional long short-term memory (BiLSTM)

Bi-directional long short-term memory (BiLSTM) is a long short-term
memory architecture with LSTM layers in forward and backward di-
rections (Peng et al., 2021). BiLSTM uses forward and backward LSTM
layers in its architecture, as seen in Fig. 2(b). Each memory block has
two LSTM layers. The created two hidden-layer states have opposing
temporal sequences using the forward LSTM layer St , t ∈ [1,T] and the
backward LSTM layer St́ , t ∈ [T, 1]. These layer states are then combined
to deliver the identical output (Ahmed et al., 2022). The forward and
backward LSTM layers, respectively, can learn about the past and future
of the input sequence (Wang et al., 2019).

The hidden layer stateHt of BiLSTM at time t contains forward ht
→

and

backward ht
←
:

ht
→
= LSTM̅̅̅ →( ht− 1, xt, ct− 1

)
, t ∈ [1, T] (2)

ht
←
= LSTM←̅̅̅ ( ht+1, xt, ct+1

)
, t ∈ [T, 1] (3)

Ht = [ht
→
, ht
←
] (4)

Here, T is the time series. The BiLSTM method has been successfully
applied in hydrological prediction (Kang et al., 2020; Li et al., 2021;
Prasad et al., 2018).

2.3. Support vector regression (SVR)

When dealing with limited sets of variables and pattern recognition
with a high degree of dimension, Support Vector Regression (SVR) can
solve problems. This technique depends on using a kernel function in a
high-dimensional space (Ghimire et al., 2022; Prasad et al., 2021b). To
calibrate the error between the kernel function and the target data, the
relaxation and penalty coefficients are introduced. (Hamidi et al., 2015).
For a particular training X, the input is first mapped onto a high-
dimensional feature space ϕ(x) (kernel function). After that, it follows
a similar structure of a linear model. The linear vector expression can be
as follows:

f(x) = ω •∅(x)+ b (5)

where the weight vector, the constant, and the mapping function of non-
linear transformation are ω, b, and ϕ(x), respectively. By reducing the
model complexity, the constant b and coefficient ω are estimated by
diminishing:

Rreg(f) = C
1
N
∑N

i=1
Lε(f(xi), yi)+

1
2
‖w‖2 (6)

Lε(f(x) − y ) =
{
|f(x) − y | − εfor|f(x) − y | ≥ ε

0otherwise (7)

Here, both the parameters C and ε are to be determined which influence
the generalization performance, and the loss function assesses estima-
tion quality Lε(f(xi), yi), known as ε intensive loss function.
C 1

N
∑N

i=1Lε(f(xi), yi) is the empirical error and 1
2‖w‖

2 is the smoothness of
the function. The trade-off between the experimental threat and the
smoothness of the model is denoted by C. Moreover, the dual problem,
given as transfer the optimization problem:

Fig. 1. Schematic workflows of the CNN-BiLSTM hybrid model integrating neighborhood component analysis (NCA). The hybrid CNN-BiLSTM integrates convo-
lution neural network (CNN) and bi-directional long short-term memories (BiLSTM).
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f(x) =
∑l

i=1

(
αi − α*

i
)
k(xi, x)+ b (8)

where, αi and α*
i are the introduced Lagrange multipliers and k(xi, x) is

the kernel function. The schematic structure of SVR is illustrated in
Fig. 2(a).

2.4. Neighbourhood component analysis (NCA)

Feature selection plays a crucial role in developing predictive
models. This is because it enables a reduction in the number of input
variables, thereby minimizing processing costs, and improving the ac-
curacy and interpretability of the model in terms of its properties and
predictors (Bowden et al., 2005; Maier et al., 2010; Prasad et al., 2018;
Yang et al., 2012). This study used Neighbourhood Component Analysis
(NCA) to separate significant antecedent lagged predictor variables from
potential input variables. This method was developed by Yang et al.
(2012) and is non-rectilinear and non-parametric.

The NCA feature selection was performed using the fsrnca algorithm
in MATLAB with regularization, which was aimed at learning feature
weights that minimize the average leave-one-out regression loss across
the training data. Through the NCA process, we trained a variable set to

obtain a better understanding of the characteristics by weighting and
minimizing the objective function while computing regression loss for
soil moisture prediction.

In the fsrnca algorithm, a function g(x) : RP→R is utilized to predict
the response y based on several input variables, optimizing their nearest
spaces. The weighted distance (Dw) between any two samples in the
training set T =

{(
xi, yi

)
: i = 1, 2,3,⋯.,N

}
, where xi ∈ RP is the

feature vectors (i.e., predictor variables) and yi ∈ R is the target (i.e., the
response variable), is calculated as follows:

Dw(xa, xb) =
∑J

j=1
w2
j |xa, xb| (9)

During training, the fsrnca algorithm calculates the weighted distance
(Dw) between two samples, xa and xb, by considering the weight, wj,
associated with the jth feature. To improve the accuracy of the leave-
one-out prediction during training, a probability distribution, pαβ, is
used. This probability represents the likelihood that xα selects xβ as its
reference argument. To select the feature subset and avoid overfitting,
the algorithm uses a weighting vector, ’w’, in conjunction with the
gradient ascent method. A regularization component is included in this
process to ensure that the model does not overfit the data. The schematic

Fig. 2. (a) Schematic structure of support vector regressions (SVR) and (b) Schematic structure of bidirectional LSTM (BiLSTM).
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structure of BiLSTM is illustrated in Fig. 2(b).

3. Case study description and data

3.1. Study locations

In our study, we validated 34 stations in Bangladesh (Fig. 3(a)) to
predict the IF using a hybrid DLmodel (i.e., CNN-BiLSTM). Bangladesh is
a riverine country situated in the Ganges Delta, having a sub-tropical
monsoon climate. Bangladesh lies in a unique position (20◦45′N to
26◦40′N and from 88◦05′E to 90◦45′E) where northern Bangladesh is in
the foothills of the Himalayas, located in the Meghalaya Plateau, the
Assam hill in the East, the Gangetic plain in the West and the Bay of
Bengal in the South (Ahmed and Kim, 2003). The average annual rainfall
varies between 2100 to 5100 mm, and 80 % occurs during the monsoon
(June to October) (BWDB, 2019). Bangladesh has 80 % of the land in the
floodplain areas, and over 50 % is within 5 m above sea level
(Chowdhury, 1998; Rahman, 2010). Due to heavy rainfall and eventual
flooding, the country suffers enormous impacts on its agriculture,
economy, infrastructure, and population (Tingsanchali and Karim,
2005).

3.2. Flood Index (IF)

The daily rainfall (mm) of 34 weather stations in Bangladesh was
acquired from the Bangladesh Meteorological Department’s Climate
Division. In this study, the flood index (IF), as the response variable of
our proposed DLmodel, is estimated from the effective precipitation (EP)
followed by the principle in a recently published relevant study (Lu,
2009; Nguyen-Huy et al., 2022). Suppose Em was the rainfall reported on
any day, wherem is between 1 and 365 and the summation length of the
preceding day is N, EP for that (current ith) day over a duration D was:

EPi =
∑D

N=1

[∑N
m=1Em
N

]

(10)

In order to calculate the total amount of recent and accumulated pre-
cipitation, daily water loss (due to runoff, evapotranspiration, infiltra-
tion, etc.), and the length of accumulation, the Available Water
Resources Index (AWRI) (Byun and Lee, 2002) is expressed as a function
of weighting factor W summed over that duration:

AWRI =
Ep
W

(11)

W =
∑N=D

N=1

1
N

(12)

In this study, we used the duration of 365 (D) days (ignoring the leap
year for simplicity) as for the usual hydrological cycle and hence
Equation (11) can be written as:

AWRI = E1 +
(W − 1)E2

W
+
(W − 1 − 1

2)E3
W

+⋯+
W − 1 − 1

2 − ⋯ − 1
364 )E365

W
(13)

≈ E1+0.85E2+0.77E3+⋯+4.23*10− 4E365

In order to account for the gradual depletion of available water supplies,
equation (13) incorporates the EP into an exponential time-dependent
reduction function. The current day incorporates 100 % of the precipi-
tation received from the preceding day. Furthermore, it takes into ac-
count around 85 % of the rainfall that happened two days prior, and
roughly 77 % of the precipitation from three days ago, and this endures
in a decreasing fashion until it includes approximately 0.042 % of the
precipitation that happened 365 days before. This is consistent with the

Fig. 3. (a) The selected weather stations of Bangladesh with total rainfall of 2019, (b) Time series plot of rainfall (mm) vs. the flood index (IF) of three selected
stations (i.e., Bogra, Chittagong, and Sylhet). Note: the list of geographical locations of the stations is tabulated in Table 1.
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physical rationale for diminishing water supply, as in rainfall-runoff
models and the latest studies of flood detection using daily data (Lu,
2009). However, this Equation is much simpler than rainfall-runoff
models as it is useful for detecting whether there is an excess or
shortage of water supplies that could lead to a flood catastrophe. This
empirical model employs simply precipitation data and does not need
any parameter estimates, unlike rainfall-runoff models, which have
more complex data input specifications (Deo et al., 2018).

Reduced weight means the depletion of water supplies due to hy-
drological cycles. A few days after a rainstorm event, the loss of water
resources is anticipated to reach its peak (Moishin et al., 2021b). This
perspective assumes that recent downpours have a substantial impact on
the risk of a flood. However, the proposed approach considers the
accumulated impacts of previous rainfall fairly. Generally, if the AWRI
exceeds the average, the water supplies are relatively ample, indicating
the risk of flooding (Han and Byun, 2006). As such, the Flood Index (IF),
a standardized metric, is expressed by equation (14):

IF =
ARWI− 1983

2020ARWImax

σ(19832020ARWImax)
(14)

where 1983
2020ARWImax is the mean of annual maximum daily AWRI for the

determined period 1983–2020 and σ(19832020ARWImax) is the standard de-
viation. In light of this, the criterion of the daily IF being more than zero
can be used to determine the risk of flooding on any given day.

The severity of a flood event can be evaluated based on the sum of
positive IF values from the onset of the flood [tonset i.e., the first daywhen
IF > 0] to its end [tend, last day beforeIF < 0]. The highest event of flood
danger ImaxF is determined by identifying the maximum value of IF from
tonset and tend. The duration of the flood event, DF, can be measured by
calculating the number of days between tonset and tend. Notably, various
characteristics of flood events can be measured and evaluated using a
straightforward running-sum approach (Yevjevich, 1967):

IaccF =
∑t=tend

t= tonset

IFt t where IFt > 1 (15)

ImaxF = max(IF) tend − tonset (16)

DF = tend − tonset (days) (17)

During a period of flooding, the index of the flood for a particular day t is
denoted by IFt , and it is only relevant whenIF > 0 and tonset ≤ t≤ tend. The
regular IF observed during the study period is a time-varying signal that
generates positive or negative index values in response to significant (or
low) rainfall, as established by Nosrati et al. (2010). A positive value of
IF indicates a flooding event, and the flood properties are analyzed
during this period of flooding.

3.3. Large-scale climate indices

Fifteen large-scale daily climate indices were utilised as predictor
variables to anticipate the IF using a hybrid DL CNN-BilSTM model.
Table 1 provides the list of climate indices and respective sources. Fig. 4
shows a map of the research area with oceanic representation used to
determine the climatic mode indices.

3.4. Development of hybrid CNN-BiLSTM model

The CNN-BiLSTM integration synergises the strengths of each model
element. CNN is used to handle spatial patterns (i.e., low-level features)
in the data while BiLSTM is used to capture temporal patterns and de-
pendencies over time (i.e., sequential relationships). Specifically, in the
CNN model, patterns like edges, textures, or shapes in local regions of
the input are detected through convolutional layers. The dimensions of
spatial information are then reduced in pooling layers, preserving the

most important features, which are finally converted into a flat vector as
the input of the BiLSTM model. In the BiLSTM model, the forward LSTM
processes the input sequence from the beginning to the end, capturing
past context while the backward LSTM deals with the input sequence in
reverse, capturing future context. The final output represents combining
spatial and temporal information. The schematic workflows of the CNN-
BiLSTM hybrid model are illustrated in Fig. 1. The optimum architec-
tures of the hybrid CNN-BiLSTM and BiLSTM-based predictive model are
tabulated in Table 2.

The proposed CNN-BiLSTM model was developed with a 3.6 GHz
Intel i7 processor and 16 GB of RAM machine. The Python interface of
the models uses TensorFlow (Abadi et al., 2016) and Keras (Ketkar, 2017)
DL frameworks to generate a multi-phase CNN-BiLSTMmodel. Keras is a
DL API that integrates with TensorFlow, a capable Python machine
learning framework. Keras is a highly usable interface for modern DL
techniques. Also, NCA is implemented in MATLAB R2020b. The pre-
dicted IF is also visualised using matplotlib (Barrett et al., 2005) and
seaborn (Waskom et al., 2020). Quantum GIS (QGIS) software was also
utilised to visualise the study area and geographical plots. A list of nine
statistical measures is employed to investigate the practical implications
of forecasting models. The following stages were taken in the creation of
the proposed CNN-BiLSTM model.

3.4.1. Selection of predictor variables
Correlation between the predictors serve as a crucial tool in clima-

tological research, which is essential for identifying key predictors in
complex climate systems. In the Chittagong climate dataset, as shown in
Fig. 5, “GBI” shows the most significant positive correlation with the
target variable ’IF’, recording a coefficient of approximately 0.44. This
suggests ’GBI’ as a potential primary predictor of ’IF’. In contrast, the
Nino indices—indicators of the El Niño phenomenon—exhibit only
marginal correlations with ’IF’, with ’NINO4’ presenting a slight

Table 1
Twelve climate model indices were used as predictor variables to forecast the
flood index using the hybrid deep learning CNN-BiLSTM predictive model
combining a convolutional neural network (CNN) and a bi-directional long-short
term memory (BiLSTM). Source of data: monthly sea surface temperature (SST)
in different oceanic regions derived from the Optimum Interpolation SST,
version 2 (OISST v2) downloaded from Climate Prediction Center (CPC, NOAA).

Variable Name and Description Data Source

Niño 3 Average SST over 150◦–90 ◦W and 5 ◦N–5 ◦S OISST v2,
NOAA

Niño 3.4 Average SST over 170 ◦E–120 ◦W and 5 ◦N–5 ◦S OISST v2,
NOAA

Niño 4 Average SST over 160 ◦E–150 ◦W and 5 ◦N–5 ◦S OISST v2,
NOAA

Niño 1 +
2

Average SST over 90◦W–80◦W and 0◦–10◦S OISST v2,
NOAA

AO Arctic Oscillation NCEP
DMI DMI=WPI – EPI

WPI=Average SST over 50◦–70◦E & 10◦N–10◦S
EPI=Average SST over 90◦–110◦E & 0◦N–10◦S

OISST v2,
NOAA

EMI EMI=C – 0.5 x (E+W)
Where the components are average SSTA over
C: 165 ◦E–140 ◦W and 10 ◦N–10 ◦S
E: 110◦–70◦W and 5 ◦N-15◦S
W: 125◦-145 ◦E and 20 ◦N-10 ◦S

ERRSST.
v.3b

NAO North Atlantic Oscillation NCEP
PDO Pacific Decadal Oscillation NCEP
SAM Southern Annular Mode index NCEP
SOI Southern Oscillation IndexThe pressure difference

between Tahiti and Darwin as defined by Troup
(1965)

BOM

TPI Tripole Index for the Interdecadal Pacific Oscillation NCEP
RMM1 Real-time Multivariate MJO series 1
RMM2 Real-time Multivariate MJO series 2
GBI Greenland Block Index NCEP

Note: EMI=ENSO Modoki Index; WPI=West Pole Index; EPI=East Pole Index;
DMI=Dipole Model Index,
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negative correlation and ’NINO34’ a weak positive one. These findings
suggest that while El Niño-related variables have some influence, they
do not act as strong individual predictors for ‘IF’ in this region. The rest
of the dataset variables predominantly display weak or negligible cor-
relations, implying a complex network of relationships that potentially
involve non-linear interactions.

Despite the lack of a precise technique to determine whether model
predictors are reliable (Tiwari and Adamowski, 2013), to select the time
series of IF’s lag-time memories and predictors for an appropriate
framework, different techniques are applied. These methods include
trial and error, autocorrelation function (ACF), partial autocorrelation
function (PACF), and cross-correlation function (CCF) (Masrur Ahmed
et al., 2021). A significant antecedent behaviour in terms of the lag of IF
from the predictors was found using the PACF (Tiwari and Adamowski,
2013; Tiwari and Chatterjee, 2011). By monitoring the statistical
resemblance between the predictors and the dependent variable, the
CCF oversees choosing the input signal pattern based on the antecedent
lag of the predictors. For example, Fig. 6 (a) depicts the rcross between IF
and GBI and Niño1 + 2 at Sylhet and Khulna stations. According to the
figure, previous monthly delays have been statistically significant. If we

look at the climate indices, the GBI revealed significant rcross, ranging
from + 0.60 to + 0.68, respectively. To increase the diversity, the cor-
relation coefficient (r) between predictors (i.e., GBI and Niño1 + 2) and
target (IF) is illustrated in Fig. 6(b) and 6(c). It is found that the earliest
legs provided comparatively higher correlations.

The NCA method also tests the significant antecedent lag memories
of large-scale climate indices and IF. This method delivers the required
improvements in prediction accuracy and understanding of its pre-
dictors’ predictive model traits and nature while reducing the dimen-
sionality of input variables and computing cost.

3.4.2. Hybrid CNN-BiLSTM model design
The proposed hybrid CNN-BiLSTM model is established by using a

CNN as spatial feature extraction and a BiLSTM as a temporal predictive
model. The primary task is the configuration of hyper-parameters and
the optimisation of these parameters. A large number of hyper-
parameters must be addressed to develop a successful DL method. For
this experiment, the default Keras parameters are used for network ini-
tialisation. This is the set of default-training parameters: the number of
epochs in the training set is 200; the batch size is five, and the look-up
size is one. ReLU is applied to the CNN-BiLSTM and BiLSTM networks
as an activation function (see Table 2).

In addition, the SGD optimiser is employed, with a learning rate of
0.001. The number of hidden layer units varies between 70 and 60 for all
layers of DL models, depending on their architecture. A feature extrac-
tion method involving three convolution layers was used, with each
layer having its own set of filter and kernel size parameters, such as (70,
4) and (60, 4), respectively. Mean Square Error (MSE) was used as a loss
function in the model to represent the error. Aside from that, we scale
the predictor variables between 0 and 1 using a min–max normalisation
function. The missing values are filled in with the mean value of the
same date.

The input data are divided into three sets to develop predictive
models: training, testing, and validation. The model is trained on the
same data set in each iteration. As a result, the model will better un-
derstand the data’s features as it is trained. Validation sets are used to
analyse and validate models during development as compared to
training sets. The information obtained from this validation procedure is
meant to be used to change the model hyperparameters as necessary.
Finally, the testing phase is used only after a model has been trained
(using the train and validation sets), and it is primarily used to evaluate

Fig. 4. Map of the study region with oceanic representation used to calculate the climate mode indices (CI). The details of the climate mode indices are provided
in Table 2.

Table 2
The optimum architecture of the hybrid CNN-BiLSTM and BiLSTM-based pre-
dictive model developed through a trial error procedure. Note: ReLU stands for
Rectified Linear Units, SGD stands for Stochastic gradient descent optimizer.

Hyper-parameter Optimal Hyper-Parameters

CNN-BiLSTM BiLSTM

Convolution Layer 1 (C1) 70 ​
C1- Activation function ReLU ​
C1-Pooling Size 1 ​
Convolution Layer 2 (C2) 60 ​
C2– Activation function ReLU ​
C2-Pooling Size 1 ​
BiLSTM Layer 1 (L1) 55 60
L1- Activation function Tanh Tanh
BiLSTM Layer 2 (L2) 80 60
L2- Activation function ReLU ReLU
Drop-out rate 0.2 0.2
Optimiser SGD SGD
Padding Same Same
Batch Size 5 7
Epochs 1000 1000
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the model. 39 years of data were used in this study, and 70 % of the data
sets were used for training, 15 % for validation, and 15 % for testing.

3.4.3. Performance metrics
The prediction performance was done by a rigorous and insightful

evaluation of the objective model CNN-BiLSTM with other counterpart
models. Our study evaluated multiple graphical and statistical metrics in
the independent testing phase. The paper uses statistical metrics such as
Pearson’s correlation coefficient (r), Mean Absolute Percentage Devia-
tion (MAPD; %),Mean Absolute Error (MAE), Root Mean Squared Error
(RMSE), and Nash–Sutcliffe Efficiency (NSE). The mathematical nota-
tions of the statistical parameters are listed below, Eq. (14–17).

MeanAbsolute Error (MAE) =
1
n
∑n

i=1
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⃒
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RootMean Square Error(RMSE) =
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∑n
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Where IobsF is the observed and IforF is the model-predicted value from the

ith element; IobsF and IforF show their average, respectively, and n denotes
the number of observations of the IF.

4. Results and discussions

4.1. Results of flood index prediction

We present a deep hybrid predictive model (CNN-BiLSTM) to predict

Fig. 5. Correlation Landscape of Climatic Indicators Influencing ’IF’ in the Chittagong Region.
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the IF of thirty-four selected stations in Bangladesh, compared with two
benchmark models (i.e., BiLSTM and SVR). Statistical metrics and
infographics were also used to understand the predictive capability of
the proposed model. Overall, the proposed CNN-BiLSTM model was
found to predict IF values using large-scale climate indices accurately.

Fig. 7 shows that, when compared to other benchmark models, the
proposed hybrid DL model (CNN-BiLSTM) exhibits significant
improvement in IF prediction for a loop of thirty-four stations, as
demonstrated by the evaluation matrices correlation coefficient (r) and

mean absolute error (MAE). The figure also displays better distributions
of r and MAE values of the CNN-BiLSTM model between the lower
quartile (25th percentile) and the upper quartile (75th percentile)
compared to BiLSTM and SVR, indicating the ability of accurate pre-
diction of the proposed model for all the study sites. In addition, Table 3
shows that the proposed CNN-BiLSTM model yields better r-values ≈
0.987–0.996, which is superior to the BiLSTM model with r ≈
0.977–0.993. On the other hand, the classical machine learning model
(i.e., SVR) has lower r-values ≈ 0.888–0.992. The same results were

Fig. 6. (a) Cross-correlation functions (CCF) showing the covariance between the objective variable (IF) and the predictor variables (i.e., GBI and Nino1 + 2) for
Sylhet stations, (b) Partial autocorrelation function (PACF) plot of the predictor variables (i.e., GBI and Nino 1 + 2) of Sylhet stations and (c) Partial autocorrelation
function (PACF) plot of the target variable (i.e., IF) of Sylhet and Khulna stations. The pink line in the figures indicates the ± 95 % confidence level.

Fig. 7. Box plots of proposed hybrid models (i.e., CNN-BiLSTM) compared with their respective standalone counterparts (i.e., BiLSTM and SVR) in predicting IF in
terms of Correlation Coefficient (r) and Mean Absolute Error (MAE) for 34 selected stations in Bangladesh.
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observed using the MAE. The proposed hybrid DL prediction model
outperforms the other two competing methods as demonstrated by the r
and MAE values.

Fig. 8 contains further information on IF prediction regarding the
coefficient of determination (R2) and RMSE. In general, the newly
developed CNN-BiLSTM model can provide the highest value of R2 and
the lowest values of RMSE. The R2 values generated by the CNN-BiLSTM
model ranged between 0.995 and 0.996 over 80 % of the total stations.
The second candidate is the BiLSTM model, with R2 ranging from 0.977
to 0.992, while the SVR model has the lowest R2 values of 0.965 to
0.991. Overall stations, the deep hybrid CNN-BiLSTM prediction model
outperformed other benchmark models.

Further evaluation of the predictive model (i.e., CNN-BiLSTM) is
performed by a scatter plot, as shown in Fig. 9. The scatter plot is plotted
with the goodness-of-fit between predicted and observed IF and a least-
square fitting line. As illustrated in Fig. 8, the suggested model out-
performs the baseline model by a significant margin, with an R2 value
significantly higher than the baseline model. The proposed hybrid DL
model (CNN-BiLSTM) performed noticeably better for the Sylhet station
than for the other stations and models in terms of IF forecasting, recor-
ded the magnitudes that were most like one (m|R2 ≈ 0.656|0.996),
followed by the BiLSTM (0.627|0.993) model. Additionally, the Comilla
station exhibits substantial performance with the proposed CNN-
BiLSTM (0.65|0.997) model when compared to the BiLSTM (0.64|
0.994), and SVR (0.69|0.974) models, respectively. Hence, it is evident
that the DL hybrid CNN-BiLSTM predictive model is well-appropriate for
forecasting the week-ahead IF forecast.

A time series plot does further evaluation; the predictive abilities of
the hybrid and standalone models that were used in the study are further
established. Fig. 10 compares the predicted and observed IF time series
plot between the proposed hybrid (i.e., CNN-BiLSTM) model and the
standalone model (i.e., SVR). To illustrate, Fig. 9 depicts the predicted IF
at two stations using the proposed model and classical machine learning
model (i.e., SVR), resulting in an extremely near IF to the one that was
seen, showing that the model is highly predictable. A significant
improvement in forecasted IF was achieved due to the application of the
NCA algorithm.

The inclusion of the Taylor diagram (Taylor, 2001) in the study
shown in Fig. 11 adds additional support to a more thorough analysis

Table 3
The performance evaluation of the proposed hybrid deep learning CNN-BiLSTM
vs. benchmarks models (BiLSTM and SVR) at thirty-four stations in Bangladesh
by the correlation coefficient (r) and mean absolute error (MAE) in the testing
phase.

Stations r MAE

CNN-
BiLSTM

BiLSTM SVR CNN-
BiLSTM

BiLSTM SVR

Ambagan 0.995 0.991 0.988 0.322 0.423 0.358
Barishal 0.996 0.994 0.983 0.022 0.276 0.293
Bhogra 0.996 0.993 0.982 0.280 0.427 0.571
Bhola 0.996 0.994 0.988 0.045 0.289 0.302
Chandpur 0.995 0.992 0.985 0.195 0.444 0.447
Chottpgram 0.996 0.992 0.978 0.184 0.445 0.485
Chuadanga 0.995 0.992 0.980 0.129 0.180 0.192
Comilla 0.996 0.993 0.974 0.444 0.506 0.665
Cox’s Bazar 0.992 0.988 0.987 0.192 0.254 0.237
Dhaka 0.996 0.994 0.987 0.256 0.399 0.503
Dinajpur 0.996 0.994 0.983 0.061 0.116 0.136
Faridpur 0.996 0.992 0.982 0.047 0.083 0.124
Feni 0.996 0.994 0.983 0.406 0.571 0.663
Hatiya 0.988 0.982 0.988 0.153 0.229 0.210
Iswardi 0.996 0.994 0.981 0.161 0.196 0.208
Jessore 0.996 0.993 0.986 0.015 0.065 0.109
Khepurpara 0.994 0.991 0.978 0.362 0.521 0.563
Khulna 0.996 0.993 0.985 0.083 0.135 0.166
Kutbdia 0.995 0.993 0.990 0.115 0.386 0.357
Madaripur 0.996 0.994 0.976 0.165 0.415 0.431
Mongla 0.995 0.988 0.985 0.150 0.419 0.400
Mymenshing 0.996 0.994 0.979 0.226 0.453 0.445
Patuakhali 0.987 0.977 0.988 0.080 0.352 0.279
Rajshahi 0.996 0.993 0.976 0.039 0.047 0.113
Rangamati 0.996 0.994 0.994 0.285 0.548 0.547
Rangpur 0.996 0.994 0.984 0.037 0.033 0.093
Sandwip 0.995 0.993 0.984 0.160 0.201 0.232
Satkhira 0.996 0.994 0.980 0.063 0.118 0.155
Sheetakunda 0.995 0.991 0.986 0.334 0.492 0.561
Srimangal 0.996 0.994 0.985 0.409 0.561 0.659
Sydpur 0.996 0.993 0.979 0.073 0.130 0.150
Sylhet 0.996 0.994 0.989 0.378 0.520 0.628
Tangail 0.996 0.993 0.985 0.111 0.353 0.367

Fig. 8. Geographic distribution of the coefficient of determination (R2) and root means squared error (RMSE) acquired from the proposed hybrid model (i.e., CNN-
BiLSTM) and standalone counterparts (i.e., BiLSTM and SVR) in forecasting IF across thirty-four stations in Bangladesh.
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that proves how closely the correlation coefficients (r) are related to the
predicted and observed IF. The hybrid CNN-BiLSTM model in four
selected stations with a pool of synoptic climate indices produces a
substantially similar output to the observed value than any other applied
models. When it came to achieving the closest possible match to the
observed data, the proposed model (i.e., CNN-BiLSTM) for the Rangpur
and Sylhet stations is the closest. Regardless of improved performance,
Ambagan and Chittagong stations showed much deviation from the
observed IF.

The promoting percentage of root means squared error (RMSE),
Mean Absolute Error (MAE), and Mean Absolute Percentage Deviation
(MAPD) are additional metrics used to evaluate the proposed deep
hybrid CNN-BiLSTMmodel’s predictive performance. It should be noted
that the BiLSTM and SVR models are compared using the promoting
percentage given as the incremental performance (∇) of the objective

model over rival techniques. In addition, as shown in Fig. 12, the
assessment of ∇MAE, ∇MAPD, and ∇RMSE significantly improves the cor-
responding parameters as compared to the traditional BiLSTM and SVR
models. In the case of ∇MAE, the improvement is 1.1 to 25 % and 0 to 50
% for BiLSTM and SVR accordingly. Similarly, ∇MAPD(%) and ∇RMSE(%)
displayed comparable performance ranging from 0 to 89 %, 0 to 98 %,
6.3 to 91.8 %, and 0.2 to 101.3 % for BiLSTM and SVR. This demon-
strates that our proposed model was the most responsive forecasting.

4.2. Discussions

Several studies, including Maplecroft (2011) and the United Nations
(2015), have identified Bangladesh to be highly susceptible to climate
change. Geographically, it is particularly prone to the physical conse-
quences of climate change, with these consequences exacerbating the
already-existing sustainability challenges that this densely populated
country is dealing with (Mahmud and Prowse, 2012). The harmful ef-
fects can be lessened by locating, creating, and validating innovative
scientific methodologies that can be used for flood-risk warning and
regular monitoring, as well as flood risk reduction and adaptation. In
addition, operational floodmonitoring and decision-making demand the
creation of an index that monitors daily or weekly flood extents,
allowing for a more precise assessment of short-term events. A daily
flood monitoring index can be used to determine the beginning, length,
and intensity of flood event(s) for shorter periods like weeks or months,
or longer periods like years (Nosrati et al., 2010).Thus, predicted flood
episodes between July 2019 and February 2020 were recorded and
quantified for study sites selected based on the diverse classification of IF
as shown in Table 4. In the case of moderate to extreme flood events, it
has been observed that the flood began almost the same week, with the
longest duration found for the Hatiya station (200 days). Following the
application of the CNN-BiLSTM model to a flood situation, it has been
discovered that higher flood scenarios provide perfect forecasting with
bias error ranges ranging from 0.67 % to 49 %. Chuadanga station
performed exceptionally poorly in forecasting results, with a high per-
centage of bias in the forecasting results (50 %). At the same time, flood
warnings were issued for Ambagan, Chittagong, Kepurpara, and Hatiya,
which lasted for more than 190 days (consecutive days when IF>0).

We have addressed essential aspects of flood events, such as flood
dangers, flood severity, peak floods, flood duration, and total precipi-
tation. We find that the flood severity and peak flood are precisely the
same. Observations have shown that when the flood intensity is highest,
the peak flood also appears to be at its highest point. The findings also
showed that the IF was useful for estimating the duration, seriousness,
and intensity of flood scenarios as well as for classifying the seriousness

Fig. 9. Scatter plot of forecasted vs. observed IF of a) Sylhet and b) Comilla sites using the proposed hybrid model (i.e., CNN-BiLSTM) and Standalone models (i.e.,
BiLSTM and SVR). A least square regression line and coefficient of determination (R2) with a linear fit equation are shown in each sub-panel.

Fig. 10. Comparison of time series distribution between forecasted IF and
observed IF during model testing phase using CNN-BiLSTM vs. SVR model for
Sylhet and Comilla.
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of flood situations. It has resulted that the newly developed hybrid CNN-
BiLSTMmodel is based on the flood index feature, which is an important
concept to understand. Predicting floods is critical for better flood
management and mitigation planning.

The proposed hybrid DL model has been demonstrated to produce a
greater prediction of the flood index compared to the standalone
models. However, it is important to know that the model’s performance
is slightly different. It is suggested that the potential serial correlation
issue in both the target variable and predictors, indicated by a gradual
decrease in the cross-correlations (see Fig. 5), which may lead to prob-
lematic issues in significance tests, should be taken into consideration
for similar works in the future.

While CNN models show promise in capturing spatial features time
series tasks, such as automated speech recognition (Abdel-Hamid et al.,
2014) and wind speed forecasting (Wang and Li, 2023), they faces
challenges in fully realising temporal features, especially in long-tailed
time series associated with a high degree of uncertainty (Afrasiabi
et al., 2019). The reason is that CNN models are primarily designed for
processing grid-structured data, such as images, where the spatial re-
lationships between neighbouring elements are critical (LeCun et al.,
2015). Thus, they are not inherently designed to handle sequential data
with temporal dependencies or serial correlation, which is common in
time series data. Similarly, SVR models focus on identifying a hyper-
plane that best fits high-dimensional data (Zhang and O’Donnell, 2020).
Although they can capture complex relationships, they do not explicitly
consider the temporal dependencies or serial correlation often present in
time series data. In addition, while the NCA technique is often used for
dimensionality reduction or feature selection tasks, it is not specifically
tailored to capture temporal dependencies or address the serial corre-
lation problem in time series data.

To address the serial correlation problem, one solution involves
combining CNNs with models explicitly designed to capture de-
pendencies over time, such as recurrent neural networks (RNNs) or
other sequence-based models, such as LSTMs or GRUs, as demonstrated
in the study by Afrasiabi et al. (2020). The present study addressed the
serial correlation problem by combining CNN with BiLSTM in a hybrid
model to tackle spatial and temporal aspects simultaneously. BiLSTM
models, an extension of traditional LSTMs, process the input sequence in
both forward and backward directions (see Section 2.2). This bidirec-
tional processing captures dependencies in both past and future con-
texts, making it more effective in handling long-term dependencies, and
addressing the serial correlation problem. This hybrid approach is
applicable and can be particularly effective in other tasks such as video
analysis, medical image processing, or time series prediction, where
both spatial and temporal aspects play crucial roles. The innovative
approach of this study to incorporating climate indices for the real-time
prediction of week-ahead flood indexes represents a significant
advancement in flood forecasting methodologies. However, the
connection between these slowly evolving climate indices, which are
typically used to understand long-term climatic variations, and the
ability to predict short-term flood events raises intriguing questions
about the mechanisms driving this predictive success. To bridge this gap,
a detailed exploration into how these indices can influence short-term
flood predictions through their impact on local weather patterns and
hydrological conditions is essential.

Climate indices, such as the Greenland Block Index (GBI), El Niño
Southern Oscillation (ENSO), and Indian Ocean Dipole (IOD), offer in-
sights into the global atmospheric circulation patterns that, in turn, in-
fluence regional weather conditions. For instance, the GBI can affect the
path and intensity of the westerly winds and storm tracks across the

Fig. 11. Tylor diagram representing correlation coefficient and the standard deviation difference for proposed hybrid CNN-BiLSTM vs. benchmark models (i.e.,
BiLSTM and SVR) for Ambagan, Chittagong, Rangpur, and Sylhet.
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Northern Hemisphere, potentially altering precipitation patterns in
South Asia, including Bangladesh. The observed higher correlation be-
tween the Greenland Block Index (GBI) and the Flood Index (FI) suggests
a significant link between atmospheric patterns over Greenland and
flood occurrences in the studied region. The GBI is a climate index that
quantifies the atmospheric pressure patterns over Greenland, with
higher values indicating stronger blocking events. These blocking events
can have a profound impact on weather patterns across the Northern
Hemisphere, leading to alterations in the jet stream and affecting the
distribution of precipitation. When the GBI is in a high phase, it typically
results in a redirection of the jet stream, which can lead to prolonged
periods of rainfall or dry conditions in different parts of the world,
depending on the specific atmospheric setup. In the context of flood
prediction, a higher GBI could lead to stagnation of weather systems,
increasing the likelihood of prolonged rainfall events downstream,
which, in turn, can contribute to higher flood risks.

ENSO, with its phases of El Niño and La Niña, significantly influences
the monsoon systems, where El Niño is often associated with reduced
monsoon rainfall in South Asia, and La Niña can enhance it, impacting
the flood risk in the region. Similarly, positive phases of the IOD are
linked to increased rainfall in the Indian subcontinent, which could
exacerbate flooding during the monsoon season.

Moreover, exploring existing studies that have investigated the im-
pacts of these climate indices on regional hydrology and weather pat-
terns can provide a solid foundation for understanding their relevance in
flood forecasting. For example, research by Ummenhofer et al. (2009) on
the impact of IOD on Southeast Asian precipitation and studies by
Marengo et al. (2008) on the influence of ENSO on South American

hydrology can offer insights into the physical mechanisms through
which these indices affect weather patterns conducive to flooding. By
delving into the physical relevance of these climate patterns during
flood events and their representation in the predictive model, the study
could significantly enrich its narrative. This approach would not only
validate the inclusion of climate indices in short-term flood forecasting
but also provide a comprehensive understanding of the intricate re-
lationships between global climate mode indices and local flood risks.

5. Conclusions and outlook

Deep learning algorithms were used in this paper to develop a new
artificial intelligence methodology for daily flood index forecasting.
They were trained on synoptic mode indices and reliable ground-truth
observations from thirty-four stations in Bangladesh. Our novel
method, the hybrid CNN-BiLSTMmodel combines Convolutional Neural
Networks (CNN) with a Bi-directional long short-term Memory
(BiLSTM) network. It has been demonstrated that the CNN-BiLSTM
model can produce significant improvements in predictive perfor-
mance and outperform all benchmark models like BiLSTM and SVR.

Upon thorough assessment of the suggested hybrid CNN-BiLSTM
model, we have concluded that our method represents a promising
approach for developing a predictive model for understanding flood
scenarios in Bangladesh. The proposed hybrid CNN-BiLSTM model’s
superior performance is supported by its high NSE (0.986–0.997) and
low MAPD (1.01–3.59) values.

Beyond these prediction issues, the suggested deep hybrid model can
be applied to a variety of complicated or difficult prediction tasks,

Fig. 12. Promoting Percentage of RMSE (∇RMSE,%), MAPD (∇MAPD,%), and MAE (∇MAE,%) to illustrate the improvement percentage of the proposed model (i.e.,
CNN-BiLSTM) over standalone models (i.e., BiLSTM and SVR) in IF forecasting.

A.A. Masrur Ahmed et al. Journal of Hydro-environment Research 57 (2024) 12–26 

24 



including, among other things, the forecasting of wind speed, energy
costs, and tidal energy. Moreover, incorporating global climate models
(GCM) to predict the flood index under global warming scenarios for
better flood hazard management and mitigation.
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Table 4
Comparison of Flood Forecasting using the CNN-BiLSTM model between July
2019 and February 2020 and flood severity and duration.

Stations Onset of
Flood

PBIAS
(%)

Total Precipitation
(mm)

Duration of
Flood
(Days)

Ambagan 7/7/2019 3.623 6280.96 200
Barisal 10/7/2019 5.605 2204.02 99
Bhola 8/7/2019 5.402 3402.56 185
Bogra 9/25/2019 21.826 298.93 26
Chandpur N/A

Chittagong 7/7/2019 21.459 6280.96 199
Chuadanga 10/25/

2019
51.897 164.02 6

Comilla 9/7/2019 22.102 2590.98 153
Cox’s Bazar 7/7/2019 12.073 5726.64 165
Dhaka 7/8/2019 26.584 887.91 70
Dinajpur 9/23/2019 15.634 437.31 24
Feni 8/8/2019 20.103 1314.44 71

Foridpur N/A
Hatiya 7/7/2019 5.699 6477.93 200
Ishwardi 7/8/2019 22.576 1018.06 106
Jessore 08/15/

2019
34.561 255.77 11

Khepurpara 5/7/2019 18.652 5570.49 195
Khulna 7/8/2019 13.911 1755.18 130
Kutubdia 5/7/2019 4.701 8106.34 198
Madaripur 7/26/2019 10.345 1634.49 126
Mongla 8/7/2019 6.98 3164.5 190
Mymensingh 9/7/2019 15.768 1955.67 124
Potuakhali 7/7/2019 6.858 4386.58 194
Rajshahi 9/26/2019 25.932 229.66 16
Rangamati 8/7/2019 6.381 3424.57 147
Rangpur 9/14/2019 2.993 561.71 34
Saidpur 09/23/

2019
24.231 437.31 23

Swandip 8/13/2019 26.198 423.14 11
Satkhira 8/14/2019 14.971 1407.14 111
Shitakunda 7/7/2019 6.422 6477.93 193
Sreemangal 7/8/2019 8.28 2039.94 143
Sylhet 11/7/2019 17.585 1479.5 48
Tangail 10/7/2019 11.504 1577.38 135
Teknaf 6/30/2019 7.259 6149.95 143
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