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PREFACE 

This online book is designed to support the practice of statistics among social scientists. This is not a 
statistical textbook. It is a practical workbook that should be used to accompany studies in Social Science 
methodologies, research best practice and statistical training. 

This workbook specifically focuses on programming in R. Chapter 1 provides foundational knowledge 
about R and its basic functionalities. Subsequent chapters build on these foundations, integrating 
programming skills. 

Each chapter guides readers through a specific task commonly encountered in empirical research within the 
social sciences, providing analytical steps and associated R syntax. Exercises are included in each chapter to 
provide opportunities review statistical knowledge and enhance practical skills using real data. 

As the field of social sciences evolves, learning at least one programming language like R can significantly 
enhance research capabilities. The demand for skilled data science practitioners in academia, industry, and 
government is growing rapidly, making R a valuable skill for any researcher to have. This book provides 
foundational knowledge that will introduce you to empirical analysis through the use of quantitative 
statistical software. 
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1. 

INTRODUCTION TO R AND RSTUDIO 

1. What is R? 

R is a programming language and environment specifically designed for statistical computing and graphical 
data representation. R supports a extensive suite of statistical techniques including linear and nonlinear 
regression, time-series and spatial analyses and large language modelling. R can also be used to visualise 
data using advanced graphical techniques. This feature makes the R software useful for communicating 
complex statistical results in visual formats and enhances the utility of R across disciplinary and industry 
domains. A significant strength of R is its ability to produce publication-quality plots and even maps with 
ease. R is distributed as free software under the terms of the GNU General Public License provided by 
the Free Software Foundation. It is available in source code form and compatible with various operating 
systems, including Windows, macOS, and Linux. 

R is not only a statistical data analysis tool but also a programming language in its own right. Like any 
language, R has its own vocabulary, syntax, and structure. Just as learning a foreign language requires 
mastering fundamental grammar and sentence patterns, effectively using R requires understanding its basic 
syntax and expressions. 

The goal of the first chapter is to guide you through downloading and installing R and RStudio while 
familiarising yourself with R’s structure and basic functions. In the first two chapters, we will focus on 
learning the fundamental elements of R. Building on this foundation, the subsequent chapters will provide 
an opportunity for you to develop your R skills by practicing more advanced statistical techniques. 

2. Downloading R and RStudio 

The first step is to set everything up to get started. There are two ways to run R: 

• Install R and RStudio, or 
• Run RStudio in a browser via RStudio Cloud 

Since we will be using R as we work through the exercises in this book, lets install R and RStudio. Once 
installed, R becomes much easier to execute both online and offline. 
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2.1 Installing R 

The core module of our programming is R itself. As an open-source project, it is available for free on 
Windows, Mac, and Linux computers. Here’s what you need to do to install it properly on your computer: 

1. Go to https://www.r-project.org/ 
2. Click on ‘CRAN’ under the Download or select ‘download R’ 

directly. 

3. Select a server in your country (any server will work but choosing one closer to your location 
improves performance). 

4. Select your computer’s operating system, such as “Download R for Windows.” 
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Open the downloaded file and follow the installation instructions. It is recommended to keep the default 
settings. After completing the steps successfully, R is now installed on your system. While it is possible to 
operate R from inside the software itself, Rstudio provides a more user-friendly interface, especially for 
those new to the software. In this course we will use RStudio IDE (Integrated Development Environment). 
It is a comprehensive toolset designed to enhance productivity within R and includes a console, syntax-
highlighting editor for direct code execution, and tools for plotting, viewing history, and managing your 
workspace. 

2.2 Installing RStudio 

Before installing RStudio, ensure that R is already installed on your computer. 

1. Go to https://posit.co/download/rstudio-desktop/, scroll down, and select the right operating 
system (OS) for your computer (Windows users: choose windows, Mac users: choose macOS). 
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Screenshot of the 
R application. 
Available under a 
GNU General 
Public License. 

2. Open the downloaded file and follow the installation instructions, keeping the default settings 
wherever possible. 

Congratulations, you are all set to start learning R! From now on, you only need to open RStudio instead 
of R. It is highly recommended that you create a folder (e.g., MY_R) on your computer to save all files and 
outputs. 

3. Downloading R and RStudio 

Please open RStudio, and you will see a screen with four windows, as shown below: 
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3.1 The Source Window (top left) 

In this space, you will see all your files listed. This will include all file types including data and code that 
you have prepared. The source panel can is where you will open, edit and run your programming code (R 
script). Once open in the source window, R scripts can be edited and/or executed. You should write and 
run all your code in the Source window. 

3.2 The R Console Window (bottom left) 

After executing your code, the output of your computations will appear in the R console window. While 
you can execute code directly in the console, this will not save your code history. Therefore, it is highly 
recommended that you execute all your code from the source window. 

3.3 The Environment/History/Connections/Tutorial Window (top 
right) 

This panel has several tabs: 

• The Environment panel displays the workspace, allowing users to view and manage objects like 
variables, data frames, and functions currently loaded into memory. 

• The History panel keeps a record of previously executed commands, making it easy to review, reuse, 
or modify code for reproducibility. 

• The Connections panel enables seamless interaction with external databases, providing tools to 
establish and manage connections for efficient data import and analysis. 

• The Tutorial panel offers built-in learning resources, giving users access to guided tutorials and 
interactive lessons within the RStudio interface. 

For our purposes, we will mainly focus on the Environment panel. 

3.4 The Files/Plots/Packages/Help/Viewer Window (bottom 
right) 

• The Files tab provides access to the file system, allowing users to navigate directories, open scripts, 
and manage files directly within RStudio. 

• The Plots tab displays visual outputs, such as graphs and charts, generated during data analysis, with 
options to zoom, export, or clear plots. 

• The Packages tab manages installed R packages, enabling users to load, update, or install additional 
libraries needed for their work. 

• The Help tab serves as a comprehensive resource for accessing documentation and function 
references, making it easy to look up details about R functions or packages. 
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• The Viewer tab is designed for rendering web content, such as interactive HTML reports or 
visualizations, directly within RStudio. 

Together, these tools provide an integrated interface for efficient project management and data analysis. 

4. R Basics 

Before diving into R packages or running code with R functions, we will begin with a warm-up exercise by 
performing simple calculations like addition, subtraction, multiplication, and division. We will also cover 
the essential basics, including how to assign values to an object using <-. 

4.1 Basic Computation 

Basic computation in R is very intuitive and can be similar to using a calculator or mobile phone. Let’s take 
a look at the following examples: 

# Addition 

10 + 10 

## [1] 20 

# Subtraction 

10 - 10 

## [1] 0 

# Multiplication 

8 * 15 

# * operator is used for Multiplication in R 

## [1] 120 

# Division 

40 / 4 

## [1] 10 
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Q. Now, use R to practice computing the following exercises and write your answers: 

4.2 Assigning Values to Objects <- 

An object is a named entity that stores data. In R, assigning values to an object means storing a value 
(such as a number, vector, or dataset) in a named variable using the assignment operator <-. Objects can be 
different data types (numeric values, text): 

1. Numeric Values 

2. Character Strings 

# Exponentiation 

14 ^ 2 

## [1] 196 

# Exercise 1 

40 + (4 + 7)^2 

# Exercise 2 

100 - 4*(3 + 3)^2/2 

x <- 10 

 x 

## [1] 10 

course <- "SOCY3039" 

course 

## [1] “SOCY3039” 
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3. Vectors 

4. Data Frames 

Remember 

The <- symbol is the assignment operator in R, used to assign values to objects. For example, in the first 
case, the operator <- assigns value 5 to the object ‘x’. The symbol c() stands for combine and is used to 
create vectors by combining multiple elements of the same type into a single sequence. 

We will revisit the concepts of Numeric values, Character strings, Vectors, and Data frames in more detail 
in the next chapter. 

5. R Packages 

R provides a wide range of built-in functions, but additional functions can be added through R packages. 
These packages, developed by programmers and data scientists, are collections of functions, datasets, and 
documentation that extend R’s capabilities. Think of 

• R as a clothing factory with basic materials like fabric, thread, and tools. 
• RStudio is your sewing station, where you gather all the tools (functions) you need to create your 

designs. 
• R packages are like additional fabrics, patterns, and accessories that you can bring into your 

workspace, each offering new features to help you craft more specialized pieces of clothing for your 
project. 

Num.students Courses 

180 SOCY2339 

55 SOCY3039 

numbers <- c(1, 2, 3, 4, 5) 

 numbers 

## [1] 1 2 3 4 5 

df <- data.frame(Num.students = c(180, 55), Courses = c("SOCY2339", "SOCY3039")) 

df 
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5.1 Installing Packages 

There are two ways to install R packages: 

• Use install.packages() function, or 
• Use the packages tab on the bottom right window 

Installing packages using the function is recommended as it is the quickest and simplest way to install an R 
package. 

One of the most used packages is ggplot2, which generates a variety of visualisations. Let’s install it as an 
example by entering the 
following command: 

You can also install multiple packages at once using the c() function, which groups items together. 

For example, to install ggplot2, dplyr, and tidyverse, execute the following code: 

You can find additional information about a package or function by 
placing a ? in front of the function name (e.g., ?install.packages). 

5.2 Loading Packages 

Once your R packages are installed, the next step is to start using them. While you only need to install 
packages once, you will need to activate them each time you start a new session in RStudio. This process, 
known as loading a package, gives you access to all its functions. To load a package, simply use the 
library() function. 

When you start typing a function like the ’library’in Rstudio, it will automatically suggest related functions 
and display a yellow box. This box shows the function’s structure (also called its syntax or signature) along 
with a brief description of what the function does. 

install.packages("ggplot2") 

install.packages(c("ggplot2", "dplyr", "tidyverse")) 
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Screenshot of the 
R application. 
Available under a 
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Public License. 

For example, to activate ggplot2, we have already installed, run the following code: 

Unfortunately, you cannot use c() function to activate multiple packages at once like with 
install.packages(). You will need to activate each package individually. While there is a way to load 
multiple packages at once, it is beyond the scope of this book, but feel free to explore if you are curious. 

library(ggplot2) 
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2. 

INTRODUCTION TO TIDYVERSE AND R 
MARKDOWN 

This chapter focuses on learning and practicing two essential R packages, 
tidyverse and dplyr. These packages provide a range of functions for 
performing statistical analyses and serve as a fundamental building block 
for the code that will be used in later sessions. We then move on to 
learning how to use R Markdown. 

1. Tidyverse Packages 

The tidyverse is a collection of R packages designed for data science, including essential tools such as dplyr 
for data manipulation and ggplot2 for data visualization. Loading the tidyverse with the library() function 
automatically makes these packages available. 

Let’s set up the working directory first. 

#Set up the working directory 

setwd("C:/Your folder path/SOCYR") 

#Install & load the required packages for chapter 4 

install.packages("tidyverse") #If you have not installed this package yet 

library(tidyverse) 

## ── Attaching core tidyverse packages ──────────────────────── tidyverse 2.0.0 ── 

## ✔ dplyr     1.1.0     ✔ readr     2.1.4 

## ✔ forcats   1.0.0     ✔ stringr   1.5.0 
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As shown in the results, the tidyverse includes nine packages. Below is a brief overview of the key packages 
most relevant to this course. 

Package Description 

ggplot2 For data visualization: ggplot allows users to create complex and customizable plots using a layered 
approach. 

dplyr For data manipulation: plyr provides functions for selecting, filtering, grouping, summarizing, and 
mutating data efficiently using a consistent and intuitive 

readr For reading and writing data (CSV, TSV, etc.) 

tidyr For reshaping and tidying data: The tidyr package provides functions to transform messy data into a 
structured format, making it easier to analyze by spreading, gathering, and separating columns. 

You can find full descriptions of the remaining packages in the Tidyverse documentation. 

2. dplyr Packages 

The dplyr package is a widely used tool for data manipulation in R, offering efficient functions for tasks 
such as filtering, selecting, reshaping, and summarizing data. It simplifies data cleaning by requiring less 
code than base R while providing a more intuitive and readable syntax. 

For this exercise, we will use data from the World Values Survey (WVS). Before performing any data 
manipulation, use the glimpse() function to explore the structure of the dataset. 

## ✔ ggplot2   3.5.2     ✔ tibble    3.2.0 

## ✔ lubridate 1.9.2     ✔ tidyr     1.3.0 

## ✔ purrr     1.0.1 

## ── Conflicts ────────────────────────────────────────── tidyverse_conflicts() ── 

## ✖ dplyr::filter() masks stats::filter() 

## ✖ dplyr::lag()    masks stats::lag() 

## ⯑ Use the ]8;;http://conflicted.r-lib.org/conflicted package]8;; to force all con

flicts to 

become errors 

library(dplyr) 

# load the WVS dataset 
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load("WVS_Cross-National_Wave_7_Rdata_v6_0.rdata") 

WVS <- `WVS_Cross-National_Wave_7_v6_0` 

glimpse(WVS)  #The output  is similar to the ‘str()’ function 

## Rows: 97,220 

## Columns: 613 

## $ version                    <chr> "6-0-0 (2024-04-30)", "6-0-0 (2024-04-30)",… 

## $ doi                        <chr> "doi.org/10.14281/18241.24", "doi.org/10.14… 

## $ A_WAVE                     <int> 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7… 

## $ A_YEAR                     <int> 2018, 2018, 2018, 2018, 2018, 2018, 2018, 2… 

## $ A_STUDY                    <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2… 

## $ B_COUNTRY                  <int> 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20,… 

## $ B_COUNTRY_ALPHA            <chr> "AND", "AND", "AND", "AND", "AND", "AND", "… 

## $ C_COW_NUM                  <int> 232, 232, 232, 232, 232, 232, 232, 232, 232… 

## $ C_COW_ALPHA                <chr> "AND", "AND", "AND", "AND", "AND", "AND", "… 

## $ D_INTERVIEW                <int> 20070001, 20070002, 20070003, 20070004, 200… 

## $ S007                       <int> 20720001, 20720002, 20720003, 20720004, 207… 

## $ J_INTDATE                  <int> 20180704, 20180714, 20180704, 20180702, 201… 

## $ FW_START                   <int> 201807, 201807, 201807, 201807, 201807, 201… 

## $ FW_END                     <int> 201809, 201809, 201809, 201809, 201809, 201… 

## $ K_TIME_START               <dbl> 18.20, 9.35, 10.15, 17.05, 10.20, 12.15, 17… 

## $ K_TIME_END                 <dbl> 19.48, 11.00, 10.45, 18.20, 11.48, 13.00, 1… 

## $ K_DURATION                 <int> 88, 85, 30, 75, 89, 45, 44, 60, 74, 41, -5,… 

## $ Q_MODE                     <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2… 

## $ N_REGION_ISO               <int> 20007, 20003, 20003, 20003, 20003, 20006, 2… 

## $ N_REGION_WVS               <int> 20005, 20002, 20002, 20002, 20002, 20006, 2… 

## $ N_REGION_NUTS2             <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ N_REG_NUTS1                <int> -3, -3, -3, -3, -3, -3, -3, -3, -3, -3, -3,… 

## $ N_TOWN                     <int> 20005, 20002, 20002, 20002, 20002, 20006, 2… 

## $ G_TOWNSIZE                 <int> 5, 3, 3, 3, 3, 3, 3, 4, 4, 4, 3, 2, 3, 3, 3… 

## $ G_TOWNSIZE2                <int> 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2… 

## $ H_SETTLEMENT               <int> 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2… 

## $ H_URBRURAL                 <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1… 

## $ I_PSU                      <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ O1_LONGITUDE               <dbl> 1.52, 1.53, 1.58, 1.58, 1.58, 1.52, 1.49, 1… 

## $ O2_LATITUDE                <dbl> 42.51, 42.51, 42.53, 42.53, 42.54, 42.50, 4… 

## $ L_INTERVIEWER_NUMBER       <int> -5, -5, -5, -5, -5, -5, -5, -5, -5, -5, -5,… 
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## $ S_INTLANGUAGE              <int> 810, 810, 810, 810, 810, 1270, 1270, 810, 8… 

## $ LNGE_ISO                   <chr> "ca", "ca", "ca", "ca", "ca", "es", "es", "… 

## $ E_RESPINT                  <int> 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1… 

## $ F_INTPRIVACY               <int> 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1… 

## $ E1_LITERACY                <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ W_WEIGHT                   <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1… 

## $ S018                       <dbl> 0.9960159, 0.9960159, 0.9960159, 0.9960159,… 

## $ pwght                      <dbl> 0.006844622, 0.006844622, 0.006844622, 0.00… 

## $ S025                       <int> 202018, 202018, 202018, 202018, 202018, 202… 

## $ Q1                         <int> 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1… 

## $ Q2                         <int> 1, 1, 2, 1, 1, 3, 2, 1, 2, 1, 1, 1, 2, 1, 3… 

## $ Q3                         <int> 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1… 

## $ Q4                         <int> 3, 4, 2, 4, 3, 4, 4, 1, 1, 4, 4, 2, 3, 3, 4… 

## $ Q5                         <int> 1, 1, 3, 2, 1, 1, 1, 1, 2, 2, 1, 1, 2, 1, 1… 

## $ Q6                         <int> 4, 4, 3, 4, 3, 3, 2, 3, 1, 2, 1, 2, 4, 3, 2… 

## $ Q7                         <int> 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1… 

## $ Q8                         <int> 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1… 

## $ Q9                         <int> 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2… 

## $ Q10                        <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1… 

## $ Q11                        <int> 1, 2, 1, 2, 2, 2, 2, 2, 2, 1, 1, 1, 2, 1, 2… 

## $ Q12                        <int> 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 1… 

## $ Q13                        <int> 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2… 

## $ Q14                        <int> 2, 2, 1, 1, 1, 2, 2, 2, 1, 2, 1, 1, 1, 2, 2… 

## $ Q15                        <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2… 

## $ Q16                        <int> 2, 2, 2, 2, 2, 1, 1, 2, 1, 2, 2, 1, 2, 1, 1… 

## $ Q17                        <int> 1, 1, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2… 

## $ Q18                        <int> 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1… 

## $ Q19                        <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1… 

## $ Q20                        <int> 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1… 

## $ Q21                        <int> 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2… 

## $ Q22                        <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2… 

## $ Q23                        <int> 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2… 

## $ Q24                        <int> 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1… 

## $ Q25                        <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2… 

## $ Q26                        <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2… 

## $ Q27                        <int> 3, 3, 3, 3, 3, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1… 

## $ Q28                        <int> 3, 3, 3, 3, 3, 1, 1, 3, 3, 1, 1, 2, 1, 3, 1… 

## $ Q29                        <int> 3, 3, 3, 4, 3, 2, 4, 4, 4, 3, 3, 3, 4, 4, 2… 
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## $ Q30                        <int> 3, 3, 3, 4, 3, 4, 4, 4, 4, 3, 3, 3, 4, 4, 4… 

## $ Q31                        <int> 3, 3, 3, 4, 3, 4, 2, 4, 4, 3, 2, 3, 4, 4, 4… 

## $ Q32                        <int> 3, 3, -2, 4, 2, 4, 1, 4, 3, 3, 1, 2, 2, 1, … 

## $ Q33                        <int> 4, 4, 4, 4, 4, 5, 5, 5, 5, 4, 3, 4, 5, 5, 5… 

## $ Q33_3                      <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2… 

## $ Q34                        <int> 2, 2, 4, 2, 4, 5, 5, 1, 1, 4, 4, 4, 3, 5, 5… 

## $ Q34_3                      <int> 1, 1, 2, 1, 2, 2, 2, 1, 1, 2, 2, 2, 3, 2, 2… 

## $ Q35                        <int> 3, 4, 2, 4, 4, 5, 5, 1, 4, 5, 4, 4, 4, 3, 1… 

## $ Q35_3                      <int> 3, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 1… 

## $ Q36                        <int> 3, 2, 4, 3, 3, 1, 1, 3, 3, 1, 3, -2, 1, 1, … 

## $ Q37                        <int> 4, 4, 4, 4, 3, 1, 5, 5, 5, 3, 1, 2, 5, 5, 1… 

## $ Q38                        <int> 3, 2, 3, 4, 3, 1, 3, 5, 3, 3, 1, 2, 2, 4, 1… 

## $ Q39                        <int> 2, 2, 2, 2, 3, 1, 3, -2, 3, 1, 4, 2, 1, 3, … 

## $ Q40                        <int> 3, 2, 4, 4, 3, 1, 1, 1, 2, 4, 1, 2, 1, 3, 1… 

## $ Q41                        <int> 3, 2, 4, 4, 4, 1, 5, 3, 5, 5, 1, 4, 5, 4, 1… 

## $ Q42                        <int> 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2… 

## $ Q43                        <int> 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 2, 1, 3… 

## $ Q44                        <int> 3, 1, 2, 1, 1, 3, 2, 1, 2, 1, 2, 1, 3, 2, 2… 

## $ Q45                        <int> 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1… 

## $ Q46                        <int> 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 2, 1, 1, 2, 3… 

## $ Q47                        <int> 3, 1, 1, 2, 2, 1, 1, 2, 2, 1, 3, 1, 1, 2, 2… 

## $ Q48                        <int> 10, 9, 9, 9, 8, 10, 10, 8, 8, 10, 9, 8, 10,… 

## $ Q49                        <int> 10, 9, 9, 8, 7, 10, 5, 8, 8, 10, 8, 8, 10, … 

## $ Q50                        <int> 5, 9, 8, 6, 7, 6, 4, 9, 6, 10, 7, 8, 10, 5,… 

## $ Q51                        <int> 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 3… 

## $ Q52                        <int> 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 3… 

## $ Q53                        <int> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 2… 

## $ Q54                        <int> 4, 4, 3, 4, 4, 4, 2, 4, 3, 4, 4, 4, 4, 4, 2… 

## $ Q55                        <int> 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4, 4, 4, 3… 

## $ Q56                        <int> 1, 1, 2, 3, -2, 3, 1, -2, 3, 2, 2, 3, 1, 3,… 

## $ Q57                        <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2… 

## $ Q58                        <int> 1, 1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1… 

## $ Q59                        <int> 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 3… 

## $ Q60                        <int> 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 1, 1, 1… 

## $ Q61                        <int> 2, 3, 4, 3, 3, 2, 4, 3, 3, 3, 4, 2, 4, 2, 2… 

## $ Q62                        <int> 2, 2, 3, 3, 3, 2, 3, 3, 2, 1, -2, 2, 2, 1, … 

## $ Q63                        <int> 2, 2, 3, 3, 3, 2, 3, 3, 2, 1, 2, 2, 2, 1, 2… 

## $ Q64                        <int> 1, 4, 2, 3, 3, 3, 3, 4, 4, 1, 4, 2, 3, 2, 4… 
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## $ Q65                        <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q66                        <int> 1, 3, 4, 3, 3, 3, 3, 4, 3, 2, 1, 2, 3, 3, 3… 

## $ Q67                        <int> 1, 3, 4, 3, 3, 3, 3, 4, 3, 3, 1, 2, 3, 3, 1… 

## $ Q68                        <int> 1, 4, 3, 3, 2, 4, 4, 4, 3, 4, -2, 2, 3, 3, … 

## $ Q69                        <int> 1, 3, 2, 3, 2, 1, 1, 3, 2, 1, 1, 2, 1, 1, 1… 

## $ Q70                        <int> 1, 3, 2, 3, 2, 1, 4, 3, 3, 3, 2, 2, 1, 1, 3… 

## $ Q71                        <int> 1, 4, 3, 3, 2, 2, -2, 3, 3, 2, 2, 3, 2, 1, … 

## $ Q72                        <int> 1, 4, 3, 3, 3, 2, 3, 4, 3, 4, 4, 2, 4, 3, 2… 

## $ Q73                        <int> 1, 4, 3, 3, 2, 2, 4, 4, 3, 4, 2, 2, 4, 1, 2… 

## $ Q74                        <int> 1, 3, 3, 3, 3, 2, 4, 4, 3, 3, 2, 2, 2, 1, 3… 

## $ Q75                        <int> 1, 2, 2, -2, -2, 1, 2, 3, 1, 2, 1, 2, 2, 2,… 

## $ Q76                        <int> 1, 3, 3, 3, 3, 2, -2, 4, 3, 3, 2, 2, -2, 2,… 

## $ Q77                        <int> 2, 3, 3, 3, 2, 1, 4, 4, 3, 2, 1, 2, 3, 2, 1… 

## $ Q78                        <int> 2, 3, 2, 3, 3, 1, 3, 4, 3, 2, 2, 2, 1, 3, 3… 

## $ Q79                        <int> 2, 3, 2, 3, 3, 1, 1, 2, 1, 3, 1, 2, 2, 2, 2… 

## $ Q80                        <int> 2, 3, 2, 3, 3, 1, 1, 2, 3, 3, 1, 2, 2, 2, 2… 

## $ Q81                        <int> 2, 3, 2, 3, 3, 1, 1, 3, 1, -2, 3, 2, 2, 2, … 

## $ Q82                        <int> 2, 3, 2, 3, 2, -2, 2, 2, 3, 3, 2, 2, 2, 2, … 

## $ Q82_AFRICANUNION           <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q82_APEC                   <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q82_ARABLEAGUE             <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q82_ASEAN                  <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q82_CIS                    <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q82_CUSMA                  <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q82_ECO                    <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q82_EU                     <int> 2, 3, 2, 3, 2, -2, 2, 2, 3, 3, 2, 2, 2, 2, … 

## $ Q82_GULFCOOP               <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q82_ISLCOOP                <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q82_MERCOSUR               <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q82_NAFTA                  <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q82_OAS                    <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q82_SAARC                  <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q82_SCO                    <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q82_TLC                    <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q82_UNDP                   <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q83                        <int> 2, 3, 2, 3, 2, -2, 3, 3, 3, 3, 2, 2, 2, 2, … 

## $ Q84                        <int> 2, 3, 3, 3, 2, -2, 3, 4, 3, 2, 2, 2, 2, 2, … 

## $ Q85                        <int> 2, 3, 2, 3, 2, -2, -2, 4, 3, 3, 2, 2, 2, 2,… 
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## $ Q86                        <int> 2, 3, 2, 3, 2, -2, -2, 4, 1, 2, 2, 2, 2, 2,… 

## $ Q87                        <int> 2, 3, 3, 3, 3, -2, 2, 4, 3, 2, 2, 2, 3, 2, … 

## $ Q88                        <int> 2, 3, 3, 3, 2, -2, 3, 4, 2, 2, 1, 2, 2, 2, … 

## $ Q89                        <int> 2, 3, 3, 3, 3, -2, 3, 4, 3, 3, 1, 2, 2, 2, … 

## $ Q90                        <int> 6, 6, 4, 1, 2, 1, 1, 4, 9, 10, 7, 2, 1, 5, … 

## $ Q91                        <int> -2, 3, 3, 2, 3, -2, 3, 3, 2, 3, 3, 3, 3, 3,… 

## $ Q92                        <int> 3, 3, 2, 2, 2, -2, 3, 3, 3, 3, 3, 1, 3, 3, … 

## $ Q93                        <int> -2, 2, 2, 1, 2, -2, 2, 2, 2, 1, 2, 2, 2, 2,… 

## $ Q94                        <int> 0, 0, 0, 0, 0, 0, 1, 0, 0, 2, 0, 0, 1, 1, 2… 

## $ Q94R                       <int> 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1… 

## $ Q95                        <int> 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0… 

## $ Q95R                       <int> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0… 

## $ Q96                        <int> 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0… 

## $ Q96R                       <int> 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0… 

## $ Q97                        <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0… 

## $ Q97R                       <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0… 

## $ Q98                        <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0… 

## $ Q98R                       <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0… 

## $ Q99                        <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0… 

## $ Q99R                       <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0… 

## $ Q100                       <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0… 

## $ Q100R                      <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0… 

## $ Q101                       <int> 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 2, 0… 

## $ Q101R                      <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0… 

## $ Q102                       <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0… 

## $ Q102R                      <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0… 

## $ Q103                       <int> 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0… 

## $ Q103R                      <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0… 

## $ Q104                       <int> 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0… 

## $ Q104R                      <int> 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0… 

## $ Q105                       <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0… 

## $ Q105R                      <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0… 

## $ Q106                       <int> 5, 5, 7, 5, 4, 1, 1, 5, 8, 10, 8, 9, 5, 6, … 

## $ Q107                       <int> 8, 2, 5, 8, 7, 1, 9, 4, 6, 5, 7, 8, 3, 5, 9… 

## $ Q108                       <int> 2, 2, 5, 5, 7, 1, 2, 3, 6, 1, 2, 5, 5, 6, 1… 

## $ Q109                       <int> 10, 2, 2, 4, 2, 10, 1, 3, 5, 1, 1, 1, 1, 2,… 

## $ Q110                       <int> 2, 2, 4, 8, 6, 10, 1, 2, 5, 1, 7, 2, 2, 5, … 

## $ Q111                       <int> 2, 3, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1… 
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## $ Q112                       <int> 2, 10, 7, 5, 5, 6, 7, 8, 5, 10, 2, 8, 10, 1… 

## $ Q113                       <int> -2, 3, 2, 3, 2, 2, 2, 3, 2, 2, 1, 1, 3, 1, … 

## $ Q114                       <int> -2, 3, 2, 3, 2, 2, 2, 3, 2, 3, 1, 2, 3, 1, … 

## $ Q115                       <int> -2, 3, 2, 3, 2, 2, 3, 3, 2, 3, 1, 1, 4, 1, … 

## $ Q116                       <int> -2, 3, 2, 3, 2, 2, 2, 3, 1, 3, 1, 1, 2, 1, … 

## $ Q117                       <int> -2, 3, 2, 2, 1, 2, 1, 3, 2, 1, 1, 1, 1, 1, … 

## $ Q118                       <int> 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 2, 1, 1, 1, 3… 

## $ Q119                       <int> 2, 3, 2, 4, 3, 4, 4, 4, 0, 3, 3, 3, 4, 4, 4… 

## $ Q120                       <int> 6, 2, 7, 7, 7, 2, 5, 7, 5, 10, 6, 2, 2, 5, … 

## $ Q121                       <int> 5, 4, 4, 4, 4, 4, 4, 4, 3, 4, 5, 5, 4, 5, 5… 

## $ Q122                       <int> 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 0, 1, 2… 

## $ Q123                       <int> -2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, … 

## $ Q124                       <int> 0, 1, 0, 0, 1, 1, 0, 0, 0, 2, 0, 0, 0, 1, 2… 

## $ Q125                       <int> 2, 0, 1, 0, 1, 0, 2, 2, 0, 1, 0, 0, 1, 2, -… 

## $ Q126                       <int> 0, 0, 0, 1, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2… 

## $ Q127                       <int> -2, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 2, 1, … 

## $ Q128                       <int> 2, 0, 0, 1, 1, 0, 0, 2, 0, 0, 1, 0, 2, 1, 2… 

## $ Q129                       <int> 0, 1, 0, 1, 1, 0, 2, 2, 1, 1, 0, 0, 2, 1, 2… 

## $ Q130                       <int> 2, 2, 2, 3, 3, 2, 1, 2, 3, 3, 3, 2, 2, 3, 2… 

## $ Q131                       <int> 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1… 

## $ Q132                       <int> 4, 4, 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 3, 3, 4… 

## $ Q133                       <int> 4, 4, 2, 4, 4, 2, 2, 4, 2, 1, 4, 4, 2, 3, 4… 

## $ Q134                       <int> 4, 4, 3, 4, 4, -2, 4, 4, 4, 4, 4, 4, 2, 4, … 

## $ Q135                       <int> 4, 4, 3, 4, 4, 2, 4, 4, 4, 2, 4, 4, 3, 4, 4… 

## $ Q136                       <int> 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 2, 4, 3… 

## $ Q137                       <int> 4, 4, 3, 4, 4, 1, 2, 4, 3, 4, 4, 4, 2, 4, 2… 

## $ Q138                       <int> 4, 4, 4, 4, 4, -2, 4, 4, 4, 4, 4, 4, 3, 4, … 

## $ Q139                       <int> 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2… 

## $ Q140                       <int> 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2… 

## $ Q141                       <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2… 

## $ Q142                       <int> 2, 2, 3, 2, 2, 1, 3, 2, 1, 4, 3, 2, 2, 3, 2… 

## $ Q143                       <int> 2, 2, 4, 2, 2, 4, 1, 4, 4, 4, 1, 2, 2, 3, 1… 

## $ Q144                       <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2… 

## $ Q145                       <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2… 

## $ Q146                       <int> 4, 4, 4, 3, 3, 1, 2, 2, 4, 3, 2, 2, 3, 4, 2… 

## $ Q147                       <int> 2, 4, 4, 4, 2, 1, 2, 3, 4, 2, 1, 2, 3, 3, 2… 

## $ Q148                       <int> 4, 4, 4, 4, 4, 1, 4, 4, 4, 4, 2, 2, 4, 4, 2… 

## $ Q149                       <int> 1, 2, 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1… 
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## $ Q150                       <int> 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2… 

## $ Q151                       <int> 1, 1, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1… 

## $ Q152                       <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 4, 3, 1, 1, 3… 

## $ Q153                       <int> 4, 4, 3, 3, 3, 2, 3, 3, 3, 2, 1, 1, 3, 3, 1… 

## $ Q154                       <int> 3, 4, 1, 3, 3, 2, 4, 4, 4, 1, 2, 2, 2, 1, 3… 

## $ Q155                       <int> 1, 2, 2, 4, 1, 3, 2, 2, 2, 4, 4, 4, 4, 2, 1… 

## $ Q156                       <int> 1, 1, 2, 1, 1, 3, 2, 1, 1, 2, 2, 2, 1, 1, 1… 

## $ Q157                       <int> 3, 4, 3, 2, 3, 4, 4, 4, 4, 3, 3, 3, 2, 2, 4… 

## $ Q158                       <int> 7, 9, 5, 7, 7, 10, 5, 5, 5, 8, 8, 8, 9, 7, … 

## $ Q159                       <int> 6, 9, 6, 6, 7, 10, 5, 9, 8, 8, 7, 7, 7, 5, … 

## $ Q160                       <int> 7, 9, 8, 5, 6, 10, 10, 6, 8, 10, 9, 8, 8, 5… 

## $ Q161                       <int> 5, 2, 5, 6, 5, 10, 10, 4, 8, 8, 8, 6, 8, 3,… 

## $ Q162                       <int> 2, 2, 4, 3, 2, 10, 10, 2, 8, 1, 2, 2, 10, 5… 

## $ Q163                       <int> 6, 10, 5, 6, 6, 10, 7, 9, 8, 2, 9, 6, 7, 6,… 

## $ Q164                       <int> 7, 1, 8, 1, 4, 3, 8, 4, 5, 10, 10, 8, 1, 6,… 

## $ Q165                       <int> 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1… 

## $ Q166                       <int> 1, 2, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 2… 

## $ Q167                       <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2… 

## $ Q168                       <int> 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1… 

## $ Q169                       <int> 3, 3, 3, 3, 3, 1, 1, 3, 4, 4, 3, 3, 1, 4, 1… 

## $ Q170                       <int> 1, 3, 4, 3, 3, 1, 4, 3, 3, 4, 3, 3, 1, 4, 1… 

## $ Q171                       <int> 7, 7, 7, 7, 7, 3, 3, 7, 6, 2, 7, 3, 7, 4, 3… 

## $ Q172                       <int> 6, 8, 8, 8, 8, 2, 5, 7, 7, 2, 4, 3, 8, 8, 1… 

## $ Q172R                      <int> 3, 4, 4, 4, 4, 1, 3, 4, 4, 1, 3, 2, 4, 4, 1… 

## $ Q173                       <int> 1, 2, 2, 3, 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1… 

## $ Q174                       <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2… 

## $ Q175                       <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2… 

## $ Q176                       <int> 4, -2, 5, 4, 5, 4, 10, 6, 5, 10, 5, 7, 7, 1… 

## $ Q177                       <int> 1, 1, 1, 1, 1, 10, 1, 10, 9, 1, 1, 1, 1, 1,… 

## $ Q178                       <int> 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 1, 1, 1, … 

## $ Q179                       <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1… 

## $ Q180                       <int> 1, 1, 1, 1, 1, 1, 1, 5, 5, 1, 1, 1, 1, 1, 1… 

## $ Q181                       <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 1, 1, 1… 

## $ Q182                       <int> 4, 9, 10, 6, 8, 10, 10, 10, 8, 10, 7, 1, 10… 

## $ Q183                       <int> 3, 5, 6, 6, 6, 1, 5, 6, 8, 1, 1, 3, 10, 4, … 

## $ Q184                       <int> 2, 9, 5, 4, 5, 1, 10, 6, 5, 8, 4, 7, 10, 10… 

## $ Q185                       <int> 5, 9, 6, 9, 7, 10, 10, 10, 5, -2, 8, 5, 10,… 

## $ Q186                       <int> 4, 10, 6, 10, 8, 10, 10, 10, 7, 8, 4, 1, 10… 
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## $ Q187                       <int> 1, 1, 5, 3, 1, 1, 1, 10, 1, 1, 1, 1, 10, 3,… 

## $ Q188                       <int> 1, 9, 8, 3, 5, 1, 10, 10, 8, 8, 4, 1, 10, 1… 

## $ Q189                       <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1… 

## $ Q190                       <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1… 

## $ Q191                       <int> 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1… 

## $ Q192                       <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1… 

## $ Q193                       <int> 1, 5, 5, 7, 6, 10, 1, 10, 8, 3, 4, 1, 10, 1… 

## $ Q194                       <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1… 

## $ Q195                       <int> 1, 1, 2, 1, 1, 1, 5, 6, 5, 8, 1, 1, 10, 1, … 

## $ Q196                       <int> 2, 1, 4, 2, 1, 4, 1, 1, 4, 1, 1, 1, 4, 1, 1… 

## $ Q197                       <int> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4… 

## $ Q198                       <int> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4… 

## $ Q199                       <int> 2, 4, 3, 2, 2, 4, 4, 3, 3, 4, 4, 1, 4, 3, 4… 

## $ Q200                       <int> 2, 2, 2, -2, 2, 3, 3, 2, 2, 3, 3, 1, 2, 2, … 

## $ Q201                       <int> 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 5… 

## $ Q202                       <int> 2, 2, 1, 2, 2, 1, 5, 1, 1, 2, 1, 1, 1, 3, 1… 

## $ Q203                       <int> 1, 5, 1, 5, 5, 5, 5, 1, 5, 5, 5, 1, 2, 1, 5… 

## $ Q204                       <int> 5, 1, 5, 5, 2, 1, 1, 1, 1, 4, 1, 5, 1, 5, 1… 

## $ Q205                       <int> 5, 1, 5, 5, 2, 5, 1, 1, 5, 4, 5, 5, 1, 5, 5… 

## $ Q206                       <int> 5, 1, 2, 5, 2, 5, 1, 1, 5, 4, 1, 5, 1, 1, 1… 

## $ Q207                       <int> 5, 1, 5, 5, 2, 5, 1, 1, 5, 1, 1, 5, 4, 1, 1… 

## $ Q208                       <int> 2, 1, 4, 5, 2, 5, 1, 3, 2, 2, 5, 2, 4, 2, 1… 

## $ Q209                       <int> 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2… 

## $ Q210                       <int> 3, 2, 3, 2, 3, 3, 3, 3, 3, 3, 1, 3, 3, 2, 3… 

## $ Q211                       <int> 3, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 2… 

## $ Q212                       <int> 3, 2, 2, 2, 1, 2, 2, 1, 3, 3, 1, 2, 2, 2, 2… 

## $ Q213                       <int> 3, 1, 1, 2, 1, 3, 2, 1, 1, 1, 3, 1, 1, 1, 1… 

## $ Q214                       <int> 3, 2, 1, 3, 3, 2, 3, 1, 3, 3, 1, 1, 2, 2, 1… 

## $ Q215                       <int> 3, 1, 1, 2, 2, 3, 3, 2, 2, 1, 1, 1, 1, 2, 1… 

## $ Q216                       <int> 3, 1, 2, 2, 2, 2, 3, 3, 1, 3, 1, 3, 3, 2, 1… 

## $ Q217                       <int> 3, 1, 2, 2, 1, 3, 2, 2, 3, 1, 1, 1, 2, 1, 1… 

## $ Q218                       <int> 3, 2, 1, 3, 2, 3, 2, 1, 3, 3, 2, 1, 1, 2, 1… 

## $ Q219                       <int> 3, 2, 2, 3, 2, 3, 3, 2, 3, 3, 1, 1, 1, 2, 1… 

## $ Q220                       <int> 3, 3, 2, 3, 3, 3, 3, 3, 3, 3, 2, 3, 1, 2, 1… 

## $ Q221                       <int> 1, 1, 2, 2, 2, 4, 4, 1, 4, 4, 1, 1, 4, 1, 4… 

## $ Q222                       <int> 1, 1, 2, 2, 2, 4, 4, 1, 4, 4, 1, 1, 4, 1, 4… 

## $ Q223                       <int> 20001, 20001, 20001, 2, 20005, -2, 2, -2, 2… 

## $ Q223_ABREV                 <int> 20001, 20001, 20001, 2, 20005, -2, 2, -2, 2… 
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## $ Q223_LOCAL                 <int> 20001, 20001, 20001, 2, 20005, -2, 2, -2, 2… 

## $ Q224                       <int> 3, 1, 1, 3, 2, -2, 1, 1, 1, 2, 1, 1, 2, 1, … 

## $ Q225                       <int> 4, 4, 4, 4, 4, 1, 4, 4, 3, 4, 4, 4, 1, 4, 4… 

## $ Q226                       <int> 2, 1, 2, 2, 3, 1, 1, 1, 1, 4, 2, 1, 4, 3, 3… 

## $ Q227                       <int> 3, 4, 2, 2, 3, -2, 1, 1, 4, 4, 4, 3, 2, 2, … 

## $ Q228                       <int> 1, 1, -2, 1, 2, 4, 1, 1, 2, 1, 2, 1, 2, 3, … 

## $ Q229                       <int> 2, 1, 1, 3, 2, 1, 2, 1, 3, 2, 1, 1, 4, 1, 1… 

## $ Q230                       <int> 3, 3, 2, 2, 3, -2, 1, 1, 2, 4, 4, 4, 1, 4, … 

## $ Q231                       <int> 4, 4, 4, 4, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4… 

## $ Q232                       <int> 2, 1, 4, 2, 1, 1, 1, 1, 1, 1, 2, 1, 3, 1, 1… 

## $ Q233                       <int> 3, 1, 2, 3, 2, 1, 1, 1, 2, 1, 2, 1, 4, 1, 1… 

## $ Q234                       <int> 2, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1… 

## $ Q234A                      <int> 2, 1, 4, 2, 3, 1, 4, 2, 3, 4, 1, 5, 4, 1, 5… 

## $ Q235                       <int> 4, 4, 4, 3, 3, 1, 4, 4, 4, 4, 1, 4, 4, 4, -… 

## $ Q236                       <int> 4, 4, 2, 2, 3, 1, 1, 1, 1, 1, 4, 4, 2, 2, 1… 

## $ Q237                       <int> 4, 4, 4, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 4, 4… 

## $ Q238                       <int> 2, 2, 2, 2, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1… 

## $ Q239                       <int> 3, 4, 4, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4… 

## $ Q240                       <int> 6, 5, 7, 5, 6, -2, 1, 8, 5, 5, 6, 5, 5, 5, … 

## $ Q241                       <int> 7, 9, 7, 9, 8, 1, 4, 1, 1, 1, 9, 10, 8, 1, … 

## $ Q242                       <int> 2, 7, 7, 8, 2, 1, 1, 1, 1, 1, 2, 6, 1, 1, 8… 

## $ Q243                       <int> 8, 10, 10, 8, 8, 10, 10, 10, 8, 10, 9, 10, … 

## $ Q244                       <int> 8, 6, 7, 10, 7, 10, -2, 10, 7, 6, 9, 8, 9, … 

## $ Q245                       <int> 1, 1, 4, 2, 2, 1, 1, 1, 8, 1, 2, 1, 1, 1, 1… 

## $ Q246                       <int> 7, 10, 8, 9, 8, 10, 10, 10, 1, 1, 1, 10, 10… 

## $ Q247                       <int> 7, 4, 4, 7, 6, 1, 1, 1, 5, 1, 5, 10, 6, 1, … 

## $ Q248                       <int> 7, 5, 7, 7, 8, 1, 1, -2, 5, 1, 9, 10, 8, 1,… 

## $ Q249                       <int> 6, 10, 10, 9, 7, 10, 10, 10, 8, 10, 10, 10,… 

## $ Q250                       <int> 8, 10, 10, 7, 8, 10, 7, 10, 10, 5, 10, 10, … 

## $ Q251                       <int> 8, 6, 8, 6, 8, 10, 5, 7, 6, 5, 8, 8, 5, 9, … 

## $ Q252                       <int> 8, 6, 3, 6, 7, 10, 4, 7, 5, 7, 9, 8, 1, 7, … 

## $ Q253                       <int> 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 1, 2, 1, 1… 

## $ Q254                       <int> 5, 1, 3, 5, 5, 5, 5, 1, 5, 5, 1, 2, 5, 1, 5… 

## $ Q255                       <int> 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1… 

## $ Q256                       <int> 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1… 

## $ Q257                       <int> 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1… 

## $ Q258                       <int> 1, 1, 2, 2, 2, 3, 1, 1, 1, 1, 1, 1, 1, 2, 1… 

## $ Q259                       <int> 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1… 
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## $ Q260                       <int> 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 2, 2… 

## $ Q261                       <int> 1958, 1971, 1969, 1956, 1969, 1967, 1985, 1… 

## $ Q262                       <int> 60, 47, 48, 62, 49, 51, 33, 55, 40, 38, 54,… 

## $ X003R                      <int> 5, 4, 4, 5, 4, 4, 2, 5, 3, 3, 4, 3, 3, 4, 3… 

## $ X003R2                     <int> 3, 2, 2, 3, 2, 3, 2, 3, 2, 2, 3, 2, 2, 3, 2… 

## $ Q263                       <int> 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2… 

## $ Q264                       <int> 2, 2, 2, 2, 2, -3, -3, 2, 2, 2, 2, 2, 2, 1,… 

## $ V002                       <int> 0, 0, 0, 0, 0, -3, -3, 0, 0, 0, 0, 0, 0, 1,… 

## $ Q265                       <int> 2, 2, 2, 2, 2, -3, -3, 2, 2, 2, 2, 2, 2, 2,… 

## $ V001                       <int> 0, 0, 0, 0, 0, -3, -3, 0, 0, 0, 0, 0, 0, 0,… 

## $ Q266                       <int> 724, 20, 724, 724, 724, 724, 620, 724, 620,… 

## $ X002_02B                   <chr> "ES", "AD", "ES", "ES", "ES", "ES", "PT", "… 

## $ Q267                       <int> 724, 724, 724, 724, 724, 724, 620, 724, 620… 

## $ V002A_01                   <chr> "ES", "ES", "ES", "ES", "ES", "ES", "PT", "… 

## $ Q268                       <int> 724, 724, 724, 724, 724, 724, 620, 724, 620… 

## $ V001A_01                   <chr> "ES", "ES", "ES", "ES", "ES", "ES", "PT", "… 

## $ Q269                       <int> 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2… 

## $ Q270                       <int> 2, 4, 2, 2, 2, 4, 2, 1, 1, 3, 2, 4, 3, 4, 3… 

## $ Q271                       <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1… 

## $ Q272                       <int> 1270, 1270, 810, 1270, 1270, 1270, 3530, 81… 

## $ Q273                       <int> 1, 2, 4, 2, 2, 1, 1, 5, 6, 2, 1, 1, 2, 1, 4… 

## $ Q274                       <int> 2, 0, 0, 1, 0, 3, 1, 2, 0, 1, 1, 2, 1, 2, 3… 

## $ Q275                       <int> 3, 7, 7, 2, 2, 1, 1, 4, 1, 5, 3, 7, 1, 6, 1… 

## $ Q275A                      <int> 20003, 20007, 20007, 20002, 20002, 20001, 2… 

## $ Q275R                      <int> 2, 3, 3, 1, 1, 1, 1, 2, 1, 3, 2, 3, 1, 3, 1… 

## $ Q276                       <int> 3, 6, -3, 2, 2, 1, 1, -3, -3, 3, 1, 7, 1, 6… 

## $ Q276A                      <int> 20003, 20006, -3, 20002, 20002, 20001, 2000… 

## $ Q276R                      <int> 2, 3, -3, 1, 1, 1, 1, -3, -3, 2, 1, 3, 1, 3… 

## $ Q277                       <int> 3, 3, 5, 1, 1, 1, 0, 1, -2, 1, 1, 6, 1, 6, … 

## $ Q277A                      <int> 20003, 20003, 20005, 20001, 20001, 20001, 2… 

## $ Q277R                      <int> 2, 2, 3, 1, 1, 1, 1, 1, -2, 1, 1, 3, 1, 3, … 

## $ Q278                       <int> 3, 3, 6, 1, 1, 1, 0, 1, -2, 1, 1, 6, 1, 1, … 

## $ Q278A                      <int> 20003, 20003, 20006, 20001, 20001, 20001, 2… 

## $ Q278R                      <int> 2, 2, 3, 1, 1, 1, 1, 1, -2, 1, 1, 3, 1, 1, … 

## $ Q279                       <int> 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 7, 7, 1, 1, 1… 

## $ Q280                       <int> 1, 1, -3, 1, 1, 1, 1, -3, -3, 1, 1, 1, 1, 1… 

## $ Q281                       <int> 4, 1, 5, 4, 4, 8, 8, 4, 4, 4, 7, 5, 5, 1, 4… 

## $ Q282                       <int> 7, 3, -3, 6, 5, 6, 7, -3, -3, 6, 5, 1, 5, 1… 
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## $ Q283                       <int> 9, 4, 5, 9, 8, 7, 7, 5, 7, 5, 5, 1, 5, 7, 7… 

## $ Q284                       <int> 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2… 

## $ Q285                       <int> 2, 1, 1, 2, 1, 2, 2, 1, 1, -2, 2, 2, 2, 2, … 

## $ Q286                       <int> 3, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1… 

## $ Q287                       <int> 3, 2, 3, 4, 4, 4, 4, 2, 4, 3, 3, 2, 4, 2, 4… 

## $ Q288                       <int> 5, 9, 5, 4, 4, 5, 2, -2, 4, 6, 4, 10, 5, 5,… 

## $ Q288R                      <int> 2, 3, 2, 2, 2, 2, 1, -2, 2, 2, 2, 3, 2, 2, … 

## $ Q289                       <int> 1, 1, 1, 0, 0, 1, 1, 1, 0, 1, 2, 1, 1, 1, 1… 

## $ Q289CS9                    <int> 10100000, 10100000, 10100000, 100000020, 10… 

## $ Q290                       <int> 20001, 20001, 20001, 20001, 20001, 20001, 2… 

## $ Q291G1                     <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q291G2                     <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q291G3                     <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q291G4                     <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q291G5                     <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q291G6                     <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q291P1                     <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q291P2                     <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q291P3                     <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q291P4                     <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q291P5                     <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q291P6                     <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q291UN1                    <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q291UN2                    <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q291UN3                    <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q291UN4                    <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q291UN5                    <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q291UN6                    <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q292A                      <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q292B                      <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q292C                      <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q292D                      <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q292E                      <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q292F                      <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q292G                      <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q292H                      <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q292I                      <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q292J                      <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 
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## $ Q292K                      <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q292L                      <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q292M                      <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q292N                      <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q292O                      <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q293                       <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q294A                      <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Q294B                      <int> -4, -4, -4, -4, -4, -4, -4, -4, -4, -4, -4,… 

## $ Y001                       <int> 1, 2, 4, 3, 2, 2, 4, 3, 3, 4, 4, 5, 4, 3, 1… 

## $ Y002                       <int> 1, 3, 2, 2, 1, 2, 3, 3, 3, 2, 3, 3, 3, 2, 1… 

## $ Y003                       <int> 0, -1, 2, 0, 1, 0, 0, -1, 1, 1, 2, 0, 2, 1,… 

## $ sacsecval                  <dbl> 0.287062, 0.467525, 0.425304, 0.556170, 0.4… 

## $ resemaval                  <dbl> 0.413241, 0.519722, 0.692917, 0.481065, 0.4… 

## $ I_AUTHORITY                <dbl> 0.0, 0.0, 0.0, 0.5, 0.5, 0.0, 0.0, 0.5, 0.5… 

## $ I_NATIONALISM              <dbl> NA, 0.00, 0.66, NA, NA, NA, NA, 0.00, NA, N… 

## $ I_DEVOUT                   <dbl> 0.66, 0.66, 0.66, 0.66, 0.66, 0.00, 0.00, 0… 

## $ defiance                   <dbl> 0.382580, 0.220000, 0.440000, 0.574580, 0.5… 

## $ I_RELIGIMP                 <dbl> 1.00, 1.00, 0.66, 1.00, 0.66, 0.66, 0.33, 0… 

## $ I_RELIGBEL                 <int> 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0… 

## $ I_RELIGPRAC                <dbl> 1.000000, 1.000000, 1.000000, 1.000000, 1.0… 

## $ disbelief                  <dbl> 0.666667, 1.000000, 0.886667, 1.000000, 0.8… 

## $ I_NORM1                    <int> 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0… 

## $ I_NORM2                    <int> 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0… 

## $ I_NORM3                    <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0… 

## $ relativism                 <dbl> 0.000000, 0.000000, 0.000000, 0.000000, 0.0… 

## $ I_TRUSTARMY                <dbl> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA,… 

## $ I_TRUSTPOLICE              <dbl> 0.00, 0.66, 0.33, 0.66, 0.33, 0.00, 0.00, 0… 

## $ I_TRUSTCOURTS              <dbl> 0.00, 0.66, 0.33, 0.66, 0.33, 0.00, 1.00, 0… 

## $ scepticism                 <dbl> 0.09900, 0.65010, 0.37455, 0.65010, 0.37455… 

## $ I_INDEP                    <int> 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1… 

## $ I_IMAGIN                   <int> 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 0… 

## $ I_NONOBED                  <int> 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1… 

## $ autonomy                   <dbl> 0.666667, 0.000000, 1.000000, 0.000000, 0.3… 

## $ I_WOMJOB                   <dbl> 0.75, 0.75, 0.75, 0.75, 0.75, 1.00, 1.00, 1… 

## $ I_WOMPOL                   <dbl> 0.66, 0.66, 0.66, 1.00, 0.66, 0.33, 1.00, 1… 

## $ I_WOMEDU                   <dbl> 0.66, 0.66, 0.66, 1.00, 0.66, 1.00, 1.00, 1… 

## $ equality                   <dbl> 0.690000, 0.690000, 0.690000, 0.916667, 0.6… 

## $ I_HOMOLIB                  <dbl> 0.333333, 0.888889, 1.000000, 0.555556, 0.7… 
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## $ I_ABORTLIB                 <dbl> 0.111111, 0.888889, 0.444444, 0.333333, 0.4… 

## $ I_DIVORLIB                 <dbl> 0.444444, 0.888889, 0.555556, 0.888889, 0.6… 

## $ choice                     <dbl> 0.296296, 0.888889, 0.666667, 0.592593, 0.6… 

## $ I_VOICE1                   <dbl> 0.00, 1.00, 0.33, 0.33, 0.00, 0.66, 1.00, 1… 

## $ I_VOICE2                   <dbl> 0.0, 0.0, 0.5, 0.5, 0.5, 0.0, 0.5, 0.5, 0.5… 

## $ I_VOI2_00                  <dbl> 0.000, 0.500, 0.415, 0.415, 0.250, 0.330, 0… 

## $ voice                      <dbl> 0.000, 0.500, 0.415, 0.415, 0.250, 0.330, 0… 

## $ secvalwgt                  <dbl> 0.830, 0.915, 0.915, 0.830, 0.830, 0.830, 0… 

## $ resemavalwgt               <dbl> 1.000, 1.000, 1.000, 1.000, 1.000, 1.000, 1… 

## $ fhregion                   <int> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4… 

## $ polregfh                   <int> 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3… 

## $ freestfh                   <int> 94, 94, 94, 94, 94, 94, 94, 94, 94, 94, 94,… 

## $ prfhrat                    <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1… 

## $ prfhscore                  <int> 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39,… 

## $ clfhrat                    <int> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1… 

## $ clfhscore                  <int> 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55,… 

## $ democ                      <int> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ autoc                      <int> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ polity                     <int> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ durable                    <int> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ regtype                    <int> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ ruleoflaw                  <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ corrupttransp              <int> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ electintegr                <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ btiregion                  <int> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ btistatus                  <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ btidemstatus               <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ btistate                   <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ btipolpart                 <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ btiruleoflaw               <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ btistability               <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ btiintegration             <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ btimarket                  <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ btigovindex                <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ btigoveperform             <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ btiregime                  <int> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ regionWB                   <int> 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6… 

## $ incomeWB                   <int> 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4… 
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## $ landWB                     <dbl> 470, 470, 470, 470, 470, 470, 470, 470, 470… 

## $ GDPpercap1                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0… 

## $ GDPpercap2                 <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0… 

## $ giniWB                     <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ incrichest10p              <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ popWB1990                  <int> 54509, 54509, 54509, 54509, 54509, 54509, 5… 

## $ popWB2000                  <int> 65390, 65390, 65390, 65390, 65390, 65390, 6… 

## $ popWB2019                  <int> 77142, 77142, 77142, 77142, 77142, 77142, 7… 

## $ lifeexpect                 <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ popgrowth                  <dbl> 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0.18, 0… 

## $ urbanpop                   <dbl> 87.98, 87.98, 87.98, 87.98, 87.98, 87.98, 8… 

## $ laborforce                 <int> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ deathrate                  <dbl> 4.4, 4.4, 4.4, 4.4, 4.4, 4.4, 4.4, 4.4, 4.4… 

## $ unemployfem                <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ unemploymale               <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ unemploytotal              <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ accessclfuel               <dbl> 100, 100, 100, 100, 100, 100, 100, 100, 100… 

## $ accesselectr               <dbl> 100, 100, 100, 100, 100, 100, 100, 100, 100… 

## $ renewelectr                <dbl> 86.12, 86.12, 86.12, 86.12, 86.12, 86.12, 8… 

## $ co2emis                    <dbl> 469.38, 469.38, 469.38, 469.38, 469.38, 469… 

## $ co2percap                  <dbl> 6.07, 6.07, 6.07, 6.07, 6.07, 6.07, 6.07, 6… 

## $ easeofbusiness             <int> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ militaryexp                <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ Trade                      <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ healthexp                  <dbl> 10.32, 10.32, 10.32, 10.32, 10.32, 10.32, 1… 

## $ educationexp               <dbl> 3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2, 3.2… 

## $ medageun                   <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ meanschooling              <dbl> 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 10.2, 1… 

## $ educationHDI               <dbl> 0.708, 0.708, 0.708, 0.708, 0.708, 0.708, 0… 

## $ compulseduc                <int> 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,… 

## $ gii                        <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ dgi                        <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ womenparl                  <dbl> 46.43, 46.43, 46.43, 46.43, 46.43, 46.43, 4… 

## $ hdi                        <dbl> 0.857, 0.857, 0.857, 0.857, 0.857, 0.857, 0… 

## $ incomeindexHDI             <dbl> 0.935, 0.935, 0.935, 0.935, 0.935, 0.935, 0… 

## $ humanineqiality            <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ lifeexpectHDI              <dbl> 0.951, 0.951, 0.951, 0.951, 0.951, 0.951, 0… 

## $ homiciderate               <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0… 
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## $ Refugeesorigin             <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0… 

## $ internetusers              <dbl> 91.6, 91.6, 91.6, 91.6, 91.6, 91.6, 91.6, 9… 

## $ mobphone                   <dbl> 107.3, 107.3, 107.3, 107.3, 107.3, 107.3, 1… 

## $ migrationrate              <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ schoolgpi                  <dbl> 0.96, 0.96, 0.96, 0.96, 0.96, 0.96, 0.96, 0… 

## $ femchoutsch                <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ choutsch                   <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2x_polyarchy              <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2x_libdem                 <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2x_partipdem              <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2x_delibdem               <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2x_egaldem                <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2x_freexp_altinf          <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2x_frassoc_thick          <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2xel_frefair              <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2xcl_rol                  <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2x_cspart                 <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2xeg_eqdr                 <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2excrptps                 <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2exthftps                 <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2juaccnt                  <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2cltrnslw                 <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2clacjust                 <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2clsocgrp                 <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2clacfree                 <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2clrelig                  <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2csrlgrep                 <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2mecenefm                 <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2mecenefi                 <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2mebias                   <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2pepwrses                 <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2pepwrgen                 <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2peedueq                  <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2pehealth                 <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2peapsecon                <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2peasjsoecon              <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2clgencl                  <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2peasjgen                 <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 
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## $ v2peasbgen                 <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2cafres                   <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2cafexch                  <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2x_corr                   <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2x_gender                 <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2x_gencl                  <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2x_genpp                  <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2x_rule                   <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ v2xcl_acjst                <dbl> -9999, -9999, -9999, -9999, -9999, -9999, -… 

## $ td_voiacc                  <dbl> 1.11, 1.11, 1.11, 1.11, 1.11, 1.11, 1.11, 1… 

## $ td_polstab                 <dbl> 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6, 1.6… 

## $ td_goveff                  <dbl> 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9, 1.9… 

## $ td_regqual                 <dbl> 1.23, 1.23, 1.23, 1.23, 1.23, 1.23, 1.23, 1… 

## $ td_rulelaw                 <dbl> 1.57, 1.57, 1.57, 1.57, 1.57, 1.57, 1.57, 1… 

## $ td_ctrlcorr                <dbl> 1.23, 1.23, 1.23, 1.23, 1.23, 1.23, 1.23, 1… 

## $ ID_GPS                     <int> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ ID_PartyFacts              <int> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ Partyname                  <chr> "NA", "NA", "NA", "I would not vote", "NA",… 

## $ Partyabb                   <chr> "NA", "NA", "NA", "NA", "NA", "NA", "NA", "… 

## $ cparty                     <chr> "NA", "NA", "NA", "NA", "NA", "NA", "NA", "… 

## $ cpartyabb                  <chr> "NA", "NA", "NA", "NA", "NA", "NA", "NA", "… 

## $ Type_Values                <int> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ Type_Populism              <int> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ Type_Populist_Values       <int> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ Type_Partysize_vote        <int> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ Type_Partysize_seat        <int> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ GPS_V4_Scale               <dbl> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ GPS_V6_Scale               <dbl> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ GPS_V8_Scale               <dbl> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ GPS_V9                     <dbl> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ GPS_V10                    <dbl> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ GPS_V11                    <dbl> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ GPS_V12                    <dbl> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ GPS_V13                    <dbl> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ GPS_V14                    <dbl> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ GPS_V15                    <dbl> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ GPS_V16                    <dbl> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ GPS_V17                    <dbl> -999, -999, -999, NA, -999, NA, NA, NA, -99… 
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2.1 Select 

The select() function allows you to extract specific columns by name or by using functions that match 
column names. Since our dataset contains many variables, we will select only those relevant to the tutorial 
sessions. 

         D_INTERVIEWB_COUNTRYQ47Q49Q124Q128Q152Q189Q191 

         

        1200700012031002111 

## $ WVS_LR_PartyVoter          <dbl> 5.944634, 5.944634, 5.944634, NA, 3.899767,… 

## $ WVS_LibCon_PartyVoter      <dbl> 3.908421, 3.908421, 3.908421, NA, 2.816576,… 

## $ WVS_Polmistrust_PartyVoter <dbl> 62.43421, 62.43421, 62.43421, NA, 66.96429,… 

## $ WVS_LR_MedianVoter         <dbl> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ WVS_LibCon_MedianVoter     <dbl> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ v2psbars                   <dbl> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ v2psorgs                   <dbl> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ v2psprbrch                 <dbl> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ v2psprlnks                 <dbl> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ v2psplats                  <dbl> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ v2xnp_client               <dbl> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

## $ v2xps_party                <dbl> -999, -999, -999, NA, -999, NA, NA, NA, -99… 

# Create a new dataset containing only the selected columns: 

Data <- WVS %>% 

  select(D_INTERVIEW, B_COUNTRY, Q47, Q49, Q124, Q128, Q152, Q189, Q191, Q260, Q262, 

Q273, Q275, Q288) 

Data %>% head(10) #displaying the first 10 rows 

30  |  INTRODUCTION TO TIDYVERSE AND R MARKDOWN



        220070002201910111 

        320070003201900112 

        420070004202801111 

        520070005202711111 

        6200700062011010111 

        720070007201500111 

        820070008202802111 

        920070009202800111 

        10200700102011020313 

These are the variables that we will use for the entire tutorial session. You can check the codebook to see 
what each variable refers to. 

Using - with select() allows you to exclude specific columns while keeping all others: 

Data %>% select(-D_INTERVIEW) %>% head(10) 
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  B_COUNTRY Q47 Q49 Q124 Q128 Q152 Q189 Q191 Q260 

 

1 20 3 10 0 2 1 1 1 2 

2 20 1 9 1 0 1 1 1 1 

3 20 1 9 0 0 1 1 2 1 

4 20 2 8 0 1 1 1 1 2 

5 20 2 7 1 1 1 1 1 1 

6 20 1 10 1 0 1 1 1 2 

7 20 1 5 0 0 1 1 1 2 

8 20 2 8 0 2 1 1 1 1 

9 20 2 8 0 0 1 1 1 2 

10 20 1 10 2 0 3 1 3 2 

There are additional select() arguments that allow you to filter columns based on specific patterns: 

  D_INTERVIEW 

 

1 20070001 

2 20070002 

3 20070003 

4 20070004 

5 20070005 

6 20070006 

7 20070007 

8 20070008 

9 20070009 

10 20070010 

# Select columns that start with a given string: starts_with("prefix") 

 Data %>% select(starts_with("D")) %>% head(10) 

# Select columns that end with a given string: ends_with("suffix") 

 Data %>% select(ends_with("Y")) %>% head(10) 
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  B_COUNTRY 

1 20 

2 20 

3 20 

4 20 

5 20 

6 20 

7 20 

8 20 

9 20 

10 20 

  Q260 Q262 

 

1 2 60 

2 1 47 

3 1 48 

4 2 62 

5 1 49 

6 2 51 

7 2 33 

8 1 55 

9 2 40 

10 2 38 

2.2 Rename and Arrange 

The rename() function in dplyr is used to change column names in a dataset. 

# Select columns that match a specific string or regular expression: matches("pattern") 

Data %>% select(matches(".6.")) %>% head(10) 
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  D_INTERVIEW Country Q47 Life_satisfaction Q124 Q128 Q152 Wife_Abuse 

 

1 20070001 20 3 10 0 2 1 1 

2 20070002 20 1 9 1 0 1 1 

3 20070003 20 1 9 0 0 1 1 

4 20070004 20 2 8 0 1 1 1 

5 20070005 20 2 7 1 1 1 1 

6 20070006 20 1 10 1 0 1 1 

7 20070007 20 1 5 0 0 1 1 

8 20070008 20 2 8 0 2 1 1 

9 20070009 20 2 8 0 0 1 1 

10 20070010 20 1 10 2 0 3 1 

Additionally, the arrange() function is used to sort rows in a dataset based on a specified variable. By 
default, it orders values in ascending order, placing the highest category at the bottom. To display the 
highest category first, use the desc()function to arrange values in descending order. 

# Rename columns: rename(new_name = old_name) 

Cleaned_WVS <- Data %>% 

    rename( Country = B_COUNTRY, 

            Age = Q262, 

            Sex = Q260, 

            Marital_Status = Q273, 

            Life_satisfaction = Q49, 

            EDU = Q275, 

            Income = Q288, 

            Wife_Abuse = Q189, 

            Violence_otherPPL = Q191) 

Cleaned_WVS %>% head(10) 

#Order values in ascending order 

Cleaned_WVS %>% select(Age) %>% 

  arrange(Age) %>% head(10) 
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  Age 

 

29089 -5 

29096 -5 

29097 -5 

29214 -5 

29231 -5 

29257 -5 

29258 -5 

29274 -5 

29281 -5 

29331 -5 

  Age 

 

71442 103 

61280 100 

27054 99 

39294 99 

39363 99 

39377 99 

39553 99 

39872 99 

40300 99 

40346 99 

2.3 Filter 

The filter() function extracts rows from a data frame based on specified conditions. For example, to select 
only female respondents from the WVS dataset, you can use: 

#Order values in descending order 

Cleaned_WVS %>% select(Age) %>% 

  arrange(desc(Age)) %>% head(10) 
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  Age Sex Marital_Status 

 

1 60 2 1 

4 62 2 2 

6 51 2 1 

7 33 2 1 

9 40 2 6 

10 38 2 2 

13 44 2 2 

14 53 2 1 

15 43 2 4 

18 61 2 1 

You can apply multiple conditions by separating them with commas (,): 

Cleaned_WVS %>% 

  select(Age, Sex, Marital_Status) %>% 

  filter(Sex ==2) %>% #The value for female in Sex is 2. 

  head(10) 

Cleaned_WVS %>% 

  select(Age, Sex, Marital_Status) %>% 

  filter(Sex ==2, Marital_Status ==1) %>% #The value for female in Sex is 2, the value 

for married in 

Marital_Status is 1. 

  head(10) 
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  Age Sex Marital_Status 

 

1 60 2 1 

6 51 2 1 

7 33 2 1 

14 53 2 1 

18 61 2 1 

20 51 2 1 

21 43 2 1 

27 63 2 1 

28 66 2 1 

29 48 2 1 

*Note: The equivalent code in base R: 

  Sex Marital_Status 

 

1 2 1 

6 2 1 

7 2 1 

14 2 1 

18 2 1 

20 2 1 

21 2 1 

27 2 1 

28 2 1 

29 2 1 

head(Cleaned_WVS[Cleaned_WVS$Sex == 2 & Cleaned_WVS$Marital_Status == 1, c("Sex", "Mari

tal_Status")], 10) 
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2.4 Mutate 

The mutate() function is used to add new variables to an existing data frame. For example, you can recode 
a 10-point Likert scale into a 100-point percentage scale for practice: 

  Life_satisfaction Percen_Life_satisfaction 

 

1 10 100 

2 9 88.88889 

3 9 88.88889 

4 8 77.77778 

5 7 66.66667 

6 10 100 

7 5 44.44444 

8 8 77.77778 

9 8 77.77778 

10 10 100 

You can also recode the variable Q275 (EDU) into a new variable, EDU3, which classifies respondents into 
three education levels: High, Middle, and Low. 

Cleaned_WVS %>% 

  mutate(Percen_Life_satisfaction = ((Life_satisfaction - 1) / (10 - 1)) * 100) %>% 

                                    #Simple transformation: New Score=(Old Score−Min/

Max−Min)×100 

  select(Life_satisfaction, Percen_Life_satisfaction) %>% 

  head(10) 

Cleaned_WVS %>% 

  select(EDU) %>% 

  mutate(EDU3 = if_else(EDU >= 5, "High_EDU", 

                              if_else(EDU >= 3, "Middle_EDU", 

                                      if_else(EDU >= 0, "Low_EDU", NA)))) %>% 

  head(10) 
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  EDU EDU3 

 

1 3 Middle_EDU 

2 7 High_EDU 

3 7 High_EDU 

4 2 Low_EDU 

5 2 Low_EDU 

6 1 Low_EDU 

7 1 Low_EDU 

8 4 Middle_EDU 

9 1 Low_EDU 

10 5 High_EDU 

2.5 Summarise 

The summarise() function allows you to generate summary statistics for variables in a dataset. In general, it 
enables you to apply any function to a column, as long as it returns a single value. 

*Note: summarise() and summarize() are functionally identical. They are simply alternative spellings of the 
same function in the dplyr package in R. 

We observed negative values in the results above (e.g., -5), which indicate missing data. Let’s count the 
number of negative values in each column using the summarise() function. 

Let’s treat the negative values in each column as missing values (NA). 

#Count the number of negative values in each column 

Cleaned_WVS %>% 

  summarise(across(everything(), ~ sum(. < 0, na.rm = TRUE))) #across(everything()): 

applies the 

function to all variables, ~ sum(. < 0, na.rm = TRUE) counts how many negative values 

exist in each 

 column. 

# Treat negative values as NA 

Cleaned_WVS <- Cleaned_WVS %>% 
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The negative values have been successfully removed from each variable. Let’s now check the summary 
statistics for the means of Life_satisfaction. 

avg_Life_satisfaction 

7.06213 

2.6 Grouping 

Grouping enables operations to be performed within specific subsets of data, making it particularly useful 
for summarising categorical variables. For example, to count each category within the Marital_Status 
variable, you can use the group_by() function with summarise(): 

  mutate(across(everything(), ~ if_else(. < 0, NA_real_, .))) #  Checks all columns 

(everything()). 

#Replaces values < 0 with NA_real_ (setting missing values as NA in the numeric) and 

leaves other values 

unchanged. 

#Check missing values 

colSums(is.na(Cleaned_WVS)) 

##       D_INTERVIEW           Country               Q47 Life_satisfaction 

##                 0                 0               267               520 

##              Q124              Q128              Q152        Wife_Abuse 

##              2727              2305              2557              4076 

## Violence_otherPPL               Sex               Age    Marital_Status 

##              1022                95               511               589 

##               EDU            Income 

##              1071              2961 

#Create a multiple average 

Cleaned_WVS %>% 

  summarize( avg_Life_satisfaction = mean(Life_satisfaction, na.rm = T)) 

#To count each value in the Marital_Status variable using summarize(), you can use 
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Marital_Status count percentage 

1 53819 55.357951 

2 7637 7.8553796 

3 4298 4.420901 

4 2098 2.1579922 

5 5529 5.6871014 

6 23250 23.9148323 

NA 589 0.6058424 

Marital_Status count percentage 

1 53819 55.695377 

2 7637 7.903261 

3 4298 4.447848 

4 2098 2.171146 

5 5529 5.721766 

6 23250 24.060602 

We can also group respondents by country to calculate summary statistics for each country separately, 

group_by() along with 

n(): 

Cleaned_WVS %>% 

  group_by(Marital_Status) %>% 

  summarise(count = n(), percentage = (n() / nrow(Cleaned_WVS)) * 100) 

#Count without NAs 

  Cleaned_WVS %>% 

  filter(!is.na(Marital_Status)) %>% 

  group_by(Marital_Status) %>% 

  summarise( 

    count = n(), 

    percentage = (n() / nrow(Cleaned_WVS %>% filter(!is.na(Marital_Status)))) * 100 

) 
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rather than for all respondents combined. For example, we can compare the average score on attitudes 
toward wife abuse between Australia and New Zealand. 

Country avg_Wife_Abuse 

36 1.241341 

554 1.136319 

You can also use grouping with mutate() to create new variables, as shown below: 

Cleaned_WVS %>% 

  filter(Country %in% c(36,554)) %>% #36: Australia, 554: New Zealand 

  group_by(Country) %>% 

  summarise(avg_Wife_Abuse = mean(Wife_Abuse, na.rm = T)) 

The %in% operator checks whether the values on its left (e.g., country) are present in the values 

on its right (in this case, the codes 36 and 554, which represent Australia and New Zealand). It 

returns TRUE for each element in country that matches either of these codes. 

WA <- Cleaned_WVS  %>% 

  filter(Country %in% c(36,554)) %>% 

  group_by(Country) %>% 

  mutate(avg_Wife_Abuse= mean(Wife_Abuse, na.rm = T)) %>% 

  select(D_INTERVIEW, Country, Wife_Abuse, avg_Wife_Abuse) 

  

WA %>%  head(10) 
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D_INTERVIEW Country Wife_Abuse avg_Wife_Abuse 

36070000 36 1 1.241341 

36070001 36 5 1.241341 

36070002 36 1 1.241341 

36070003 36 10 1.241341 

36070004 36 1 1.241341 

36070005 36 1 1.241341 

36070006 36 1 1.241341 

36070007 36 1 1.241341 

36070008 36 1 1.241341 

36070009 36 1 1.241341 

After grouping, the ungroup() function restores the data frame to its original state, allowing operations 
on entire columns or enabling a switch to a different grouping. Additionally, you can group by multiple 
columns simultaneously. Let’s explore a use case for ungroup() and grouping by multiple columns at once: 

VO <- Cleaned_WVS %>% 

              select(D_INTERVIEW, Country,Violence_otherPPL)  %>% 

              filter(Country %in% c(36,554)) %>% 

              group_by(Country) %>% 

              mutate(avg_Violence_otherPPL = mean(Violence_otherPPL, na.rm = T)) %>% 

              ungroup(Country) %>% 

              mutate(total_Violence_otherPPL = mean(Violence_otherPPL, na.rm = T)) 

summary(VO) 

##   D_INTERVIEW           Country      Violence_otherPPL avg_Violence_otherPPL 

##  Min.   : 36070000   Min.   : 36.0   Min.   : 1.000    Min.   :1.596 

##  1st Qu.: 36070717   1st Qu.: 36.0   1st Qu.: 1.000    1st Qu.:1.596 

##  Median : 36071434   Median : 36.0   Median : 1.000    Median :1.596 

##  Mean   :226846377   Mean   :226.8   Mean   : 1.615    Mean   :1.616 

##  3rd Qu.:554070341   3rd Qu.:554.0   3rd Qu.: 1.000    3rd Qu.:1.650 

##  Max.   :554071058   Max.   :554.0   Max.   :10.000    Max.   :1.650 

##                                      NA's   :59 

##  total_Violence_otherPPL 
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Q1. How should we interpret avg_Violence_otherPPL and total_Violence_otherPPL? Why do these two variables have different mean values? 

Q2. Which country has a higher average level of violence against other people? 

Write your response here: 

2.7 Joins 

When working with multiple tables or data frames, you may need to combine them before applying other 
dplyr package functions. This process, known as joining or merging data, involves linking two datasets 
based on a shared key variable. 

Merging datasets allows you to combine data that share some common observations (rows) but contain 
different variables (columns). A key variable ensures that R correctly matches rows from one dataset to the 
corresponding rows in the other. In some cases, multiple key variables may be used for merging. 

For this exercise, we will join the WA and VO datasets. 

##  Min.   :1.615 

##  1st Qu.:1.615 

##  Median :1.615 

##  Mean   :1.615 

##  3rd Qu.:1.615 

##  Max.   :1.615 

## 

head(WA, 10) 
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D_INTERVIEW Country Wife_Abuse avg_Wife_Abuse 

36070000 36 1 1.241341 

36070001 36 5 1.241341 

36070002 36 1 1.241341 

36070003 36 10 1.241341 

36070004 36 1 1.241341 

36070005 36 1 1.241341 

36070006 36 1 1.241341 

36070007 36 1 1.241341 

36070008 36 1 1.241341 

36070009 36 1 1.241341 

D_INTERVIEW Country Violence_otherPPL avg_Violence_otherPPL 

36070000 36 10 1.595638 

36070001 36 6 1.595638 

36070002 36 1 1.595638 

36070003 36 10 1.595638 

36070004 36 3 1.595638 

36070005 36 1 1.595638 

36070006 36 1 1.595638 

36070007 36 2 1.595638 

36070008 36 1 1.595638 

36070009 36 1 1.595638 

We aim to create a dataset on attitudes toward violence in Australia and New Zealand by merging two 
datasets that share two common columns: D_Interview and Country. The D_Interview variable serves as a 
unique identifier for individuals, making it the key variable for joining the datasets. 

There are four main types of joins: inner_join(), left_join(), right_join(), and full_join(): 

• inner_join(X, Y, by = “key”): keeps only rows that match in both X and Y, discarding any non-

head(VO, 10) 
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matching rows. 
• left_join(X, Y, by = “key”): keeps all rows from X (left dataset) and only matching rows from Y 

(right dataset). Missing values appear as NA for non-matching rows in Y. 
• right_join(X, Y, by = “key”): keeps all rows from Y (right dataset) and only matching rows from X 

(left dataset). Non-matching rows in X appear as NA. 
• full_join(X, Y, by = “key”): keeps all rows from both X and Y, filling in NA where there is no match. 

Here’s a simple example of how different join functions work in dplyr. We will merge the WA and VO 
datasets using D_INTERVIEW as the key variable, demonstrating inner, left, right, and full joins: 

Data file (CSV, 3.9MB) 

Data file (CSV, 3.9MB) 

Inner <- WA %>% inner_join(VO, by = "D_INTERVIEW") 

Inner 

Left <- WA %>% left_join(VO, by = "D_INTERVIEW") 

Left 
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Data file (CSV, 3.9MB) 

Since both datasets share the same structure and observations, there is no difference across the four join 
types. To help you understand the differences in join outcomes, I have created a sample dataset for practice. 
Please refer to the appendix for details. 

Additionally, if two datasets are already in the same order and have the same number of rows, you can use 
the cbind() funtion to bind columns together, similar to how rows were combined in the previous section. 
However, it is generally safer to merge datasets by matching on a key variable, as this ensures accuracy and 
allows for merging datasets of different sizes. In this case, since the datasets are already aligned, you can use 
the cbind() function as shown below: 

Let’s export the new WVS dataset (cleaned_WVS) in a csv file called WVS that you will be able to retrieve 
in the future. 

Regarding the remaining packages, we will cover ggplot2 for data visualization in Chapter 9, and introduce 
tidyr when it becomes relevant to the content. If you are interested in exploring additional packages, you 
are encouraged to engage in self-study. 

Right<- WA %>% right_join(VO, by = "D_INTERVIEW") 

Right 

Full <- WA %>% full_join(VO, by = "D_INTERVIEW") 

Full 

cbind(WA, VO) 

## New names: 

## • `D_INTERVIEW` -> `D_INTERVIEW...1` 

## • `Country` -> `Country...2` 

## • `D_INTERVIEW` -> `D_INTERVIEW...5` 

## • `Country` -> `Country...6` 

#Export the dataset 

write.csv(Cleaned_WVS, "WVS.csv", row.names = FALSE) 
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3. R Markdown 

3.1 What is R Markdown? 

R Markdown creates a file that contains text, code, and results from the .Rmd file. It allows you to 
present code alongside output (such as graphs and tables) with explanatory text. This is particularly useful 
for assignments and reports, ensuring that your workflow and results are well-documented. R Markdown 
uses Markdown, a simple markup language for creating documents with headers, images, links, and other 
formatting elements while keeping the plain text readable. 

3.2 Download R Markdown 

To use R Markdown in RStudio, you first need to install the R Markdown package. You can do this by 
running the following commands: 

textbox shadenarrow 

3.3 Create a R Markdown Document 

To create a new R Markdown document in RStudio, follow one of these methods: 

1. Select File --> New File --> R Markdown... in 
RStudio 

install.packages("rmarkdown") 

library(rmarkdown) 
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2. Click the green circle with a plus (+) under the File tab –> R Markdown… 

Select HTML as the default output format. From now on, we’ll be working with HTML files. Once 
you open a new R Markdown document, you can specify the title, author, and date in the document’s 
YAML header at the top of the file as below. 
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When you create a new R Markdown document, it includes example content and instructions, including 
pre-written code chunks (grey boxes). Since we are creating our own script, we need to remove these default 
sections. 
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3.4 Markdown Syntax 

Since R Markdown is a document, you can adjust text size, font styles, and other formatting using regular 
Markdown syntax. Once you knit the document, the output will be formatted according to the following 
rules: 

For other formats, please visit the R Markdown website. 

3.5 Code Chucks 

Below the YAML header in an R Markdown document, you have space to write your code, explanations, 
and outputs. Code in an .Rmd file should be enclosed within three backticks (“`), also known as code 
chunks. 
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Instead of manually typing code chunks, you can use shortcuts or the RStudio toolbar to insert them 
quickly. 

1. Using keyboard shortcuts: 

• Window/Linux: Ctrl + Alt + I 
• Mac: Cmd + Option + I 

2. Using the toolbar: 

Once you open a new code chunk, you can write your R code and execute it using either the green play 
button or a keyboard shortcut (Ctrl + Enter for Window/Linux, Cmd + Enter for Mac). 

Preventing Errors in R Markdown 

To avoid common errors when running code in R Markdown, keep these 

Test <- c("R", "Markdown") 

Test 

## [1] "R"        "Markdown" 
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points in mind: 

1. Ensure all required packages are installed and loaded 

Note. After you have installed a package using the install.packages() function, you should 
comment out that line by placing a # in front of it (e.g., #install.packages("packageName")). This 
prevents the package from being reinstalled each time the document is knitted. 

2. Check variable and dataset names. 
3. Ensure variables are correctly spelled and exist in the 

dataset. 
4. Use names(dataset) to list available variables. 
5. Use the correct working directory. 

3.6 Customizing Output in R Markdown Code Chunks 

You can control how code and output appear in your R Markdown document by using chunk options 
inside the curly brackets {}. 

If you want to display only the output (e.g., a plot) without showing the actual code, use echo=FALSE: 

install.packages("ggplot2") # Install if not already installed 

library(ggplot2) # Load the package before using its functions 

{r, echo = FALSE} 

A <- c("a", "a", "b", "b") 

B <- c(5, 10, 15, 20) 

data <- data.frame(A, B) 

print(data) 

##   A  B 

## 1 a  5 

## 2 a 10 

## 3 b 15 

## 4 b 20 
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If you want to run a code chunk without displaying both the code and the output in the final .html file, use 
include=FALSE: 

When loading packages or running code in RStudio, you might encounter warning messages such as: 
“Warning: package ‘dplyr’ was built under R version 3.4.4” 

If you want to suppress warning messages in your R Markdown document, use warning=FALSE inside the 
code chunk: 

Lastly, R Markdown does not recognize objects or packages loaded in other R scripts. You must explicitly 
load all necessary packages and objects within the R Markdown document to ensure reproducibility. R 
Markdown provides various code chunk options to insert figures, tables, and format outputs effectively. 
For a detailed reference, visit the R Markdown website. 

3.7 Knitting File 

The most common formats for knitting an R Markdown document are: HTML, PDF, and Word. 

For this course, we will focus on HTML and Word formats. 

HTML is the default output format for R Markdown. You can easily knit your script by following these 
steps: 

{r, include = FALSE} 

Mean_A <- mean(data$A, na.rm  = T) 

Mean_A 

{r, warning = FALSE} 

library(dplyr) 

library(dplyr) 
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If there are no errors in the code, R Markdown will successfully knit the document, producing the output 
as shown below. 

The second option is knitting to a Word document. Unlike HTML or PDF, a Word (.docx) file allows for 
easy editing. This makes it a more flexible choice, especially for assignments. 
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The output will be generated as a Word (.docx) document as below. 

Once you complete all exercises, make sure to save your R script before closing R. 
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3. 

DESCRIPTIVE STATISTICS AND BIVARIATE 
ANALYSES 

This chapter focuses on performing basic descriptive statistics in R, 
including measures such as mean, median, mode, variance, frequency, and 
percentages. These fundamental statistics are essential for summarising 
and understanding the key characteristics of your data and form the basis 
for subsequent analysis. In this session we also introduce methods of 
bivariate analysis including the student t-test, chi-squared test, and 
correlation analysis. Bivariate analyses are used to explore the relationship 
between two variables. 

1. Basic Descriptive Statistics 

Descriptive statistics are used to summarise data and can be used to identify patterns of participant 
responses in a survey, such as the most frequently selected response or the average age of a sample. The 
primary purpose of descriptive statistics is to describe key patterns in the data and provide insights into the 
composition of the sample and the distribution of responses. 

In this section, we will cover basic concepts such as measures of central tendency and dispersion. Let’s set 
up the working directory and load the required packages. 

#Set up the working directory 

setwd("C:/Your Own Path/SOCYR") 

#Load the required packages for chapter 3 

library(dplyr) install.packages("psych") library(psych) 
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1.1 Measures of Central Tendency 

1.1.1 Mean 

The mean is the average value of a set of numbers. It is calculated by adding up all the values in a dataset 
and then dividing the sum by the total number of values. It is a widely used indicator, such as the average 
unemployment rate or crime rate in Australia. In R, it is simple to compute the mean using the mean() 
function. 

*Before calculating the mean value, it is important to understand the pipe operator %>%. The pipe 
operator from the dplyr package allows the output of one function to be passed as the input to the next, 
enabling a streamlined sequence of operations. For example, there are two ways to compute the mean: 

Let’s examine the number of Bachelor of Arts (BA) programs offered at the University of Queensland 
(UQ) across different study areas. Specifically, we will compare the average number of programs available 
in STEM (Science, Technology, Engineering, and Mathematics) fields versus Non-STEM fields. The data 
used for this analysis is sourced from the UQ website. 

mean(x) 

1. mean(data$x) 

2. data %>% mean(x) 

library(dplyr) 

# 

 # Attaching package: 'dplyr' 

The following objects are masked from 'package:stats': 

## 

## filter, lag 

## The following objects are masked from 'package:base': 

## 

## intersect, setdiff, setequal, union 

library(psych) 
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group n 

Non-STEM 6 

STEM 6 

group sum 

Non-STEM 218 

STEM 290 

# Create a UQ dataset 

UQ <- data.frame(Study.areas = c("Agriculture and animal sciences", "Architecture, design 

and urban planning", 

                                 "Arts, humanities and social science", "Business and eco

nomics", "Communication, media and experience design", "Computer science and IT", "Educa

tion", "Engineering", "Enviornment", "Health and medicine","Law", "Science and 

mathematics"), 

                                   Num.of.Programs = c(32, 9, 55, 73, 47, 48, 11, 44, 50, 

47,23,69), 

                                   group = c("STEM", "Non-STEM", "Non-STEM", "Non-STEM", 

"Non-STEM", "STEM", "Non-STEM", "STEM", "STEM", "STEM","Non-STEM", "STEM")) 

#Architecture and urban planning can fall under either STEM or non-STEM categories, 

depending on the program's focus. In this analysis, they are classified as Non-STEM. 

UQ %>% #The pipe (%>%) operator allows you to chain multiple opera

tions together. 

count(group) 

#The total number of programs of STEM fields and Non-STEM fields. 

UQ %>% 

   group_by(group) %>% 

   summarise(sum = sum(Num.of.Programs)) 

#The average number of programs of STEM fields and Non-STEM fields. 

UQ %>% 
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group mean_Num.of.Programs 

STEM 48.33333 

Non-STEM 36.33333 

The results indicate that, on average, STEM fields offer approximately 48 programs, while Non-STEM 
fields provide around 36 programs. This suggests that STEM fields have a larger number of programs 
compared to Non-STEM fields at the University of Queensland. Additionally, the arrange() function was 
used to sort rows in the dataset based on a specified variable (i.e., a column). You’ll learn more about it in 
detail in Chapter 4. 

1.1.2 Median 

The median represents the middle value of a dataset when arranged in ascending order. If the dataset 
contains: 

• an odd number of observations: the median is the exact middle value 
• an even number of observations: the median is calculated as the average of the two middle values. 

The median is often a more reliable measure of central tendency than the mean, as it is less affected by 
extreme values (outliers) or skewness. Returning to the UQ dataset, some study areas, such as ‘Architecture, 
Design, and Urban Planning’, fall significantly below their group average, while others, like ‘Science and 
Mathematics’, exceed it. These variations may distort the overall trend, making the median a more suitable 
measure than the mean in this case. 

You can use the median() function to compute the median. 

  group_by(group) %>% 

  summarise(mean_Num.of.Programs = mean(Num.of.Programs)) %>% 

  arrange(desc(mean_Num.of.Programs)) 

UQ %>% 

  group_by(group) %>% 

  summarise(median_Num.of.Programs = median(Num.of.Programs)) %>% 

  arrange(desc(median_Num.of.Programs)) 
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group median_Num.of.Programs 

STEM 47.5 

Non-STEM 35.0 

The median number of programs is 47 for STEM fields and 35 for Non-STEM fields. 

The similarity between the mean and median is due to the small dataset size, with only 12 study areas, 
making extreme variations less likely. Additionally, there are no significant outliers, as no study area has an 
exceptionally high or low number of programs that would strongly skew the mean. 

1.1.3 Mode 

The mode represents the most frequently occurring value in a dataset. Unlike the mean and median, which 
measure central tendency numerically, the mode identifies the most common value within a distribution. 
It is particularly useful for analysing categorical data, where identifying the most frequent category or 
response is more relevant than calculating an average. 

R does not have a built-in function for calculating the mode, but the table() function, which creates a 
frequency table of values can be used to check the most commonly occurring value. 

Now, let’s create a new variable, Postgrad_20Plus, which indicates whether each study area offers more 
than 20 postgraduate programs. The response is coded as “Yes” for study areas with more than 20 programs 
and “No” for those with fewer. 

UQ$Postgrad_20Plus <- c("Yes", "No", "Yes", "Yes", "No", "Yes", "No", "Yes", "Yes", 

"Yes", "No", "Yes") 

table(UQ$Postgrad_20Plus) 

## 

##  No Yes 

##   4   8 

UQ 
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Study.areas Num.of.Programs group 

Agriculture and animal sciences 32 STEM 

Architecture, design and urban planning 9 Non-STEM 

Arts, humanities and social science 55 Non-STEM 

Business and economics 73 Non-STEM 

Communication, media and experience design 47 Non-STEM 

Computer science and IT 48 STEM 

Education 11 Non-STEM 

Engineering 44 STEM 

Enviornment 50 STEM 

Health and medicine 47 STEM 

Law 23 Non-STEM 

Science and mathematics 69 STEM 

The results indicate that the mode for Postgrad_20Plus is 8, meaning that the most common response is 
“Yes.” This suggests that the majority of study areas offer more than 20 postgraduate programs. 

To calculate proportions for a categorical variable, the prop.table() function can be used. This function 
converts a frequency table into proportions. 

The output from the prop.table() function provides the proportion of each category within the variable. 
To execute these proportions as percentages, simply multiply the result by 100. 

prop.table(table(UQ$Postgrad_20Plus)) 

 

## 

##        No       Yes 

## 0.3333333 0.6666667 

prop.table(table(UQ$Postgrad_20Plus))*100 
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1.2 Measures of Dispersion 

Measures of dispersion (Range, Interquartile Range (IQR), Variance, and Standard Deviation) describe the 
spread of data points around a central value, such as the mean or median. They provide insights into how 
much the data varies (accessing the extent of variability within a dataset). To practice calculating measures 
of dispersion, we will use victimisation rates data in Australia (Victimisation rates (a), Selected personal 
crimes, 2008-09 to 2022-23). You can download it from the Australian Bureau of Statistics (ABS) website. 

Once you have downloaded the dataset, run the following script to clean the data before analysis: getwd() 

  Year Physical_assault FacetoFace_threatened_assault 

 

2 2008 3.1 3.9 

3 2009 2.9 3.1 

4 2010 2.7 3.1 

5 2011 3 3.3 

6 2012 2.7 2.8 

7 2013 2.3 2.7 

## 

##       No      Yes 

## 33.33333 66.66667 

#Load the dataset 

data <- read.csv("Victimisation rates(a), Selected personal crimes, 2008-09 to 2022-23.csv") 

# Assign the column names 

colnames(data) <- c("Year", "Physical_assault", "FacetoFace_threatened_assault", 

"Non_facetoFace_threatened_assault", "Robbery", "Sexual_assault")# Remove the irrelevant row 

data <- data[-c(1,17,18,19,20), ] 

#Extract the first four characters from the Year column 

data <- data %>% mutate(Year = substr(Year, 1, 4)) 

# Convert all crims columns to numeric (since all variables are character) 

data[, 1:ncol(data)] <- lapply(data[, 1:ncol(data)], as.numeric) 

head(data) 
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1.2.1 Range 

The range is calculated as the difference between the maximum and minimum values in a dataset: Range 
= Maximum value – Minimum value 

If you want to find the range for a specific variable, such as physical assault, you can use the following R 
code: 

If you want to calculate the range for all variables in the dataset, you can use the following R code: 

1.2.2 Inter Quartile Range (IQR) 

The interquartile range (IQR) represents the difference between the third quartile (Q3, or the 75th 
percentile) and the first quartile (Q1, or the 25th percentile): IQR = Q3 – Q1 

This measure captures the spread of the middle 50% of the data, providing a robust indicator of variability 
that is less sensitive to outliers compared to the range. 

To calculate the IQR for a specific variable, such as physical assault, in R: 

# Calculate range 

range_value <- max(data$Physical_assault) - min(data$Physical_assault) 

range_value 

## [1] 1.4 

# Compute range (max - min) for each numeric variable 

range_values <- apply(data[, 2:ncol(data)], 2, function(x) max(x) - min(x)) #This applies a function 

across all numeric columns (excluding the Year column). It calculates max - min for each column to 

get the range. 

range_values 

##                  Physical_assault     FacetoFace_threatened_assault 

##                               1.4                               1.7 

## Non_facetoFace_threatened_assault                           Robbery 

##                               0.5                               0.4 

##                    Sexual_assault 

##                               0.3 
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1.2.3 Variance and Standard Deviation 

Variance measures the average squared deviation of each data point from the mean, providing an indication 
of data spread. Standard deviation, the square root of variance, expresses this dispersion in the same unit as 
the original data, making it easier to interpret. 

To compute variance and standard deviation for a specific variable, such as physical assault: 

#One variable 

IQR_Physical_assault  <- IQR(data$Physical_assault) 

IQR_Physical_assault 

## [1] 0.5 

#All numerical variables in the dataset 

IQR_values <- apply(data[, 2:ncol(data)], 2, IQR) #Applies the IQR() function column-wise 

(2:ncol means applying it to each column starting at second column; 2, IQR means calcu

late IQR using column (2)). 

IQR_values 

##                  Physical_assault     FacetoFace_threatened_assault 

##                              0.50                              0.45 

## Non_facetoFace_threatened_assault                           Robbery 

##                              0.25                              0.10 

##                    Sexual_assault 

##                              0.10 

#One variable 

var(data$Physical_assault) 

## [1] 0.1631429 
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Instead of calculating each measure of central tendency and dispersion separately, you can use the 
summary() or describe() function to obtain key statistics in one step. 

The summary() function provides essential descriptive statistics, including the minimum, first quartile 
(Q1), median, mean, third quartile (Q3), and maximum for each numeric variable: 

The describe() function from the psych package offers a more detailed summary, including additional 
statistics such as variance, standard deviation, skewness, and kurtosis: 

sd(data$Physical_assault) 

## [1] 0.4039095 

#All numerical variables in the dataset 

dispersion <- data.frame(SD = apply(data[, 2:ncol(data)], 2, sd), 

                         Variance = apply(data[, 2:ncol(data)], 2, var) ) 

summary(data) 

##       Year      Physical_assault FacetoFace_threatened_assault 

##  Min.   :2008   Min.   :1.70     Min.   :2.20 

##  1st Qu.:2012   1st Qu.:2.20     1st Qu.:2.50 

##  Median :2015   Median :2.40     Median :2.60 

##  Mean   :2015   Mean   :2.42     Mean   :2.74 

##  3rd Qu.:2018   3rd Qu.:2.70     3rd Qu.:2.95 

##  Max.   :2022   Max.   :3.10     Max.   :3.90 

##  Non_facetoFace_threatened_assault    Robbery       Sexual_assault 

##  Min.   :0.7000                    Min.   :0.2000   Min.   :0.2000 

##  1st Qu.:0.8000                    1st Qu.:0.3000   1st Qu.:0.3000 

##  Median :1.0000                    Median :0.4000   Median :0.3000 

##  Mean   :0.9467                    Mean   :0.3667   Mean   :0.3533 

##  3rd Qu.:1.0500                    3rd Qu.:0.4000   3rd Qu.:0.4000 

##  Max.   :1.2000                    Max.   :0.6000   Max.   :0.5000 

describe(data) 
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  vars n mean sd median 

 

Year 1 15 2015 4.47213595 2015 

Physical_assault 2 15 2.42 0.40390947 2.4 

FacetoFace_threatened_assault 3 15 2.74 0.46260134 2.6 

Non_facetoFace_threatened_assault 4 15 0.9466667 0.1641718 1 

Robbery 5 15 0.3666667 0.08997354 0.4 

Sexual_assault 6 15 0.3533333 0.09154754 0.3 

2. Bivariate Analyses 

2.1 Student t-test 

A t-test is a statistical test used to compare the means of two groups to determine if the difference between 
them is statistically significant. It helps assess whether the observed differences are due to actual effects or 
just random chance. 

The basic structure of the t.test() function in R is as follow: 

t.test 

2.1.1 One-Sample T-Test 

A one-sample t-test is used to compare the mean of a sample to a known theoretical or hypothetical mean 
(μ) to determine if there is a significant difference. For example, suppose the average percentage of face-to-
face threatened assault in Australia from 2008 to 2023 is hypothetically 3, and we want to test whether the 
actual mean differs from this value. 

Before performing the one-sample t-test, you should complete preliminary test to check one-sample t-test 
assumptions. 

• Step 1: Check if the Sample Size is Large A sample is considered large if n ≥ 30 (based on a common 
rule of thumb). 

t.test(x, y, 

       alternative = c("two.sided", "less", "greater"), 

       mu = 0, paired = FALSE, var.equal = FALSE, 

       conf.level = 0.95, ...) 
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In this case, n < 30, so the sample is not large enough to rely on the central limit theorem. 

• Step 2: Check for Normality 

Since the sample size is small, we need to verify whether the data follows a normal distribution, which is a 
key assumption for the one-sample t-test. This can be done using: 

• QQ Plot (Quantile-Quantile Plot) – A graphical method to assess normality. 
• Shapiro-Wilk Test – A formal statistical test for normality. 

To visualise normality using a QQ plot: 

Based on the QQ plot, the sample appears to follow a normal distribution, with some deviations at the tails, 
particularly at the upper end. However, these deviations are not extreme, so normality can be reasonably 

qqnorm(data$FacetoFace_threatened_assault) 

qqline(data$FacetoFace_threatened_assault) 
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assumed. To confirm this assumption, we will perform the Shapiro-Wilk test, which provides a more 
precise statistical check for normality: 

Since the p-value from the Shapiro-Wilk test is greater than 0.05 (p= 0.1), we cannot reject the null 
hypothesis, which means that the data does not significantly deviate from a normal distribution. In other 
words, the assumption of normality holds, allowing us to proceed with the one-sample t-test. 

To perform a one-sample t-test, use the t.test()function as follows: 

Since the p-value of the test is 0.0471, which is less than the significance level (α = 0.05), we reject the null 

#Shapiro-Wilk normality test 

shapiro.test(data$FacetoFace_threatened_assault) 

## 

##  Shapiro-Wilk normality test 

## 

## data:  data$FacetoFace_threatened_assault 

## W = 0.90222, p-value = 0.1029 

#One Sample t-test 

t.test(data$FacetoFace_threatened_assault, mu=3) #x: a numeric vector containing your data 

 values, mu: the theoretical mean. Default is 0. 

## 

##  One Sample t-test 

## 

## data:  data$FacetoFace_threatened_assault 

## t = -2.1768, df = 14, p-value = 0.0471 

## alternative hypothesis: true mean is not equal to 3 

## 95 percent confidence interval: 

##  2.48382 2.99618 

## sample estimates: 

## mean of x 

##      2.74 
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hypothesis. This means that the mean percentage of face-to-face threatened assault is significantly different 
from 3 at a 95% confidence level. Thus, we have statistical evidence to conclude that the actual mean 
percentage of face-to-face threatened assault in Australia from 2008 to 2023 differs from the 3. 

2.1.2 Two Sample T-tests 

NOTE: There are 2 types of two-sample t-tests: 

1. Independent t-tests:  is used to compare the mean score of two different groups of 

people or conditions. For example, the mean test scores of a class graduating in 2024 

compared to a class graduating in 2025. 

2. Paired t-tests: compare the mean score of the same people across different 

measures. For example, the mean scores of the same class of students for maths 

compared to English. 

You can also compare the means of two independent groups using an independent (unpaired) t-test. 
For example, suppose face-to-face interactions decreased during the COVID-19 pandemic, potentially 
reducing the likelihood of face-to-face threatened assault encounters. To test this hypothesis, we assess 
whether the mean percentage of face-to-face threatened assaults during the pandemic differs from that 
observed in the pre-pandemic period. 

Because we are comparing two independent groups, the pre-pandemic period and the pandemic period, we 
apply an independent-samples (unpaired) t-test to determine whether their means differ statistically. 

Performing an Independent Samples t-Test in R 

First, we split the data into two groups: 

• Pre-pandemic (e.g., 2008–2019) 
• Pandemic (e.g., 2020–2023) 

#One Sample t-test 

# Add a new column indicating the Covid-19 period 

Pre_pandemic <- data %>% 

  filter(Year < 2020) %>% 

  mutate(Covid = "Pre_pandemic") 
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Year Physical_assault FacetoFace_threatened_assault 

2008 3.1 3.9 

2009 2.9 3.1 

2010 2.7 3.1 

2011 3 3.3 

2012 2.7 2.8 

2013 2.3 2.7 

2014 2.1 2.6 

2015 2.4 2.6 

2016 2.4 2.6 

2017 2.4 2.6 

2018 2.4 2.8 

2019 2.3 2.4 

2020 2 2.2 

2021 1.9 2.2 

2022 1.7 2.2 

Before performing an independent (unpaired) t-test, it is important to check whether the test assumptions 
are met. 

• Step 1: Are the Two Samples Independent? 

Yes: The samples from the two groups are independent, as they come from different time periods and are 
not related. 

• Step 2: Check for Normality 

Pandemic <- data %>% 

  filter(Year >= 2020) %>% 

  mutate(Covid = "Pandemic") 

# Combine both datasets 

covid_data <- bind_rows(Pre_pandemic, Pandemic) 

covid_data 
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Since the sample size is less than 30, we need to check whether the data follows a normal distribution using 
the Shapiro-Wilk test. The results show p < 0.05, indicating that the normality assumption is not met. 
Despite this, we will proceed with the two-sample t-test for demonstration purposes. 

• Step 3: Check for Equal Variances (Homogeneity of Variance) 

We use the F-test to test whether the two groups have equal variances. 

To test for homogeneity in variances, use the var.test() function as follows: 

The F-test result (p-value < 0.05) suggests that the variances are significantly different, meaning that the 
assumption of equal variances does not hold. Since the standard Student’s t-test assumes equal variances, 
we should instead use Welch’s t-test, which adjusts for unequal variances. 

To perform Welch’s t-test, use the t.test() function as follow: 

#F test to compare two variances 

var.test(FacetoFace_threatened_assault ~ Covid, data = covid_data) 

## 

##  F test to compare two variances 

## 

## data:  FacetoFace_threatened_assault by Covid 

## F = 0, num df = 2, denom df = 11, p-value < 2.2e-16 

## alternative hypothesis: true ratio of variances is not equal to 1 

## 95 percent confidence interval: 

##  0 0 

## sample estimates: 

## ratio of variances 

##                  0 

#Two Sample t-test 

t.test(FacetoFace_threatened_assault ~ Covid, data = covid_data) 

## 

##  Welch Two Sample t-test 
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The outcome shows a significant difference in means between the two periods (p-value < 0.05). The 
confidence interval provides a range for the true mean difference. 

*Note: 

Although the independent two-sample t-test is statistically significant, it is important to acknowledge that 
the normality assumption was not met (Shapiro-Wilk test: p < 0.05). This means that the results should 
be interpreted with caution, and a non-parametric alternative such as the Mann-Whitney U test (Wilcoxon 
rank-sum test) may be more appropriate for non-normally distributed data. 

To do this, you can use the wilcox.test() function. The structure is as follows: 

There are several other types of t-tests, including the paired two-sample t-test and the proportion t-test, 
each designed for different 
analytical scenarios. 

• Paired Two-Sample t-Test: Used when comparing two related (dependent) samples, such as pre-test 
and post-test measurements from the same individuals. 

## 

## data:  FacetoFace_threatened_assault by Covid 

## t = -5.6225, df = 11, p-value = 0.000155 

## alternative hypothesis: true difference in means between group Pandemic and group 

Pre_pandemic is not equal to 0 

## 95 percent confidence interval: 

##  -0.9392363 -0.4107637 

## sample estimates: 

##     mean in group Pandemic mean in group Pre_pandemic 

##                      2.200                      2.875 

wilcox.test(x, y = NULL, 

            alternative = c("two.sided", "less", "greater"), 

            mu = 0, paired = FALSE, exact = NULL, correct = TRUE, 

            conf.int = FALSE, conf.level = 0.95, …) 

t.test(x, y, paired = TRUE, alternative = "two.sided" 
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• Proportion t-Test: Used to compare proportions between two groups, often applied in categorical 
data analysis. For a more in-depth understanding of different t-tests in R, refer to a statistical 
textbook or relevant online resources. 

2.2 Correlations 

While means, medians, and standard deviations describe a single variable, and t-tests compare group means, 
they do not assess the strength or direction of relationships between continuous variables. Correlation 
addresses this gap by quantifying how strongly two continuous variables are associated and in what 
direction. 

2.2.1 Scatter Plots 

Correlations measure the relationship between two variables, they can be easily visualised using a 
scatterplot, where one variable is placed on the x-axis and the other on the y-axis. This graphical 
representation helps identify patterns, trends, and the strength of the association between the variables. 

To perform a scatter plot, use the plot(x, y) function as follow: 

prop.test(x, n, p = NULL, alternative = "two.sided", 

 correct = TRUE) 

#Create a scatter plot 

plot(data$FacetoFace_threatened_assault, data$Physical_assault, main = "Scatter plot", 

xlab = 

"Face-to-face_threatened_assault", ylab = "Physical_assault") 
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Q. Based on the plot outcome, describe the pattern and what it suggests about the relationship 

between x and y in the data. 

Write your response here: 

Since we have observed the graphical relationship between the two variables, we can now compute the 
correlation coefficient to quantify the strength and direction of their association. 

Correlations can be calculated using the cor() function: 

#Calculating correlation coefficients between two variables 

cor(data$FacetoFace_threatened_assault, data$Physical_assault) 
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If you want to calculate the correlation between multiple variables in a dataset, you can generate a 
correlation matrix. 

## [1] 0.9167063 

cor(data) # correlation coefficients between every pair of variables in the x dataset 

##                                         Year Physical_assault 

## Year                               1.0000000       -0.8897243 

## Physical_assault                  -0.8897243        1.0000000 

## FacetoFace_threatened_assault     -0.8838734        0.9167063 

## Non_facetoFace_threatened_assault -0.7004722        0.6743164 

## Robbery                           -0.7810788        0.8255101 

## Sexual_assault                     0.7502029       -0.7070047 

##                                   FacetoFace_threatened_assault 

## Year                                                 -0.8838734 

## Physical_assault                                      0.9167063 

## FacetoFace_threatened_assault                         1.0000000 

## Non_facetoFace_threatened_assault                     0.7260789 

## Robbery                                               0.8752265 

## Sexual_assault                                       -0.5936918 

##                                   Non_facetoFace_threatened_assault    Robbery 

## Year                                                     -0.7004722 -0.7810788 

## Physical_assault                                          0.6743164  0.8255101 

## FacetoFace_threatened_assault                             0.7260789  0.8752265 

## Non_facetoFace_threatened_assault                         1.0000000  0.6931158 

## Robbery                                                   0.6931158  1.0000000 

## Sexual_assault                                           -0.6526836 -0.4624973 

##                                   Sexual_assault 

## Year                                   0.7502029 

## Physical_assault                      -0.7070047 

## FacetoFace_threatened_assault         -0.5936918 

## Non_facetoFace_threatened_assault     -0.6526836 

## Robbery                               -0.4624973 

## Sexual_assault                         1.0000000 
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Q. Based on the results, describe what each correlation coefficient indicates. 

Write your response here: 

One caveat of using the cor() function is that if a variable contains missing values, the default behaviour is 
to return NA. To avoid this, you can use pairwise Pairwise deletion ignores missing values on a per-variable 
basis, meaning it does not remove entire rows but instead uses all available data for each pair of variables. 

cor(data, use = "pairwise.complete.obs") 

##                                         Year Physical_assault 

## Year                               1.0000000       -0.8897243 

## Physical_assault                  -0.8897243        1.0000000 

## FacetoFace_threatened_assault     -0.8838734        0.9167063 

## Non_facetoFace_threatened_assault -0.7004722        0.6743164 

## Robbery                           -0.7810788        0.8255101 

## Sexual_assault                     0.7502029       -0.7070047 

##                                   FacetoFace_threatened_assault 

## Year                                                 -0.8838734 

## Physical_assault                                      0.9167063 

## FacetoFace_threatened_assault                         1.0000000 

## Non_facetoFace_threatened_assault                     0.7260789 

## Robbery                                               0.8752265 

## Sexual_assault                                       -0.5936918 

##                                   Non_facetoFace_threatened_assault    Robbery 

## Year                                                     -0.7004722 -0.7810788 

## Physical_assault                                          0.6743164  0.8255101 

## FacetoFace_threatened_assault                             0.7260789  0.8752265 

## Non_facetoFace_threatened_assault                         1.0000000  0.6931158 

## Robbery                                                   0.6931158  1.0000000 

## Sexual_assault                                           -0.6526836 -0.4624973 

##                                   Sexual_assault 

## Year                                   0.7502029 
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To test whether the correlation between two variables is statistically significant in R, use the cor.test() 
function. This function provides both the correlation coefficient and a p-value to determine statistical 
significance. 

Hypotheses for Correlation Test 

• Null Hypothesis (H₀): The correlation coefficient between the two variables is 0, meaning there is no 
relationship between them. 

• Alternative Hypothesis (H₁): The correlation coefficient is not 0, indicating that a statistically 
significant relationship exists between the two variables. 

Since the p-value is smaller than 0.05, we reject the null hypothesis, indicating that the true correlation is 
not zero, and the two variables have a statistically significant relationship. 

Another way to analyse correlations is by using a correlogram, which provides a graphical representation 
of a correlation matrix. In R, this can be done using the corrplot package. 

## Physical_assault                      -0.7070047 

## FacetoFace_threatened_assault         -0.5936918 

## Non_facetoFace_threatened_assault     -0.6526836 

## Robbery                               -0.4624 

cor.test(data$Physical_assault, data$Robbery, use = "pairwise.complete.obs") 

## 

##  Pearson's product-moment correlation 

## 

## data:  data$Physical_assault and data$Robbery 

## t = 5.2737, df = 13, p-value = 0.0001506 

## alternative hypothesis: true correlation is not equal to 0 

## 95 percent confidence interval: 

##  0.542775 0.940188 

## sample estimates: 

##       cor 

## 0.8255101 
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2.3 Cross-tabulation and Chi-squared Test 

So far, we have explored bivariate analyses for continuous variables using correlation. Now, we turn 
to bivariate analyses for categorical variables. The Chi-Square Test of Independence is used to analyse 
frequency tables (contingency tables) that summarise the relationship between two categorical variables. 
This test determines whether there is a statistically significant association between the categories of the two 
variables. 

In this example, we created a fictional dataset by categorising physical assault levels based on the mean value 

#install.packages("corrplot")  # Install if not already installed 

library(corrplot) 

# Compute correlation matrix 

cor_matrix <- cor(data, use = "pairwise.complete.obs") 

corrplot(cor_matrix, method = "circle", tl.cex = 0.7, tl.srt = 45) 

# Adjust text size & Rotate labels 
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(2.42). Cases above the mean were labelled as “High,” while the rest were labelled as “Low.” To address the 
low number of observations, I randomly increased the total to 50. 

Before performing the Chi-Square Test, it is helpful to first create a contingency table, which summarises 
the frequency distribution of two categorical variables (Pandemic and Physical assault level). 

The simplest way to create a contingency table in R is by using the 
table() function: 

You can also use the addmargins() function to include row and column totals in a contingency table. This 
helps provide a clearer summary of the frequency distribution across categories. 

If you want proportions instead of row counts or column counts: 

# Create contingency table 

chi2_table <- matrix(c(20, 10, 10, 10), nrow = 2, byrow = TRUE, 

                     dimnames = list(c("Pre-pandemic", "Pandemic"), 

                                     c("High_Physical_Assualt", "Low_Physical_Assualt"))) 

chi2_table 

##              High_Physical_Assualt Low_Physical_Assualt 

## Pre-pandemic                    20                   10 

## Pandemic                        10                   10 

addmargins(chi2_table) 

##              High_Physical_Assualt Low_Physical_Assualt Sum 

## Pre-pandemic                    20                   10  30 

## Pandemic                        10                   10  20 

## Sum                             30                   20  50 

prop.table(chi2_table, margin = 1) #row-wise 
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The Chi-square test examines whether physical assault level and pandemic period are statistically 
significantly associated in the contingency table and can be used to “test” hypotheses. 

• Null hypothesis (H0): Physical assault level is independent of the pandemic period. 
• Alternative hypothesis (H1): Physical assault level is associated with the pandemic period. 

The chi-square statistic can be computed using the function the chisq.test() as follow: 

Important! Before finishing this session, let’s save the new Victim_rate dataset so that it can be retrieved 
for future analyses. 

The p-value (0.3768) is greater than the conventional alpha level of 0.05. Therefore, we cannot reject the 

##              High_Physical_Assualt Low_Physical_Assualt 

## Pre-pandemic             0.6666667            0.3333333 

## Pandemic                 0.5000000            0.5000000 

prop.table(chi2_table, margin = 2) #column-wise 

##              High_Physical_Assualt Low_Physical_Assualt 

## Pre-pandemic             0.6666667                  0.5 

## Pandemic                 0.3333333                  0.5 

chisq.test(chi2_table) 

## 

##  Pearson's Chi-squared test with Yates' continuity correction 

## 

## data:  chi2_table 

## X-squared = 0.78125, df = 1, p-value = 0.3768 

#Export the dataset 

write.csv(data, "Victim_rate.csv", row.names = FALSE) 
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null hypothesis. This means there is no statistically significant association between the pandemic period 
and the level of physical assault in this sample. 

Before closing R, be sure to save your script. 
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4. 

DATA HANDLING AND BASIC DATA 
STRUCTURES 

The aim of this chapter is to introduce essential data management skills in 
R, including setting up a working directory, importing and exporting data. 
You will learn about different data types in R, such as character, factor, 
double, integer, and logical, and how these types influence data analysis. 
Additionally, the chapter will cover fundamental data structures, including 
atomic vectors, matrices, and data frames. Finally, you will practice 
renaming column names, recoding values, and handling missing data to 
ensure data quality and consistency. 

1. Importing and Saving Data 

Let’s open new script for chapter 2. Go to File -> New File -> R Script (Ctrl + Shift + N). 

You can also simply click the icon (a green circle with a plus sign inside it) and select R Script. 
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1.1 Setting up the Working Directory 

When you open R, it connects to a folder on your computer known as the ‘working directory’. This is the 
default location where R looks for files (e.g., Dataset, Rscripts) when you attempt to import them. It is also 
where R saves or exports files. Since the default working directory varies depending on your computer, it is 
important to check its current location before working with files. You can determine the current working 
directory by executing the following command: 

This code will return the path of the current working directory as above, if you need to change the working 
directory to a specific folder where your data and scripts are stored, you can use the setwd() function: 

Make sure to replace “C:/ Your folder path” or “/ Your folder path” with the actual path to your folder. It is 
highly recommended to create a SOCYR folder on your computer to store all files and scripts. For example, 
you can set your working directory as below: 

getwd() #You can check the location of your current working directory. 

setwd ("C:/Your folder path") # For Windows 

setwd ("/Your folder path") # For MacOS 

setwd("C:/Your folder path/SOCYR") # For Windows 

setwd("/Your folder path/SOCYR") # For MacOS 
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*The setwd() function has a limitation when used in R Markdown—it only sets the working directory 
temporarily within the specific chunk where it is called. R Markdown resets the working directory after 
each chunk finishes running, so the change does not persist across chunks. Therefore, if you’re using R 
Markdown, you should use the code below to set the working directory for all chunks: 

1.2 Importing Data 

Once you have set up your working directory, the next step is to import data into R. The import method 
depends on the file format. In this section, we will practice importing two of the most commonly used file 
types: CSV (.csv) and Excel (.xlsx) using the Sample dataset. 

1.2.1 Importing a CSV File 

You can import a CSV file using the read.csv() function from base R or read_csv() function from the readr 
package. 

1.2.2 Importing an Excel File 

Excel files (.xlsx) require external packages for importing. The readxl package is commonly used for this 
purpose. 

knitr::opts_knit$set(root.dir = "C:/Your folder path/SOCYR") 

#Install and load the readr package 

install.packages("readr") 

library(readr) 

#Using base R 

Data <- read.csv("C:/the file path/Sample.csv") 

#Using readr package (faster and more efficient) 

Data <- read_csv("C:/the file path/Sample.csv") 

#Install and load the readxl package 

install.packages("readxl") 

library(readxl) 
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1.3 Exporting Data 

Just as we can import data into R, we can also export datasets to external formats such as CSV or Excel files. 
Exporting data is useful when you modified the original dataset and want to save the updated version for 
future use or share it with others. 

1.3.1 Exporting a CSV File 

To save a dataset as a CSV file, use the write.csv() function in base R or write_csv() function from the readr 
package. 

1.3.2 Exporting an Excel File 

To save data as an Excel file, you can use the writexl package: 

There are various options available when importing and exporting datasets in R. Visit R Data Import/
Export for more details if you need to customise the process, such as specifying header, encoding, or 
column formats. 

REMEMBER. R is case sensitive. So, when you label a data file, object or value you must be accurate with 
the use of capital and lowercase. 

#Import an Excel file 

Data <- read_excel("C:/the file path/WVS.xlsx") 

#If you are using Excel 2003 or earlier, use .xls instead of .xlsx 

#Using base R 

write.csv(Data, "NewSample.csv", row.names = FALSE) #Do not include row names when saving the data 

# Using readr package (does not include row names by default) 

write.csv(Data, "NewSample.csv") 

#Install and load the writexl package 

#install.packages("writexl") 

library(writexl) 

#Export data to an Excel file 

write_xlsx(Data, "NewSample.xlsx") #If you are using Excel 2003 or earlier, use .xls instead of .xlsx 
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2. Data Types 

You may be familiar with data types such as: Nominal (categorical data without order), Ordinal (categorical 
data with order), and Quantitative/Continuous data (numeric data). 

In R, the data types are defined slightly differently: 

• Character / : Represents text or string data, such as “Australia”, “R programming”, or “123” (when 
stored as text). 

• Factor / : Represents categorical data with a fixed set of unordered categories, such as hair colour: 
“Black”, “Blonde”, “Brown”, and “White”. 

• Ordered / : Represents categorical data with a fixed set of ordered categories, such as income range: 
“Low” < “Medium” < “High”. 

• Double / : Represents numeric values with decimal points (floating-point numbers), such as 3.14 or 
172.5. 

• Integer / : Represents whole numbers, such as 1, 42, or -7. In R, integers are explicitly indicated 
with an L suffix (e.g., 42L). 

• Logical / : Represents Boolean values, such as TRUE or FALSE. 

Visit Column types for a more detailed list of data types. 

Now, we can explore our dataset to understand how each variable is classified. To view all variables along 
with their data types, use the glimpse() function from the dplyr package. This function provides a compact, 
easy-to-read summary of the dataset, making it useful for quickly browsing variable types and structures. 

For this exercise, I’ve created a fictional dataset (chapter2_Data) for practice. Let’s take a look at the 
variables it contains and examine their data types using the glimpse() function: 

install.packages("dplyr") #If not previously downloaded 

library(dplyr) 

chapter2_Data <- read.csv("C:/Your folder path/SOCYR/chapter2_Data.csv") 

## 

## Attaching package: 'dplyr' 

## The following objects are masked from 'package:stats': 

## 

##     filter, lag 
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If any variables are misclassified, you can adjust their data type accordingly to ensure accurate analysis. For 
example, factors are specifically designed for categorical data, whereas character variables are simply treated 
as text. Using factors instead of characters improves data handling, statistical summaries, and visualisation. 

For example, in our dataset, the Sex variable is currently defined as a character (chr), even though it 
represents categorical data. Since categorical variables are better handled as factors (fct), we can convert it 
using the as.factor() function: 

There may be cases where you need to convert data into formats other than character (chr) to factor (fct). 
Just like as.factor(), R provides several functions to transform variables into the appropriate format: 

• as.integer() – converts values into integers (whole numbers). Note that this function does not round; 
instead, it truncates decimals (e.g., 5.9 and 5.2 would both become 5). 

## The following objects are masked from 'package:base': 

## 

##     intersect, setdiff, setequal, union 

glimpse(chapter2_Data) 

## Rows: 30 

## Columns: 6 

## $ ID            <chr> "ID001", "ID002", "ID003", "ID004", "ID005", "ID006", "I… 

## $ Sex           <chr> "Male", "Male", "Male", "Male", "Female", "Male", "Femal… 

## $ Income        <int> 60000, 105000, 45000, 85000, 80000, 105000, 55000, 65000… 

## $ Health_Status <chr> "Poor", "Poor", "Very Good", "Poor", "Fair", "Fair", "Go… 

## $ Region        <chr> "Fortitude Valley", "South Brisbane", "Paddington", "New… 

## $ Age           <int> 22, 38, 18, 43, 21, 51, 37, 65, 30, 40, 54, 34, 34, 48, … 

# Convert the Sex variable to a factor 

chapter2_Data$Sex <- as.factor(chapter2_Data$Sex) 

# Check the updated structure 

str(chapter2_Data$Sex) 

## Factor w/ 2 levels "Female","Male": 2 2 2 2 1 2 1 2 1 2 ... 
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• as.numeric() – converts values into numeric format, retaining decimal places when present (e.g., 5.9 
remains 5.9). 

• as.character() – converts values into strings, even if they contain numbers. If you use the readr 
package to import data, you may not need this function often, as readr automatically imports 
unknown data types as chr by default. 

Additionally, the output above displays the name of each column/variable following the $ symbol, such as 
Country. The $ operator is used to access specific variables within a dataset. 

For example, to inspect only the Sex variable, you can use the following command: 

Now that the dataset has been revised, we can export the updated version using both the write_xlsx and 
write.csv() functions. After exporting the files, be sure to check your folder to confirm that they have been 
saved successfully. 

3. Atomic Vectors 

Vectors are the most basic data structure in R, with atomic vectors being the simplest form. An atomic 
vector consists of a sequence of elements of the same type. R provides six fundamental types of atomic 
vectors: doubles, integers, characters, logicals, complex, and raw. Each atomic vector can hold only a single 
data type, ensuring consistency within the vector. 

You can create vectors by combining values using the c() function. To check whether an object is an atomic 
vector, you can use the is.vector() function, which returns TRUE if it is and FALSE otherwise. 

For example: 

chapter2_Data$Sex 

##  [1] Male   Male   Male   Male   Female Male   Female Male   Female Male 

## [11] Male   Male   Male   Male   Male   Male   Female Male   Male   Male 

## [21] Female Male   Male   Female Male   Female Female Male   Female Female 

## Levels: Female Male 

write.csv(chapter2_Data, "Chapter2_Data.csv", row.names = FALSE) 

write_xlsx(chapter2_Data, "Chapter2_Data.xlsx") 
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3.1. Doubles 

A double vector is the most common type of numeric vector in R, storing regular numbers that can be 
positive or negative, large or small, and may or may not include decimal places. By default, R treats any 
number you enter as a double. 

For example, when you create a vector of ages: 

To determine the underlying data type of an object in R, use the typeof() function: 

Height <- c(180, 170, 165, 160, 173, 185) 

Height 

## [1] 180 170 165 160 173 185 

#Checking the length of an atomic vector 

length(Height) 

## [1] 6 

#Testing an atomic vector 

is.vector(Height) 

## [1] TRUE 

Age <- c(18, 19, 20, 22, 24, 29) 

Age 

## [1] 18 19 20 22 24 29 

typeof(Age) 
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In R, double vectors are often referred to as “numeric” vectors, and many R functions use the term 
“numeric” instead of “double.” While “double” is a technical term in computer science—indicating the 
number of bytes allocated for storing a number—the term “numeric” is more intuitive for data analysis and 
everyday use in R. 

3.2 Integers 

Integer vectors store whole numbers, meaning values that do not have a decimal component. However, in 
most cases, you will not need to use the integer type explicitly, as R automatically treats numbers as double 
by default. This is because doubles can store both whole numbers and decimals, providing greater flexibility 
for calculations. 

If you specifically need to store a number as an integer, you can use the L suffix: 

In R, a number is not stored as an integer unless you explicitly indicate it using the L suffix. Without L, R 
automatically saves numbers as doubles, even if they appear to be whole numbers. For example, the only 
difference between 4 and 4L is how R manages them in memory. 

## [1] "double" 

int <- c(-3L, 6L, 9L) 

int 

## [1] -3 6 9 

typeof(int) 

## [1] "integer" 

x1 <- 4   # Stored as a double 

x2 <- 4L  # Stored as an integer 

typeof(x1) 
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Why would you save your data as an integer instead of a double? 

Since doubles can store both whole numbers and decimals, R defaults to using them for flexibility. 
However, specifying integers with L can be useful in specific cases, such as optimising memory usage in 
large datasets or ensuring compatibility with functions that require integer inputs. 

3.3 Characters 

A character vector is used to store text data, including single characters, words, or entire sentences. To create 
a character vector, enclose each text element in double (” “) quotes: 

## [1] "double" 

typeof(x2) 

## [1] "integer" 

text <- c("Welcome", "to", "SOCY") 

text 

## [1] "Welcome" "to" "SOCY" 

typeof("Welcome") 

## [1] “character” 

typeof("to") 

## [1] "character" 

typeof("SOCY") 
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Each element within a character vector is called a string. A string is simply a sequence of characters, which 
can include not only letters but also numbers, symbols, and spaces. 

Quiz. Can you tell the difference between a character string and a number? 

Take a look at the following values: 

25, “25”, “twenty-five” 

Which of these are character strings, and which are numbers? 

Write your response here: 

3.4 Logical 

Logical vectors store TRUE and FALSE values, which represent Boolean data. These are especially useful 
for performing comparisons and making decisions in your code. 

## [1] "character" 

8 > 2 

## [1] TRUE 

typeof(8>2) 

## [1] "logical" 

"Male" == "Female" 

DATA HANDLING AND BASIC DATA STRUCTURES  |  93



R also supports two additional types: complex and raw, which are rarely needed for data analysis. If you’re 
interested in exploring these further, you can refer to R’s documentation or experiment with them on your 
own. 

4. Matrices 

A matrix is a two-dimensional data structure where all elements must be of the same type—numeric, 
character, or logical. Unlike data frames, which can hold multiple data types in different columns, matrices 
maintain a consistent type across all elements. 

You can create a matrix using the matrix() function: 

By default, the matrix() function fills the matrix column-wise. However, you can change this to row-wise 
by setting the argument byrow = TRUE: 

## [1] FALSE 

typeof("Male" == "Female") 

## [1] "logical" 

matrix <- matrix(Age, nrow = 2) 

matrix 

##      [,1] [,2] [,3] 

## [1,]   18   20   24 

## [2,]   19   22   29 

matrix_byrow <- matrix(Age, nrow = 2, byrow = TRUE) 

matrix_byrow 

##      [,1] [,2] [,3] 

## [1,]   18   19   20 

## [2,]   22   24   29 
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The matrix() function includes several default arguments that allow you to customize the matrix. To 
explore these options, you can check the help page by running ? matrix in R. 

5. Lists 

Lists are similar to atomic vectors in that they organise data into a one-dimensional structure. However, 
lists can contain a mix of R objects, including atomic vectors, matrices, data frames, and other lists. For 
example, you can create a list where the first element is a numeric vector of starting at 10 and ending at 30 
(length 20), and the second element is a character vector of length 3. 

To do this, use the list() function: 

Double brackets [[ ]] indicate an entire element within a list, while single brackets [ ] specify a sub-element 
within that element. For example, in a list where the first element is the entire numeric vector, 10 would 
be its first sub-element. Similarly, if the second element is the full character vector, “Welcome” would be its 
first sub-element. 

6. Data Frames 

Data frames are a two-dimensional extension of lists, similar to an Excel spreadsheet, as they store and 
organize data in a structured format. They group vectors into a table, where each vector represents a 
column. This allows different columns to store various types of data, such as numeric, character, or logical 
values. However, within a single column, all elements must be of the same data type, and have a consistent 
length, as shown in the figure below. 

list <- list(10:30, c("Welcome", "to", "SOCY")) 

# list creates a list the same way ‘c()’ creates a vector. Separate each element in the list with a 

comma. 

list 

## [[1]] 

##  [1] 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

## 

## [[2]] 

## [1] "Welcome"  "to"       "SOCY" 
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Let’s manually create a data frame since you’re new to R! You can do this using the data.frame() function. 
Provide multiple vectors, each separated by a comma, and assign each one a descriptive name. The function 
will then convert these vectors into columns within the data frame. Ensure that all vectors are the same 
length, as data frames cannot accommodate columns of different lengths. 

ID Occupation Age 

ID001 Student 29 

ID002 Lawyer 24 

ID003 Software Developer 35 

df <- data.frame(ID = c("ID001", "ID002", "ID003"), 

                                Occupation = c("Student", "Lawyer", "Software Devel

oper"), 

                                Age = c(29, 24, 35)) 

df 
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There are many other important topics, such as Attributes, Arrays, Class, and Coercion. If you’re 
interested in more advanced concepts related to vectors, you can refer to the R textbook . 

7. Renaming Column Names and Recoding Values 

It is useful to assign an intuitive name to the entries of a vector. If the original variable’s name is not 
intuitive, you can change the column names to improve clarity and interpretation. 

There are multiple ways to rename variables, with the most common methods being the names() and 
colnames() functions. 

7.1 Renaming all Column Names 

The names() function can be used to rename all column names in a data frame at once: 

income occupation 

45000 Retail Worker 

55000 Administrative Assistant 

NA Teacher 

72000 Registered Nurse 

NA Marketing Specialist 

data <- data.frame(income = c(45000, 55000, NA, 72000, NA), 

occupation = c("Retail Worker", "Administrative Assistant", "Teacher", 

"Registered Nurse", "Marketing Specialist")) 

data 

# Rename all column names 

names(data) <- c("Income", "Occupations") 

data #In R, variable names are case-sensitive, meaning Income and income are considered different. 
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Income Occupations 

45000 Retail Worker 

55000 Administrative Assistant 

NA Teacher 

72000 Registered Nurse 

NA Marketing Specialist 

7.2 Renaming a Specific Column 

To rename only a specific column while keeping others unchanged, indexing can be used within the 
colnames() function. For example, to rename only the second column: 

Income Occupations_Aus 

45000 Retail Worker 

55000 Administrative Assistant 

NA Teacher 

72000 Registered Nurse 

NA Marketing Specialist 

You can also use the rename() function: 

Income_Aus Occupations_Aus 

45000 Retail Worker 

55000 Administrative Assistant 

NA Teacher 

72000 Registered Nurse 

NA Marketing Specialist 

colnames(data)[2] <- "Occupations_Aus" 

data 

library(dplyr) 

data <- rename(data, Income_Aus = Income) 

data 
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In this example, the column Income is renamed Income_Aus, improving readability. The correct order of 
assignment is new_name = old_name. 

7.3 Renaming Values in Columns 

It is often necessary to recode or rename values within a variable to improve consistency and facilitate 
analysis. The approach to recoding values differs based on the variable type: character(string) variables 
require quotation marks, whereas numeric(continuous) variables allow direct value assignment. 

When renaming values in a character variable, use quotation marks (““) to specify the original and 
replacement values. For example: 

For numeric variables, values can be directly assigned. Let’s replace missing values with the variable’s mean: 

All missing values in the income variable will be replaced with its mean (57,333.33). A detailed discussion 
on handling missing values will follow in the next section. 

8. Missing Data 

In social science research, missing data is a common issue. Data may be absent due to corrupted or lost 
measurements, incomplete data collection, or participants opting not to respond. While this section does 
not provide an in-depth treatment of missing data analysis, it offers a general overview. For this exercise, 
we will use the air quality dataset, which comes pre-installed with R. This dataset contains daily air quality 
measurements recorded in New York during 1973, comprising 153 observations on 6 variables. 

data$Occupations[data$Occupations == "Administrative Assistant"] <- "Admin_Assistant" 

data$Occupations 

## [1] "Retail Worker" "Admin_Assistant" "Teacher" 

## [4] "Registered Nurse" "Marketing Specialist" 

data$Income_Aus[is.na(data$Income_Aus)] <- 57333.33 

data$Income_Aus 

## [1] 45000.00 55000.00 57333.33 72000.00 57333.33 
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8.1 Identifying Missing Data 

One of the simplest ways to identify missing values in R is by using the is.na() function. This function 
identifies whether a value is NA, which is a special symbol in R representing not available data. The 
function returns a logical vector, where TRUE indicates the position of missing values, and FALSE 
indicates non-missing values. This makes it easy to locate and handle missing data in vectors, matrices, or 
data frames. 

For example, to check for missing values in the airquality dataset: 

?airquality 

data(airquality)Copy 

summary(airquality) 

##      Ozone           Solar.R           Wind             Temp 

##  Min.   :  1.00   Min.   :  7.0   Min.   : 1.700   Min.   :56.00 

##  1st Qu.: 18.00   1st Qu.:115.8   1st Qu.: 7.400   1st Qu.:72.00 

##  Median : 31.50   Median :205.0   Median : 9.700   Median :79.00 

##  Mean   : 42.13   Mean   :185.9   Mean   : 9.958   Mean   :77.88 

##  3rd Qu.: 63.25   3rd Qu.:258.8   3rd Qu.:11.500   3rd Qu.:85.00 

##  Max.   :168.00   Max.   :334.0   Max.   :20.700   Max.   :97.00 

##  NA's   :37       NA's   :7 

##      Month            Day 

##  Min.   :5.000   Min.   : 1.0 

##  1st Qu.:6.000   1st Qu.: 8.0 

##  Median :7.000   Median :16.0 

##  Mean   :6.993   Mean   :15.8 

##  3rd Qu.:8.000   3rd Qu.:23.0 

##  Max.   :9.000   Max.   :31.0 

## 

is.na(airquality) 

##        Ozone Solar.R  Wind  Temp Month   Day 

##   [1,] FALSE   FALSE FALSE FALSE FALSE FALSE 
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##   [2,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##   [3,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##   [4,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##   [5,]  TRUE    TRUE FALSE FALSE FALSE FALSE 

##   [6,] FALSE    TRUE FALSE FALSE FALSE FALSE 

##   [7,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##   [8,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##   [9,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [10,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [11,] FALSE    TRUE FALSE FALSE FALSE FALSE 

##  [12,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [13,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [14,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [15,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [16,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [17,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [18,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [19,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [20,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [21,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [22,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [23,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [24,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [25,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [26,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [27,]  TRUE    TRUE FALSE FALSE FALSE FALSE 

##  [28,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [29,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [30,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [31,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [32,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [33,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [34,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [35,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [36,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [37,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [38,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [39,]  TRUE   FALSE FALSE FALSE FALSE FALSE 
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##  [40,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [41,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [42,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [43,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [44,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [45,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [46,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [47,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [48,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [49,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [50,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [51,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [52,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [53,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [54,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [55,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [56,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [57,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [58,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [59,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [60,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [61,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [62,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [63,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [64,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [65,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [66,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [67,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [68,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [69,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [70,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [71,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [72,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [73,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [74,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [75,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [76,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [77,] FALSE   FALSE FALSE FALSE FALSE FALSE 
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##  [78,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [79,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [80,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [81,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [82,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [83,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [84,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

##  [85,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [86,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [87,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [88,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [89,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [90,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [91,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [92,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [93,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [94,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [95,] FALSE   FALSE FALSE FALSE FALSE FALSE 

##  [96,] FALSE    TRUE FALSE FALSE FALSE FALSE 

##  [97,] FALSE    TRUE FALSE FALSE FALSE FALSE 

##  [98,] FALSE    TRUE FALSE FALSE FALSE FALSE 

##  [99,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [100,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [101,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [102,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

## [103,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

## [104,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [105,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [106,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [107,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

## [108,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [109,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [110,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [111,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [112,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [113,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [114,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [115,]  TRUE   FALSE FALSE FALSE FALSE FALSE 
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## [116,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [117,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [118,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [119,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

## [120,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [121,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [122,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [123,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [124,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [125,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [126,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [127,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [128,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [129,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [130,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [131,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [132,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [133,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [134,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [135,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [136,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [137,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [138,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [139,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [140,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [141,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [142,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [143,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [144,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [145,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [146,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [147,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [148,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [149,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [150,]  TRUE   FALSE FALSE FALSE FALSE FALSE 

## [151,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [152,] FALSE   FALSE FALSE FALSE FALSE FALSE 

## [153,] FALSE   FALSE FALSE FALSE FALSE FALSE 
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Since this dataset contains more than 100 observations, manually inspecting each missing value would be 
inefficient. Instead, you can count the total number of missing values using the sum(is.na()) function: 

We can observe that there are a total of 44 missing values in the dataset. To examine missing values by 
column, you can use the colSums(is.na()) function: 

As shown, the Ozone variable has the most missing values (37), followed by Solar.R with 7 missing values. 
The remaining variables have no missing data. 

Another effective way to identify missing values is by using a specialised package like naniar, which allows 
for quick and systematic detection. After loading the naniar package, you can use the vis_miss() function 
to visualise both the amount and location of missing data within your dataset. 

For the airquality dataset, this kind of visualisation can be especially useful to highlight which variables 
have the most missing values, helping you prioritise where to focus your data cleaning efforts. 

sum(is.na(airquality)) 

## [1] 44 

colSums(is.na(airquality)) 

##   Ozone Solar.R    Wind    Temp   Month     Day 

##      37       7       0       0       0       0 

library(naniar) 

vis_miss(airquality) # A heat map-style visualisation showing where values are missing. 
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gg_miss_var(airquality) #A bar plot displaying the number of missing values per variable. 
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variable n_miss pct_miss 

Ozone 37 24.2 

Solar.R 7 4.58 

Wind 0 0 

Temp 0 0 

Month 0 0 

Day 0 0 

These functions offer a more intuitive understanding of missing data compared to basic numerical 
summaries. While functions like sum(is.na()) or colSums(is.na()) provide useful counts, visualisations 
make it easier to grasp the extent and patterns of missingness—especially in larger datasets. We will address 
how to handle these missing values in the following section. 

miss_var_summary(airquality) #A table listing the number and percentage of missing values for each 

variable. 
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8.2 Handling Missing Data 

Handling missing data is crucial in data analysis, as missing values can impact statistical results and model 
accuracy. There are several ways to address missing values, depending on the nature of the data and the 
research context. In this section, I will provide a broad overview of two methods: Removing and replacing 
missing data. 

8.2.1 Removing Missing Data 

The simplest method to handle missing values is removing missing values. na.omit() functions removes 
entire row with missing values from a dataset. 

airquality_clean <- na.omit(airquality) 

airquality_clean 
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  Ozone Solar.R Wind Temp Month Day 

1 41 190 7.4 67 5 1 

2 36 118 8 72 5 2 

3 12 149 12.6 74 5 3 

4 18 313 11.5 62 5 4 

7 23 299 8.6 65 5 7 

8 19 99 13.8 59 5 8 

9 8 19 20.1 61 5 9 

12 16 256 9.7 69 5 12 

13 11 290 9.2 66 5 13 

14 14 274 10.9 68 5 14 

15 18 65 13.2 58 5 15 

16 14 334 11.5 64 5 16 

17 34 307 12 66 5 17 

18 6 78 18.4 57 5 18 

19 30 322 11.5 68 5 19 

20 11 44 9.7 62 5 20 

21 1 8 9.7 59 5 21 

22 11 320 16.6 73 5 22 

23 4 25 9.7 61 5 23 

24 32 92 12 61 5 24 

28 23 13 12 67 5 28 

29 45 252 14.9 81 5 29 

30 115 223 5.7 79 5 30 

31 37 279 7.4 76 5 31 

38 29 127 9.7 82 6 7 

40 71 291 13.8 90 6 9 

41 39 323 11.5 87 6 10 

44 23 148 8 82 6 13 

47 21 191 14.9 77 6 16 

48 37 284 20.7 72 6 17 

49 20 37 9.2 65 6 18 

50 12 120 11.5 73 6 19 
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 Ozone Solar.R Wind Temp Month Day 

51 13 137 10.3 76 6 20 

62 135 269 4.1 84 7 1 

63 49 248 9.2 85 7 2 

64 32 236 9.2 81 7 3 

66 64 175 4.6 83 7 5 

67 40 314 10.9 83 7 6 

68 77 276 5.1 88 7 7 

69 97 267 6.3 92 7 8 

70 97 272 5.7 92 7 9 

71 85 175 7.4 89 7 10 

73 10 264 14.3 73 7 12 

74 27 175 14.9 81 7 13 

76 7 48 14.3 80 7 15 

77 48 260 6.9 81 7 16 

78 35 274 10.3 82 7 17 

79 61 285 6.3 84 7 18 

80 79 187 5.1 87 7 19 

81 63 220 11.5 85 7 20 

82 16 7 6.9 74 7 21 

85 80 294 8.6 86 7 24 

86 108 223 8 85 7 25 

87 20 81 8.6 82 7 26 

88 52 82 12 86 7 27 

89 82 213 7.4 88 7 28 

90 50 275 7.4 86 7 29 

91 64 253 7.4 83 7 30 

92 59 254 9.2 81 7 31 

93 39 83 6.9 81 8 1 

94 9 24 13.8 81 8 2 

95 16 77 7.4 82 8 3 

99 122 255 4 89 8 7 

100 89 229 10.3 90 8 8 
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 Ozone Solar.R Wind Temp Month Day 

101 110 207 8 90 8 9 

104 44 192 11.5 86 8 12 

105 28 273 11.5 82 8 13 

106 65 157 9.7 80 8 14 

108 22 71 10.3 77 8 16 

109 59 51 6.3 79 8 17 

110 23 115 7.4 76 8 18 

111 31 244 10.9 78 8 19 

112 44 190 10.3 78 8 20 

113 21 259 15.5 77 8 21 

114 9 36 14.3 72 8 22 

116 45 212 9.7 79 8 24 

117 168 238 3.4 81 8 25 

118 73 215 8 86 8 26 

120 76 203 9.7 97 8 28 

121 118 225 2.3 94 8 29 

122 84 237 6.3 96 8 30 

123 85 188 6.3 94 8 31 

124 96 167 6.9 91 9 1 

125 78 197 5.1 92 9 2 

126 73 183 2.8 93 9 3 

127 91 189 4.6 93 9 4 

128 47 95 7.4 87 9 5 

129 32 92 15.5 84 9 6 

130 20 252 10.9 80 9 7 

131 23 220 10.3 78 9 8 

132 21 230 10.9 75 9 9 

133 24 259 9.7 73 9 10 

134 44 236 14.9 81 9 11 

135 21 259 15.5 76 9 12 

136 28 238 6.3 77 9 13 

137 9 24 10.9 71 9 14 
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 Ozone Solar.R Wind Temp Month Day 

138 13 112 11.5 71 9 15 

139 46 237 6.9 78 9 16 

140 18 224 13.8 67 9 17 

141 13 27 10.3 76 9 18 

142 24 238 10.3 68 9 19 

143 16 201 8 82 9 20 

144 13 238 12.6 64 9 21 

145 23 14 9.2 71 9 22 

146 36 139 10.3 81 9 23 

147 7 49 10.3 69 9 24 

148 14 20 16.6 63 9 25 

149 30 193 6.9 70 9 26 

151 14 191 14.3 75 9 28 

152 18 131 8 76 9 29 

153 20 223 11.5 68 9 30 

 

 

 

 

 

 

 

 

 

Rows containing NA values are completely removed using this method. While this approach is 
straightforward, it has a major drawback—it significantly reduces the sample size. The original dataset has 
153 observations, but after removing missing values, only 111 remain. Such data loss can compromise the 
accuracy of statistical results, particularly when more than 10% of the data is missing. 

An alternative is to use the na.rm = TRUE argument, which allows you to exclude missing values from 
calculations without removing entire observations. This option can be used in functions like mean(), 
sum(), and min(), as well as in analytical models such as regression. Unlike na.omit(), it retains the full 
dataset and simply tells the function to ignore NA values during computation. 
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The difference in outcomes occurs because mean(airquality$Ozone, na.rm = TRUE) ignores NA values in 
the Ozone column but retains all other rows. In contrast, mean(airquality_clean$Ozone) is calculated after 
removing entire rows that contain NA in any column, resulting in a smaller dataset. 

8.2.2 Replacing Missing Data 

In social science research, missing values can be handled through imputation rather than simply removing 
data. One of the approaches is replacing NA with the column’s mean or median: 

#Mean of the Ozone variable in the dataset while ignoring NA values. 

mean(airquality$Ozone, na.rm = TRUE) 

## [1] 42.12931 

#Mean of the Ozone variable in the modified dataset with all NA values removed. 

mean(airquality_clean$Ozone) 

## [1] 42.0991 

airquality$Ozone[is.na(airquality$Ozone)] <- mean(airquality$Ozone, na.rm = TRUE) 

#Mean value: 42.12931 

airquality$Ozone 

Copy 

##   [1]  41.00000  36.00000  12.00000  18.00000  42.12931  28.00000  23.00000 

##   [8]  19.00000   8.00000  42.12931   7.00000  16.00000  11.00000  14.00000 

##  [15]  18.00000  14.00000  34.00000   6.00000  30.00000  11.00000   1.00000 

##  [22]  11.00000   4.00000  32.00000  42.12931  42.12931  42.12931  23.00000 

##  [29]  45.00000 115.00000  37.00000  42.12931  42.12931  42.12931  42.12931 

##  [36]  42.12931  42.12931  29.00000  42.12931  71.00000  39.00000  42.12931 

##  [43]  42.12931  23.00000  42.12931  42.12931  21.00000  37.00000  20.00000 

##  [50]  12.00000  13.00000  42.12931  42.12931  42.12931  42.12931  42.12931 

##  [57]  42.12931  42.12931  42.12931  42.12931  42.12931 135.00000  49.00000 

##  [64]  32.00000  42.12931  64.00000  40.00000  77.00000  97.00000  97.00000 

DATA HANDLING AND BASIC DATA STRUCTURES  |  113



The observation in the Ozone variable is retained. However, it’s important to choose your method for 
handling missing values carefully, as it can significantly affect the results of your analysis. 

Recently, advanced imputation techniques have become the preferred approach for handling missing data, 
as they provide more accurate estimates (compared to replacing missing values with the mean or median). 

Some commonly used methods include: 

• MICE (Multivariate Imputation by Chained Equations): Uses multiple imputations to generate 
plausible values for missing data. 

• Amelia: Employs a bootstrapped-based algorithm to estimate missing values. 
• missForest: Uses a random forest algorithm to predict and impute missing values. 

These techniques are beyond the scope of this book. However, if you’re interested, it is recommended to 
explore them further through research and practical application. 

##  [71]  85.00000  42.12931  10.00000  27.00000  42.12931   7.00000  48.00000 

##  [78]  35.00000  61.00000  79.00000  63.00000  16.00000  42.12931  42.12931 

##  [85]  80.00000 108.00000  20.00000  52.00000  82.00000  50.00000  64.00000 

##  [92]  59.00000  39.00000   9.00000  16.00000  78.00000  35.00000  66.00000 

##  [99] 122.00000  89.00000 110.00000  42.12931  42.12931  44.00000  28.00000 

## [106]  65.00000  42.12931  22.00000  59.00000  23.00000  31.00000  44.00000 

## [113]  21.00000   9.00000  42.12931  45.00000 168.00000  73.00000  42.12931 

## [120]  76.00000 118.00000  84.00000  85.00000  96.00000  78.00000  73.00000 

## [127]  91.00000  47.00000  32.00000  20.00000  23.00000  21.00000  24.00000 

## [134]  44.00000  21.00000  28.00000   9.00000  13.00000  46.00000  18.00000 

## [141]  13.00000  24.00000  16.00000  13.00000  23.00000  36.00000   7.00000 

## [148]  14.00000  30.00000  42.12931  14.00000  18.00000  20.00000 
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5. 

MULTIPLE REGRESSION ANALYSIS 

This chapter introduces multiple regression analysis, focusing on how one 
dependent variable is related to several independent variables. The session 
will begin with fitting regression models using continuous predictors. We 
then focus on how to interpret key statistics from the multiple regression 
output. 

1. Multiple Regression 

Multiple regression is an extension of bivariate linear regression that models the relationship between a 
single dependent variable (Y) and two or more independent variables (X₁, X₂, …, Xₖ). By fitting a linear 
equation to observed data, multiple regression allows researchers to assess the impact of each predictor 
while controlling for the influence of the others. 

Exercise 1 – Bivariate Linear Regression with ABS Data 

In Chapter 5, Exercise 2 we fitted a bivariate linear regression model to examine the relationship between 
Life Satisfaction (dependent variable) and Age (independent variable). In today’s session, we will expand 
this model by including two additional continuous predictors: Income and EDU (education level). We will 
explore how socio-economic factors (age, income, and education level) are associated with life satisfaction 
among Australian participants. The general equation of a multiple regression model is as follows: 

Applying our variables to this equation: 
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• Y is the dependent variable (Life Satisfaction), 
• X_1, X_2, X_3 are the independent variables (Age, Income, and EDU), 
• a is the intercept (the expected value of Life satisfaction when all predictors are held constant (X_1, 

X_2, and X_3 = 0), 
• b_1, b_2, b_3 are the slopes (regression coefficients representing the expected change in Life 

Satisfaction associated with a one-unit increase in the corresponding predictor, holding all other 
variables constant), 

1.1 Loading and Inspecting the Dataset 

Let’s load the dataset and inspect the dataset to ensure it has been imported correctly. 

Row 
number D_INTERVIEW Country Q47 Life_satisfaction Q124 Q128 Q152 Wife_Abuse Q128 Q152 W

1 20070001 20 3 10 0 2 1 1 2 1 1 

2 20070002 20 1 9 1 0 1 1 0 1 1 

3 20070003 20 1 9 0 0 1 1 0 1 1 

4 20070004 20 2 8 0 1 1 1 1 1 1 

5 20070005 20 2 7 1 1 1 1 1 1 1 

6 20070006 20 1 10 1 0 1 1 0 1 1 

7 20070007 20 1 5 0 0 1 1 0 1 1 

8 20070008 20 2 8 0 2 1 1 2 1 1 

9 20070009 20 2 8 0 0 1 1 0 1 1 

10 20070010 20 1 10 2 0 3 1 0 3 1 

#Set up the working directory first 

setwd("C:/Your folder path/SOCYR") 

WVS <- read.csv("WVS.csv") 

#Load the required packages for Chapter 6 

library(corrplot) 

library(psych) 

library(dplyr) 

head(WVS, 10) 
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1.2 Cleaning the Data 

Before proceeding with the multiple regression, let’s clean the variables first. We then restrict the dataset to 
Australian respondents (Country code = 36) and rename relevant variables. 

1.3 Summary Statistics 

We begin by examining the summary statistics of the key variables that will be included in the regression 
model. 

1.4 Correlation Analysis of Predictors 

We next inspect the bivariate relationships among the independent variables (Age, Income, and EDU) by 
computing a correlation matrix. 

Aus_data <- WVS %>% 

  filter(Country == 36) #Filter only Australian participants 

Aus_data %>% 

  select(Life_satisfaction, Age, Income, EDU) %>% 

summary() 

##  Life_satisfaction      Age           Income            EDU 

##  Min.   : 1.000    Min.   :17.0   Min.   : 1.000   Min.   :0.000 

##  1st Qu.: 7.000    1st Qu.:40.0   1st Qu.: 4.000   1st Qu.:3.000 

##  Median : 8.000    Median :56.0   Median : 5.000   Median :4.000 

##  Mean   : 7.528    Mean   :54.3   Mean   : 5.128   Mean   :4.655 

##  3rd Qu.: 9.000    3rd Qu.:68.0   3rd Qu.: 7.000   3rd Qu.:6.000 

##  Max.   :10.000    Max.   :98.0   Max.   :10.000   Max.   :8.000 

##  NA's   :16        NA's   :18     NA's   :65       NA's   :70 

# The summary() function in R automatically excludes missing values (NA) when computing 

summary statistics for numeric variables. 
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To examine the strength and statistical significance of the correlations, we use the corr.test() function 
from the psych package: 

Aus_data %>% 

  select(Age, Income, EDU) %>% 

  cor(, use ="pairwise.complete.obs") 

##               Age     Income        EDU 

## Age     1.0000000 -0.1951478 -0.2725097 

## Income -0.1951478  1.0000000  0.4137615 

## EDU    -0.2725097  0.4137615  1.0000000 

# Compute correlations and p-values 

corr_results <- psych::corr.test(Aus_data %>% select(Age, Income, EDU), use = "pair

wise.complete.obs") 

# View correlation matrix (coefficients) 

corr_results$r 

##               Age     Income        EDU 

## Age     1.0000000 -0.1951478 -0.2725097 

## Income -0.1951478  1.0000000  0.4137615 

## EDU    -0.2725097  0.4137615  1.0000000 

# View p-value matrix 

corr_results$p 

##                 Age       Income          EDU 

## Age    0.000000e+00 2.106425e-16 1.330663e-30 

## Income 2.106425e-16 0.000000e+00 1.728738e-70 

## EDU    6.653314e-31 5.762461e-71 0.000000e+00 
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1.5 Visualising Bivariate Relationships 

Scatter plots provide a visual inspection of the bivariate relationships between Life Satisfaction and each 
continuous predictor. A regression line is added to assess the linearity of each relationship. 

#Scatter plot of Life satisfaction - Age 

plot(Aus_data$Age, Aus_data$Life_satisfaction, xlab = "Age", ylab = "Life_satisfaction") 

abline(lm(Life_satisfaction~ Age, data = Aus_data), col = "red") 

#Scatter plot of Life satisfaction - Income 

plot(Aus_data$Income,Aus_data$Life_satisfaction, xlab = "Income", ylab = "Life_satisfac

tion") 

abline(lm(Life_satisfaction~ Income, data = Aus_data), col = "red") 
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#Scatter plot of Life satisfaction - EDU 

plot(Aus_data$EDU, Aus_data$Life_satisfaction, xlab = "EDU", ylab = "Life_satisfaction") 

abline(lm(Life_satisfaction ~ EDU, data = Aus_data), col = "red") 
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Quiz. Interpret the results shown in each scatter plot 

Write your response here: 

1.6 Fitting Multiple Regression Models 

To demonstrate how the results of bivariate and multiple regression models can differ from those obtained 
in a multiple regression model, we will begin by estimating separate bivariate regressions for each of the 
three explanatory variables with Life Satisfaction as the outcome variable. We will then fit a multiple 
regression model that includes all three predictors simultaneously. 

Model1 <- lm(Life_satisfaction ~ Age, data=Aus_data) 

Model2 <- lm(Life_satisfaction ~ Income, data=Aus_data) 
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Each model estimates the effect of a single or combined set of predictors on life satisfaction. By comparing 
the coefficients from the bivariate models (Models 1–3) with those from the multiple regression model 
(Model 4), we can observe how controlling for additional variables influences the estimated associations. 

R stores the results of these models in the objects Model1, Model2, Model3, and Model4. These stored 
model objects will be revisited later in this session for further analysis and comparison. 

The output for the multiple regression model (Model4) should appear as below: 

Model3 <- lm(Life_satisfaction ~ EDU, data=Aus_data) 

Model4 <- lm(Life_satisfaction ~ Age + Income + EDU , data=Aus_data) 

summary(Model4) 

## 

## Call: 

## lm(formula = Life_satisfaction ~ Age + Income + EDU, data = Aus_data) 

## 

## Residuals: 

##     Min      1Q  Median      3Q     Max 

## -6.7379 -0.8079  0.2286  1.0211  3.7725 

## 

## Coefficients: 

##              Estimate Std. Error t value Pr(>|t|) 

## (Intercept)  5.191910   0.211175  24.586   <2e-16 *** 

## Age          0.020778   0.002435   8.532   <2e-16 *** 

## Income       0.244169   0.021101  11.572   <2e-16 *** 

## EDU         -0.009442   0.026167  -0.361    0.718 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

## 

## Residual standard error: 1.641 on 1671 degrees of freedom 

##   (138 observations deleted due to missingness) 

## Multiple R-squared:  0.1052, Adjusted R-squared:  0.1036 

## F-statistic: 65.48 on 3 and 1671 DF,  p-value: < 2.2e-16 
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Quiz. Using the output above, answer the following questions: 

Q1. How many observations contribute to the regression model? 

Q2. Fully interpret the regression coefficient for Age. 

Q3. Fully interpret the regression coefficient for Income. 

Q4. Fully interpret the regression coefficient for EDU. 

Q5. How would you interpret the results of the F-test? 

Q6. What are the values for R2 and adjusted R2 for this model? What do these tell you? 

Write your responses here: 

Important: Remember that fully interpreting a regression coefficient for b / β requires you to 

comment on: (i) the sign/direction of the effect, (ii) the size/magnitude of the effect, and (iii) the 

statistical significance of the effect. If the coefficient comes from a multiple regression model, 

then you also ought to acknowledge that this is a partial regression coefficient. You can do 

that by adding something like “all else being equal”, “holding all other variables constant”, 

“controlling/adjusting for the other covariates in the model” or the Latin expression “ceteris 

paribus” at the beginning or the end of the sentence containing your interpretation. 

1.7. Creating a Regression Table 

To present the results from all four regression models in a structured format, we will use the stargazer() 
function from the stargazer package. This function generates professional formatted regression tables. 

First, install and load the package: 

install.packages("stargazer") 

library(stargazer) 
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Once the package is loaded, the stargazer() function can be used to produce a basic table of regression 
results. The output can be formatted in either plain text or HTML by specifying the type argument: 

stargazer(Model1, Model2, Model3, Model4, type = "text") 

## 

## 

==========================================================================================

============================ 

##                                                            Dependent vari

able: 

## 

------------------------------------------------------------------------------------------

-------- 

##                                                             Life_satisfac

tion 

##                               (1)                       (2) 

(3)                     (4) 

## 

------------------------------------------------------------------------------------------

---------------------------- 

## Age 

0.015***                                                                  0.021*** 

## 

(0.002)                                                                   (0.002) 

## 

                               

## Income 

0.207***                                         0.244*** 

## 

(0.019)                                         (0.021) 

## 

                               

## EDU 

0.055**                  -0.009 

## 

(0.024)                 (0.026) 

## 
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Note: when using type = “text”, the alignment of the regression output may not render properly in knitted 
documents (e.g., HTML or Word). Therefore, I recommended to use type = “html” for better formatting 
in output documents. 

To render the HTML output correctly within an R Markdown document, include the argument results 
= 'asis' in the code chunk options: 

                               

## Constant                    6.695***                 6.462*** 

7.271***                5.192*** 

##                             (0.134)                   (0.107) 

(0.120)                 (0.211) 

## 

                               

## 

------------------------------------------------------------------------------------------

---------------------------- 

## Observations                 1,781                     1,735 

1,730                   1,675 

## R2                           0.023                     0.062 

0.003                   0.105 

## Adjusted R2                  0.023                     0.062 

0.002                   0.104 

## Residual Std. Error    1.729 (df = 1779)         1.698 (df = 1733)       1.733 (df = 

1728)       1.641 (df = 1671) 

## F Statistic         42.756*** (df = 1; 1779) 114.823*** (df = 1; 1733) 5.193** (df = 

1; 1728) 65.484*** (df = 3; 1671) 

## 

==========================================================================================

============================ 

## 

Note: 

 *p<0.1; **p<0.05; ***p<0.01 

{r, results='asis'} 

stargazer(Model1, Model2, Model3, Model4, type = "html") 
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Table 6.2 

Dependent variable: 

Life_satisfaction 

Dependent 
variable: 1) (2) (3) (4) 

Age 0.015*** 
(0.002) 

0.021*** 
(0.002) 

Income 0.207*** 
(0.019) 

0.244*** 
(0.021) 

EDU 0.055** 
(0.024) 

-0.009 
(0.026) 

Constant 6.695*** 
(0.134) 

6.462*** 
(0.107) 

7.271*** 
(0.120) 

5.192*** 
(0.211) 

Observations 1,781 1,735 1,730 1,675 

R2 0.023 0.062 0.003 0.105 

Adjusted R2 0.023 0.062 0.002 0.104 

Residual Std. 
Error 1.729 (df = 1779) 1.698 (df = 1733) 1.733 (df = 1728) 1.641 (df = 1671) 

F Statistic 42.756*** (df = 1; 
1779) 

114.823*** (df = 1; 
1733) 

5.193** (df = 1; 
1728) 

65.484*** (df = 3; 
1671) 

Note:   p<0.1; p<0.05; p<0.01 

1.7.1 Customising the Regression Table 

Below is a more advanced usage of stargazer() that demonstrates how to customise the output table: 

• Assign a descriptive title to the table. 
• Define explicit column labels for each model. 
• Specify a caption for the dependent variable (e.g., Life Satisfaction (1–10 scale)). 
• Add customised covariate labels (e.g., Age, Income Scale, Education Level, Intercept) for clarity. 
• Disable automatic column and model numbering using colnames = FALSE and model.numbers = 

FALSE. 

The command below produces a clean and interpretable regression table, suitable for academic 
presentation: 

stargazer(Model1, Model2, Model3, Model4, type = "html", 
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Table 6.3 Four Regression Models Predicting Variation in 
Life satisfaction 

Life satisfaction (1-10 scale) 

Model1 Model2 Model3 Model4 

Age 0.015*** 
(0.002) 

0.021*** 
(0.002) 

Income Scale 0.207*** 
(0.019) 

0.244*** 
(0.021) 

Education Level 0.055** 
(0.024) 

-0.009 
(0.026) 

Intercept 6.695*** 
(0.134) 

6.462*** 
(0.107) 

7.271*** 
(0.120) 

5.192*** 
(0.211) 

Observations 1,781 1,735 1,730 1,675 

R2 0.023 0.062 0.003 0.105 

Adjusted R2 0.023 0.062 0.002 0.104 

Residual Std. 
Error 1.729 (df = 1779) 1.698 (df = 1733) 1.733 (df = 1728) 1.641 (df = 1671) 

F Statistic 42.756*** (df = 1; 
1779) 

114.823*** (df = 1; 
1733) 

5.193** (df = 1; 
1728) 

65.484*** (df = 3; 
1671) 

Note: p<0.1; p<0.05; p<0.01 

Quiz. Based on the regression output presented above, what are the key differences among 

the four models we previously estimated? In particular, consider the following elements: 

• The coefficients of each independent variable 

          title = "Four Regression Models Predicting Variation in Life satisfaction", 

          column.labels = c("Model1", "Model2", "Model3", "Model4"), 

          colnames = FALSE, 

          model.numbers = FALSE, 

          dep.var.caption = "Life satisfaction (1-10 scale)", 

          dep.var.labels = "", 

          covariate.labels=c("Age","Income Scale","Education Level","Intercept")) 
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• The number of observations used in each model 

• The R-squared and adjusted R-squared values 

• The F-statistic 

Write your responses here: 
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6. 

INTRODUCTION TO BIVARIATE LINEAR 
REGRESSION 

This chapter introduces the logic of bivariate regression analysis. We will analyse 
real-world data on physical assaults in Australia from 2008 to 2022 to examine 
whether there is a trend or pattern in the number of victims over time. Before 
conducting the regression analysis, we will begin by exploring the data using 
scatter plots and calculating the correlation coefficient to assess linearity. We will 
then proceed with a bivariate regression analysis, focusing on how to interpret the 
results. Afterwards, you will apply the same analytical approach to the World 
Values Survey (WVS) dataset by conducting your own regression analysis. 

1. What is a Linear Regression? 

Linear regression is a statistical method used to model the relationship between a dependent variable (Y) 
and one or more independent variables (X) by fitting a linear equation to the observed data. 

A simple linear regression model follows the equation: 

•  is the dependent variable, 
•  is the independent variable, 
•  is the intercept (the 

expected value of Y when X is held constant (X=0), 
•  is the slope (the 

change in Y associated with a 1-unit increase in X) 
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Quick note: In regression analysis, certain terms are used interchangeably, though their 

usage may vary depending on the context: 

Dependent = outcome = response variables 

Independent = explanatory = predictor variables 

2. A Bivariate Linear Regression Model 

Bivariate linear regression is a type of linear regression where a single independent variable (X) is regressed 
on a single dependent variable (Y). The term “bivariate” refers to the presence of two variables—one 
predictor and one outcome. When multiple independent variables are included, the model becomes a 
multiple linear regression. Additionally, regression models can be nonlinear. We will explore these different 
types of regression in the coming Chapters. 

Exercise 1 – Bivariate Linear Regression with ABS Data 

In this first exercise, we will practice bivariate regression by using the Australian Bureau of Statistics 
(ABS). Specifically, we will analyse the victim_rate dataset, which was previously introduced in Chapter 
3 (Section 1.2: Measure of Dispersion). If you have not saved this dataset, please refer back to the materials. 

We will focus on physical assault and examine its relationship with the year variable. Let’s load the dataset 
and display the first ten observations to ensure the data has been imported correctly. 

#Set up the working directory 

setwd("C:/Your folder path/SOCYR") 

Victim <- read.csv("Victim_rate.csv") 

#Load the required packages for Chapter 5library(ggplot2) 

library(dplyr) 

head(Victim, 10) 
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  Year Physical_assault FacetoFace_threatened_assault 

1 2008 3.1 3.9 

2 2009 2.9 3.1 

3 2010 2.7 3.1 

4 2011 3 3.3 

5 2012 2.7 2.8 

6 2013 2.3 2.7 

7 2014 2.1 2.6 

8 2015 2.4 2.6 

9 2016 2.4 2.6 

10 2017 2.4 2.6 

2.1 Graphical Analysis 

Before proceeding with the regression analysis, let’s explore the patterns and relationships between the 
variables visually. Graphical analysis helps to identify potential linear trends, or outliers. We will use scatter 
plots to visualize the relationship between the independent (Year) variable and the outcome (Physical 
Assault) variable. 

The basic structure of plot() function is as follows: 

To visualise the relationship between Year and Physical Assault: 

plot(x, y, 

    main = "Title of the plot", 

    xlab = "Label for the x-axis", 

    ylab = "Label for the y-axis", 

    pch = "point shape" (e.g., 19 is a circle), 

    frame = FALSE "remove a box around the plot") 

plot(x = Victim$Year, y = Victim$Physical_assault, 

     main = "Scatter Plot of Year vs. Physical Assault Rate", 

     xlab = "Year", ylab = "Physical Assault Rate (%)", 

     pch = 19, frame = FALSE) 
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We can also overlay a regression line onto the scatter plot to help to visually confirm whether there is an 
increasing or decreasing trend in physical assault rates over time. 

To add a regression line, we use the abline()function: 

plot(x = Victim $Year, y = Victim $Physical_assault, 

     main = "Scatter Plot of Year vs. Physical Assault Rate", 

     xlab = "Year", ylab = "Physical Assault Rate (%)", 

     pch = 19, frame = FALSE) 

# Add the regression line in red 

abline(lm(Physical_assault ~ Year, data = Victim), col = "red") 
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Q. Interpret the plot above by describing any patterns or trends. 

Write your response here: 

2.2 Correlation Analysis 

Beyond visualising relationships with scatter plots, we can also quantify the strength and direction using 
correlation. The correlation coefficient provides a numerical measure of the linear dependence between 
two variables. 

2.2.1 Calculating the Correlation Coefficient 

The Pearson correlation coefficient is commonly used to assess the strength of a linear relationship between 
two continuous variables. The correlation coefficient ranges from -1 to 1: 
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• r > 0 indicates a positive correlation (as one variable increases, the other tends to increase). 
• r < 0 indicates a negative correlation (as one variable increases, the other tends to decrease). 
• r ≈ 0 suggests little to no linear relationship between the variables. 

The strength of a correlation is typically classified as weak (≈ 0.2), moderate (≈ 0.5), or strong (≈ 0.8). These 
thresholds are commonly used in social sciences and may vary slightly based on the research context. 

 

Let’s compute the correlation between Year and Physical Assault using the cor() function: 

You can test the statistical significance of this correlation coefficient using the cor.test() function. 

cor(Victim$Year, Victim$Physical_assault, use = "pairwise.complete.obs") 

## [1] -0.8897243 
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Q. What is the correlation coefficient between the two variables, and is the relationship 

statistically significant based on the hypothesis test? 

Write your response here: 

2.3 Fitting a Bivariate Linear Regression Model 

We can now build a bivariate regression model using the lm() function. This function requires two key 
arguments: the regression formula and the dataset. The basic syntax is: 

#To test statistical significance. 

cor.test(Victim$Year, Victim$Physical_assault, use = "pairwise.complete.obs") 

## 

##  Pearson's product-moment correlation 

## 

## data:  Victim$Year and Victim$Physical_assault 

## t = -7.0273, df = 13, p-value = 8.969e-06 

## alternative hypothesis: true correlation is not equal to 0 

## 95 percent confidence interval: 

##  -0.9630536 -0.6935732 

## sample estimates: 

##        cor 

## -0.8897243 

lm (y~x, data = "yourdata") 

Formula `(y ~ x)`: Specifies the dependent and independent variables. The outcome vari

able is placed 

before the tilde (~), and the explanatory, covariate, or control variables are placed 
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The formula is usually written directly within the function call, as shown below: 

2.3.1 Build Linear Model 

By fitting the model, we establish a mathematical relationship between the independent and outcome 
variable. The output provides key coefficients: Intercept: 164.34, Year coefficient: -0.08 

This allows us to write down the prediction equation as: 

⯑ℎ⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑^=⯑⯑⯑⯑⯑⯑⯑⯑⯑+(⯑∗⯑⯑⯑⯑) 

Substituting the given values: 

⯑ℎ⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑⯑^=164.34–0.08∗⯑⯑⯑⯑ 

Q. Now, use this equation to calculate the predicted physical assault rates for the following 

years: (i) 2008, (ii) 2014 and (iii) 2022. 

Write your response here: 

after it. 

Data (`data = "yourdata"`): Typically a data.frame containing the dataset. 

# Build a bivariate regression model: lm(y~x, data=) 

Reg <- lm(Physical_assault ~ Year, data= Victim) 

Reg 

## 

## Call: 

## lm(formula = Physical_assault ~ Year, data = Victim) 

## 

## Coefficients: 

## (Intercept)         Year 

##   164.33964     -0.08036 
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Precited physical assault in 2008: 

Precited physical assault in 2014: 

Precited physical assault in 2022: 

Now that the regression model is built, we can use it to predict physical assault rate for a given year. 
However, before using the model, we must check its statistical significance. You can check the summary 
statistics for Reg using the summary() function. 

The summary statistics above provide key insights, including estimates, standard errors, t-statistics, 
and p-values for the intercept and the slope. Additionally, they include the residual standard error, R-
squared, and Adjusted R-squared, which assess the overall model fit. 

summary(Reg) 

## 

## Call: 

## lm(formula = Physical_assault ~ Year, data = Victim) 

## 

## Residuals: 

##      Min       1Q   Median       3Q      Max 

## -0.40036 -0.07982 -0.00214  0.12911  0.25857 

## 

## Coefficients: 

##              Estimate Std. Error t value Pr(>|t|) 

## (Intercept) 164.33964   23.04160   7.132 7.68e-06 *** 

## Year         -0.08036    0.01144  -7.027 8.97e-06 *** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

## 

## Residual standard error: 0.1913 on 13 degrees of freedom 

## Multiple R-squared:  0.7916, Adjusted R-squared:  0.7756 

## F-statistic: 49.38 on 1 and 13 DF,  p-value: 8.969e-06 
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Here, we will go through these components step by step to understand how to interpret the results. 

2.3.2 Coefficients Estimate 

In the coefficients section, you will find the estimates for both the intercept and the slope (Year). 

• The intercept represents the predicted physical assault rate when Year = 0. 
• The slope indicates the change in physical assault rates for a one-unit increase in Year. A positive 

slope suggests an increasing trend, while a negative slope indicates a decreasing trend. 

Q. Based on the estimated coefficients, interpret the effect of Year on the outcome. What do 

the intercept and slope represent? 

Write your response here: 

2.3.3 Confidence Interval 

You can also examine the confidence intervals (CIs) for the intercept and slope coefficients. While the 
summary output does not include this information, you can use the confint() function. 

confint(Reg) #Defualt is 95% 

##                  2.5 %       97.5 % 

## (Intercept) 114.561303 214.11798265 

## Year         -0.105061  -0.05565331 

round(confint(Reg),2) #Display only the second decimal place 

##              2.5 % 97.5 % 

## (Intercept) 114.56 214.12 
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Intercept [114.56, 214.12]: This means that we are 95% confident that the true intercept value lies between 
114.56 and 214.12. 

Year [-0.11, -0.06]: This means that we are 95% confident that the true slope lies between -0.11 and -0.06. 

*Note. If the confidence interval includes the value ‘zero’ (e.g., -0.02 to 0.06), it 

suggests that the effect of Year may not be statistically significant. 

2.3.4 The T-statistic and its P-value 

Assessing the statistical significance of the estimated coefficients is crucial. We can determine this by 
examining the t-statistic and its corresponding p-value, which indicate whether the relationship between 
the independent and dependent variable is meaningful or merely a result of random variation. 

Hypothesis Testing: Every p-value in regression analysis corresponds to a hypothesis test involving a null 
and an alternative hypothesis. The hypotheses for each coefficient are as follows: 

• Null Hypothesis (H₀): The coefficient of the explanatory variable is equal to zero (β = 0), meaning 
there is no relationship between the explanatory and the outcome variable. 

• Alternative Hypothesis (H₁): The coefficient of the explanatory variable is not equal to zero (β ≠ 0), 
indicating that there exists a statistically significant relationship between the explanatory variable and 
the outcome variable. 

Understanding the t-value 

The t-statistic (t-value) measures how many standard deviations the estimated coefficient is away from zero: 

## Year         -0.11  -0.06 

#confint(Reg, level = 0.90) #Confidnce intervals at 90% 

#confint(Reg, level = 0.99) #Confidnce intervals at 99% 
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* : The estimated coefficient, : The standard error of the coefficient 

A larger t-value indicates stronger evidence against the null hypothesis (β = 0), meaning the coefficient is 
likely to be statistically significant. 

Understanding the p-value 

The p-value (Pr(>|t|)) represents the probability of obtaining a t-value as extreme as the one observed, 
assuming the null hypothesis is 
true. The standard significance level is typically set at 0.05, corresponding to a 95% confidence level. 

• If p < 0.05, we reject the null hypothesis, indicating that the coefficient of the predictor (β) is 
significantly different from zero. This suggests that the predictor has a statistically significant effect 
on the dependent variable. 

• If p > 0.05, we fail to reject the null hypothesis, meaning there is insufficient evidence to conclude 
that the predictor has a significant effect. In this case, we assume that β may be equal to zero, 
implying no statistically significant relationship with the outcome variable. 

Returning to our results, we now answer the following questions: 

Q1. What are the t-values for both the intercept and slope? 

Q2. What are the p-values for both the intercept and slope? 

Q3. What is the null hypothesis, and can it be rejected at the 95% confidence level? 

Write your responses here: 

2.3.5 R-Squared ( ) 

Regression models aim to explain the variation in the dependent variable based on one or more 
independent (predictor) variables. R-squared ( ) is commonly used method to evaluate the explanatory 
power of a regression model. R-squared measures the proportion of the variance in the dependent variable 
that is explained by the independent variable(s) in the model: 
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*SSE (Sum of Squared Errors): Measures the unexplained variation (the residual sum of squares), 

SST (Total Sum of Squares): Represents the total variation in the dependent variable. 

A high  value suggests that the predictor variable(s) effectively explain the variation in the outcome, 
while a low R² indicates that much of the variation remains unexplained. 

•  = 1 (or 100%) → The model explains all the variability in the dependent variable. 
•  = 0 (or 0%) → The model explains none of the variability in the dependent variable. 

Again, let’s return to your results and answer the questions below: 

Q1. What is the R-squared value? 

Q2. How do you interpret it? 

Write your responses here: 

2.3.6 Adjust R-Squared ( ) 

One limitation of R² is that it always increases when more predictors are added to a model, even if the new 
predictors contribute little to explaining the variance. This makes it unreliable for comparing models with 
different numbers of predictors. To address this, Adjusted R-squared ( ) modifies  by penalizing the 
inclusion of additional predictors that do not improve model fit. The formula is: 

*  (Mean Squared Errors): , accounting for model complexity, 

 (Mean Squared Total): , accounting for total 
variation, 
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n: sample size, k: the number of explanatory variables in the model. 

Key difference between them is  penalizes unnecessary predictors, providing a more accurate measure 
of the model’s explanatory power. If a new predictor contributes significantly,  value will increase; 
otherwise, it may decrease. 

Note: 

In practice, a high  alone does not guarantee a good model. We must also consider 

factors such as p-values, residual diagnostics, and model assumptions before drawing 

conclusions. Adding too many predictors may increase the  or Adjusted  value, but it 

can also lead to overfitting. Therefore, you should carefully select which predictors to 

include or exclude in the model. 

You should also consider standardising the variables, which means rescaling them to 

improve interpretability. To do this, use the scale() function as shown below: 

Exercise 2 – Bivariate Linear Regression Using WVS Dataset: Running 
Your Own Models 

So far, we have practiced bivariate linear regression analysis using real-world data. Now, it is your turn 
to apply these concepts independently. Using the World Values Survey (WVS) dataset, you will run a 
regression model and interpret the results. 

For this exercise, you will develop a regression model where: dependent variable is Life Satisfaction (Q49), 
and independent variable: Age (Q262) Using the R code from Exercise 1 as a reference, your task is to 
create an R Markdown file, conduct the analysis, and export the results into an HTML or Word document. 

Please follow the below steps: 

1. Open a new R Markdown file. 
2. Import and view the summary statistics: 

1. Selecting only Life_satisfaction and Age variables. 
2. Checking and ensuring the data type. 
3. Checking the summary statistics 

Standreg <- lm(scale(Physical_assault) ~ scale(Year), data= Victim) 

Standreg 
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3. Create scatter plots: 
1. Generate a scatter plot without a fitted line to visualize the relationship. 
2. Generate a scatter plot with a fitted regression line. 
3. Interpret the outcomes. 

 

4. Calculate the correlation coefficient: 
0. Compute the correlation coefficient2. 
1. Test whether the correlation is statistically significant. 
2. Interpret the results. 

 

5. Fit a bivariate regression model where Life_satisfaction is the dependent variable and Age is the 
independent variable. 

6. Estimated the predicted Life Satisfaction for individuals aged: 
1. 29 
2. 41 
3. 55 

 

7. Interpret the regression results, including: 
1. Estimated coefficient for Age 
2. t-value for Age 
3. p-value for Age 
4. Hypothesis testing for Age 
5. R-squared and Adjusted R-squared values 

 

8. Knit the R Markdown file to export all results into an HTML or Word document. 

You are strongly encouraged to complete the exercise on your own. 

Once you complete all exercises, make sure to save your R script before closing R. 
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7. 

CATEGORICAL PREDICTORS IN 
REGRESSION MODEL 

In this chapter, we will continue our work on multiple linear regression by 
extending the analysis to include categorical predictors (i.e., discrete or 
polytomous variables). We will demonstrate how these variables can be 
incorporated using appropriate coding techniques (e.g., dummy coding). 
We will then calculate a marginal effect and draw its plot. 

1. Multiple Regression with Categorical Predictors 

In this exercise, you will learn how to build and interpret categorical variables within a multiple regression 
model. This is an important skill, as many of the factors that social scientists are interested in tend to be 
categorical (e.g., gender, marital status, and region or country of residence). 

Categorical variables, also referred to as factors in R, classify observations into distinct groups. These 
variables consist of a limited number of values known as levels. For example, sex is a categorical variable with 
two levels: Male and Female, while marital status can be categorised into three levels: Married, Divorced, 
and Single. 

Your dataset may contain: 1) binary (dichotomous) variables, which have exactly two values (e.g., sex: 
male or female), 2) polytomous variables, which have more than two values (e.g., marital status: married, 
divorced, single), or a combination of both. 

Exercise 1 – Categorical Variable with two Levels 
(Dichotomous/Binary Variables) 

1.1 Dummy Variables 

In R, categorical variables are typically encoded as dummy variables. Dummy variable is an independent 
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variable which take the value of either 0 or 1. By default, the baseline (or reference) category is assigned a 
value of 0, while each comparison category is assigned a value of 1. 

For a binary variable such as Sex in WVS dataset: 

• The reference category is coded as 0 (e.g., Male), 
• The comparison category is coded as 1 (e.g., Female). 

Note: even if your raw data uses 1 for male and 2 for female, R will automatically handle the factor levels 
internally when you include the variable in a regression model. You do not need to manually recode it to 0 
and 1. 

Recall that, the regression equation, it can be simply written as 
. Suppose we include Sex 

as a binary predictor in the regression model. The regression model equation is: 

• When Sex = 0 (male): 

When Sex = 1 (female): 

• a: The average life satisfaction score among males (the reference group), 
• b: The average difference in life satisfaction between females and males, 
• a + b: The average life satisfaction score among females. 

1.2 Encoding the Dummy Variables 

In order to create a dummy variable for the categorical variable, the simplest way is to change the data type 
to factor using the as.factor() function. R creates dummy variables automatically if the data type is factor. 
You can also use the factor() function which you can assign the labels for each value. 

Let’s load the dataset and inspect the dataset to ensure it has been imported correctly. 

#Set up the working directory first 
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Sex variable’s data type is integer, so let’s change to factor type. 

setwd("C:/Your folder path/SOCYR") 

WVS <- read.csv("WVS.csv") 

#Load the required packages for Chapter 7 

library(corrplot) 

library(psych) 

library(dplyr) 

library(ggplot2) 

AUS_data <- WVS %>% 

  filter(Country == 36)  %>% #Filter only Australian participants 

  select(Life_satisfaction, Age, Sex, Marital_Status, EDU) 

#Check the data type 

str(AUS_data) 

## 'data.frame':    1813 obs. of  5 variables: 

##  $ Life_satisfaction: int  7 10 8 10 8 6 8 9 5 8 ... 

##  $ Age              : int  60 41 43 48 57 25 62 78 44 83 ... 

##  $ Sex              : int  1 1 2 2 1 2 1 1 1 1 ... 

##  $ Marital_Status   : int  1 1 1 1 1 6 3 1 1 3 ... 

##  $ EDU              : int  3 7 7 4 7 6 8 6 6 2 ... 

#Simply way to change the data type as factor 

AUS_data$Sex <- as.factor(AUS_data$Sex) 

# Convert Sex into a factor with labels 

AUS_data$Sex <- factor(AUS_data$Sex, levels = c(1, 2), labels = c("Male", "Female")) 

146  |  CATEGORICAL PREDICTORS IN REGRESSION MODEL



You can check the reference category using levels()function. The first level (here male) shown is the 
reference category by default. 

1.3 Fitting Multiple Regression Models with Categorical Predictor 

Let’s fit a multiple regression model with categorical Sex variable. The following model is bivariate 
regression outcome of the life satisfaction difference between males and females. 

# check the current reference category 

levels(AUS_data$Sex) 

## [1] "Male"   "Female" 

#Run a bivariate regression 

Female <- lm(Life_satisfaction ~ Sex, data = AUS_data) 

summary(Female) 

## 

## Call: 

## lm(formula = Life_satisfaction ~ Sex, data = AUS_data) 

## 

## Residuals: 

##     Min      1Q  Median      3Q     Max 

## -6.5947 -0.5947  0.4053  1.4053  2.5731 

## 

## Coefficients: 

##             Estimate Std. Error t value Pr(>|t|) 

## (Intercept)  7.42693    0.06621 112.170   <2e-16 *** 

## SexFemale    0.16774    0.08483   1.977   0.0482 * 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

## 

## Residual standard error: 1.749 on 1784 degrees of freedom 

##   (27 observations deleted due to missingness) 

## Multiple R-squared:  0.002187,   Adjusted R-squared:  0.001627 
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Based on the output above, the coefficient (SexFemale) is 0.17 which is the average difference in life 
satisfaction between females and males. The p-value of SexFemale is statistically significant (p < 0.05), 
indicating evidence of difference in average life satisfaction between sex. Therefore, we can say that the 
female group tends to report life satisfaction that is 0.17 points higher than the male group. 

You can calculate predicted life satisfaction value by sex by applying the equation as below: 

• For male group: the average life satisfaction score for males is estimated at 7.43. 

• For female group, the estimated average is 7.6. 

1.4 Changing the Baseline (Reference) Category 

In R, the reference category for categorical variables is, by default, the first level alphabetically or 
numerically when the variable is coded as a factor. You can change the baseline category for a categorical 
variable. For example, setting Female instead of Male as the reference group. While changing the reference 
category does not affect the overall model fit or computation, it does change the interpretation of the 
regression coefficients. 

To change the reference group, you can use the relevel() function: 

The reference category has been changed to Female. Let’s re-run the regression and examine how the 
interpretation of the coefficients differs. 

## F-statistic:  3.91 on 1 and 1784 DF,  p-value: 0.04817 

AUS_data$Sex <- relevel(AUS_data$Sex, ref = "Female") 

levels(AUS_data$Sex) 

## [1] "Female" "Male" 
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The output shows that not only estimate of intercept is different, but also the coefficient for SexMale 
is negative, indicating that being male is associated with a decrease in life satisfaction relative to females 
(the reference group). The p-value associated of SexFemale is statistically significant (p < 0.05), indicating 
evidence of difference in average life satisfaction between sex. Therefore, we can say that the male group 
tends to report life satisfaction that is 0.17 points lower than the female group. 

You can also calculate predicted life satisfaction value with the model where female is reference category by 
applying the equation as below: 

• For male group: the average life satisfaction score for males is estimated at 7.42. 

Male <- lm(Life_satisfaction ~ Sex, data = AUS_data) 

summary(Male) 

## 

## Call: 

## lm(formula = Life_satisfaction ~ Sex, data = AUS_data) 

## 

## Residuals: 

##     Min      1Q  Median      3Q     Max 

## -6.5947 -0.5947  0.4053  1.4053  2.5731 

## 

## Coefficients: 

##             Estimate Std. Error t value Pr(>|t|) 

## (Intercept)  7.59467    0.05303 143.207   <2e-16 *** 

## SexMale     -0.16774    0.08483  -1.977   0.0482 * 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

## 

## Residual standard error: 1.749 on 1784 degrees of freedom 

##   (27 observations deleted due to missingness) 

## Multiple R-squared:  0.002187,   Adjusted R-squared:  0.001627 

## F-statistic:  3.91 on 1 and 1784 DF,  p-value: 0.04817 
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• For female group, the estimated average is 7.59. 

1.4.1 Strategies for Choosing the Reference Category in Dummy Coding 

The best choice is to select a category that makes interpretation of the results easier and aligns with your 
research aims. While the choice of reference group does not critically affect the statistical estimation 
itself, using a category with a very small sample size may lead to statistical issues such as unstable estimates. 
In such cases, it is better to choose a reference category with a reasonably large or the largest sample size. 

1.5 Visualising the Differences 

You can also visualise the results by creating a plot, which offer a more intuitive understanding of the 
differences between groups. 

#Male as baseline category    

data1 <- data.frame( 

      Sex = rep(c("Male_ref", "Female"), each = 2), 

      Predicted_LS = c(rep(7.43, 2), rep(7.6, 2)), 

      X = rep(1:2, 2) 

    ) 

    

#Female as baseline category 

data2 <- data.frame( 

      Sex = rep(c("Male", "Female_ref"), each = 2), 

      Predicted_LS = c(rep(7.6, 2), rep(7.43, 2)), 

      X = rep(1:2, 2) 

    ) 

    

plot1 <- ggplot(data1, aes(x = X, y = Predicted_LS, color = Sex, group = Sex)) + 

      geom_line(linewidth  = 1.2) + 

      labs(y = "Predicted Life Satisfaction", 

           title = "Model 1:Male as baseline category") + 

      scale_color_manual(values = c("Male_ref" = "blue", "Female" = "red")) + 

      scale_y_continuous(limits = c(7, 8)) + 

      theme_minimal() + 
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The positions of the lines for males and females appear to have switched between the two plots. This is due 

      theme(axis.title.x = element_blank(), 

            axis.text.x = element_blank()) 

    

plot2 <- ggplot(data2, aes(x = X, y = Predicted_LS, color = Sex, group = Sex)) + 

      geom_line(linewidth  = 1.2) + 

      labs(y = "Predicted Life Satisfaction", 

           title = "Model 2: Female as baseline category") + 

      scale_color_manual(values = c("Male" = "blue", "Female_ref" = "red")) + 

      scale_y_continuous(limits = c(7, 8)) + 

      theme_minimal() + 

      theme(axis.title.x = element_blank(), 

            axis.text.x = element_blank()) 

# Combine the two plots 

#install.packages("patchwork") 

library(patchwork) 

plot1 + plot2 # side-by-side layout 
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to the change in reference category. However, the predicted life satisfaction scores for each group remain 
the same across both models. 

Exercise 2 – Categorical Variable With More Than two 
Levels 

When a categorical predictor has more than two levels (e.g., Marital Status: Married, Divorced, Single, 
etc.), it must be transformed into dummy variables in order to be included in a regression model. There are 
two ways to handle this transformation in R. 

In our dataset, the variable Marital_Status has six categories (1.- Married 2.- Living together as married 3.- 
Divorced 4.- Separated 5.- Widowed 6.- Single). 

For simplicity, we will recode this variable into three categories (Married, Divorced, and Single). 

2.1 Manual Recoding 

The first option involves manually creating dummy variables. In general, a categorical variable with n 
levels is represented by n – 1 dummy variables in a regression model. One level is selected as the reference 
category, and the other levels are compared against it. 

We can inspect the contrast matrix to see how R encodes the levels by default: 

AUS_data <- AUS_data %>% 

            mutate(NMarital_Status = 

             ifelse(Marital_Status == 1, 1, # If Marital_Status is 1, assign 1 to NMari

tal_Status 

             ifelse(Marital_Status ==3, 2, # If not 1, but Marital_Status is 3, assign 2 

             ifelse(Marital_Status == 6, 3, NA_real_)))) # If not 1 or 3, but Marital_Sta

tus is 6, assign 3, If none of the above conditions are met (2,4,5), assign NA 

contrasts(as.factor(AUS_data$NMarital_Status)) 

##   2 3 

## 1 0 0 

## 2 1 0 

## 3 0 1 
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Here, Married is treated as the baseline (reference) category. Based on this structure, we can manually 
create the dummy variables using the ifelse() function: 

These dummy variables can now be included as predictors in a regression model, with Married serving as 
the reference group. 

2.2 R Factor Function 

The second, more efficient approach is using the factor() function, as you have learned in section 1.2. R 
will automatically create the appropriate dummy variables during model estimation. 

By default, R will treat the first level (Married) as the reference category and compare the remaining groups 
against it. 

2.3 Comparison two Options 

Now that we have prepared the variable in two different ways (manual dummy creation and factor 
conversion), we can fit regression models using both methods and compare the outcomes. 

# Dummy variable for Divorced (1 if Divorced, 0 otherwise) 

AUS_data$Divorced <- ifelse(AUS_data$NMarital_Status == 2, 1, 0) 

# Dummy variable for Single (1 if Single, 0 otherwise) 

AUS_data$Single <- ifelse(AUS_data$NMarital_Status == 3, 1, 0) 

AUS_data$NMarital_Status <- factor(AUS_data$NMarital_Status, levels = c(1, 2,3), 

                                   labels = c("Married", "Divorced", "Single")) 

#Manual calculation 

Option1 <- lm(Life_satisfaction ~  Divorced + Single, data = AUS_data) 

summary(Option1) 

## 

## Call: 

## lm(formula = Life_satisfaction ~ Divorced + Single, data = AUS_data) 

## 
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## Residuals: 

##     Min      1Q  Median      3Q     Max 

## -6.8473 -0.8473  0.1527  1.1527  3.1010 

## 

## Coefficients: 

##             Estimate Std. Error t value Pr(>|t|) 

## (Intercept)  7.84728    0.05342 146.903  < 2e-16 *** 

## Divorced    -0.53522    0.14900  -3.592 0.000339 *** 

## Single      -0.94826    0.10835  -8.752  < 2e-16 *** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

## 

## Residual standard error: 1.652 on 1401 degrees of freedom 

##   (409 observations deleted due to missingness) 

## Multiple R-squared:  0.0546, Adjusted R-squared:  0.05325 

## F-statistic: 40.46 on 2 and 1401 DF,  p-value: < 2.2e-16 

#R function 

Option2 <- lm(Life_satisfaction ~   NMarital_Status, data = AUS_data) 

summary(Option2) 

## 

## Call: 

## lm(formula = Life_satisfaction ~ NMarital_Status, data = AUS_data) 

## 

## Residuals: 

##     Min      1Q  Median      3Q     Max 

## -6.8473 -0.8473  0.1527  1.1527  3.1010 

## 

## Coefficients: 

##                         Estimate Std. Error t value Pr(>|t|) 

## (Intercept)              7.84728    0.05342 146.903  < 2e-16 *** 

## NMarital_StatusDivorced -0.53522    0.14900  -3.592 0.000339 *** 

## NMarital_StatusSingle   -0.94826    0.10835  -8.752  < 2e-16 *** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 
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  Model 1: 
Option2     Model 2: 

Option2    

Predictors Estimates CI p Estimates CI p 

(Intercept) 7.85 7.74 – 7.95 0.001 7.85 7.74 – 7.95 0.001 

Divorced -0.54 -0.83 – -0.24 0.001 

Single -0.95 -1.16 – -0.74 0.001 

NMarital Status 
[Divorced] -0.54 -0.83 – -0.24 0.001 

NMarital Status [Single] -0.95 -1.16 – -0.74 0.001 

Observations 1404 1404 

R2 / R2 adjusted 0.055 / 0.053 0.055 / 0.053 

Quiz. Is there any difference between the two regression outcomes? 

## 

## Residual standard error: 1.652 on 1401 degrees of freedom 

##   (409 observations deleted due to missingness) 

## Multiple R-squared:  0.0546, Adjusted R-squared:  0.05325 

## F-statistic: 40.46 on 2 and 1401 DF,  p-value: < 2.2e-16 

#Create a regression table with the `tab_model()` function 

#install.packages("sjplot") 

library(sjPlot) 

## Learn more about sjPlot with 'browseVignettes("sjPlot")'. 

tab_model(Option1, Option2, 

          dv.labels = c("Model 1: Option2", "Model 2: Option2")) 
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Write your response here: 

2.4 Multiple Regression Model with all Categorical Variables 

Now, let’s include all the independent variables we have used so far to estimate a final multiple regression 
model. 

Full_Reg <- lm(Life_satisfaction ~ Age + EDU + Sex + NMarital_Status, data = AUS_data) 

summary(Full_Reg) 

## 

## Call: 

## lm(formula = Life_satisfaction ~ Age + EDU + Sex + NMarital_Status, 

##     data = AUS_data) 

## 

## Residuals: 

##     Min      1Q  Median      3Q     Max 

## -6.8406 -0.7725  0.1914  1.0855  3.4003 

## 

## Coefficients: 

##                         Estimate Std. Error t value Pr(>|t|) 

## (Intercept)              6.84194    0.23499  29.116  < 2e-16 *** 

## Age                      0.01485    0.00297   5.000 6.48e-07 *** 

## EDU                      0.05881    0.02674   2.199 0.028015 * 

## SexMale                 -0.24535    0.09138  -2.685 0.007341 ** 

## NMarital_StatusDivorced -0.57394    0.15246  -3.765 0.000174 *** 

## NMarital_StatusSingle   -0.69314    0.11476  -6.040 2.00e-09 *** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

## 

## Residual standard error: 1.613 on 1344 degrees of freedom 

##   (463 observations deleted due to missingness) 

## Multiple R-squared:  0.07061,    Adjusted R-squared:  0.06715 

## F-statistic: 20.42 on 5 and 1344 DF,  p-value: < 2.2e-16 
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Using the output above, answer the following questions: 

Q1. How many observations contribute to the regression model? 

Q2. What’s the predicted life satisfaction for each married, divorced, and single? 

Q3. What variables are statistically significant? Fully interpret the significant variables 

Q4. How would you interpret the results of the F-test? 

Q5. What are the values for R2 and adjusted R2 for this model? What do these tell you? 

Write your responses here: 

Exercise 3 – Marginal Predictions 

You can also calculate marginal effect to calculate model predictions for Y at different values of the X 
variables. Marginal effects measure how a change in a predictor variable affects the outcome variable, while 
holding other variables constant or averaging over their observed values. 

3.1 What’s the Difference Between Regression Outcome and 
Marginal Effect? 

Regression coefficients and marginal effects both quantify the relationship between predictors and 
outcomes, but they answer different questions and are interpreted differently, especially in nonlinear 
models (e.g., logistic regression). 

• Linear Regression: The expected change in the outcome for a 1-unit change in the predictor, holding 
other variables constant. 

• Marginal effects: The actual change in the outcome (on its original scale) for a 1-unit change in a 
predictor, averaged across the data (Average Marginal Effect) or at specific values (Marginal Effect at 
the Mean). 

In linear regression model, there is no big difference between regression outcome and marginal effect. 
However, if your model is a non-linear regression model, it is less intuitive to interpret the model outcome. 
Therefore, it would be more beneficial to use marginal effects for interpretations. We will discuss this 
further in Chapter 9. 
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3.2 Marginal Effects 

Let’s practice the marginal effects with the full multiple regression model. We will request the predicted 
value of the outcome variable (Life satisfaction) by Sex using the prediction() function. 

The outcome above shows the average predicted life satisfaction for males (7.51) and females (7.66), based 
on the Sex variable. However, here we have not accounted for the other variables in the models, this is the 
predicted values not the marginal effects. 

By including other variables in the marginal effect function, we can bypass the manual calculation that 
we have previously undertaken using the prediction equation. If you want to compare the predicted life 
satisfaction outcome by sex between the manual equation and using marginal effect. 

Equation: 

Predicted life satisfaction for female: 6.84, for male: 6.6 

install.packages("marginaleffects") 

library(marginaleffects) 

#Calculate the predicted value of life satisfaction by sex 

predictions(Full_Reg, by = "Sex") 

## 

##     Sex Estimate Std. Error   z Pr(>|z|)   S 2.5 % 97.5 % 

##  Male       7.51     0.0689 109   <0.001 Inf  7.38   7.65 

##  Female     7.66     0.0570 135   <0.001 Inf  7.55   7.77 

## 

## Columns: Sex, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high 

## Type:  response 

predictions( 

  Full_Reg, 

  newdata = datagrid(Sex = c("Male", "Female"), 
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You can see that the manual calculation and using marginal effects’ the results are same. 

Further, we can request that the values of all of the other explanatory variables in the prediction equation 
(i.e., Age, EDU, and NMarital_Status) are held constant at their respective sample means. 

                     Age = 0, # Same as intercept 

                     EDU = 0, # Same as intercept 

                     NMarital_Status = "Married") # Reference level 

) 

## 

##     Sex Age EDU NMarital_Status Estimate Std. Error    z Pr(>|z|)     S 2.5 % 

##  Male     0   0         Married     6.60      0.254 26.0   <0.001 491.6  6.10 

##  Female   0   0         Married     6.84      0.235 29.1   <0.001 616.7  6.38 

##  97.5 % 

##    7.09 

##    7.30 

## 

## Columns: rowid, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, 

Sex, Age, EDU, NMarital_Status, Life_satisfaction 

## Type:  response 

predictions( 

  Full_Reg, 

  newdata = datagrid( 

    Sex = c("Male", "Female"), 

    Age = mean(AUS_data$Age, na.rm = TRUE), 

    EDU = mean(AUS_data$EDU, na.rm = TRUE), 

    NMarital_Status = "Married"  # Reference category 

  ) 

) 

## 

##     Sex  Age  EDU NMarital_Status Estimate Std. Error   z Pr(>|z|)   S 2.5 % 

##  Male   54.3 4.66         Married     7.68     0.0765 100   <0.001 Inf  7.53 
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You can see that the predicted life satisfaction for males and females has changed depending on how the 
other variables are controlled (at their respective sample means). The option that you use depends on your 
research question and dataset. 

3.3 Marginal Effect Plot 

The model predictions that we have generated using the margins command can be easily plotted by 
invoking the plot_predictions() functions. 

##  Female 54.3 4.66         Married     7.92     0.0649 122   <0.001 Inf  7.80 

##  97.5 % 

##    7.83 

##    8.05 

## 

## Columns: rowid, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, 

Sex, Age, EDU, NMarital_Status, Life_satisfaction 

## Type:  response 

plot_predictions( 

  Full_Reg, 

  by = "Sex", # Compare Sex = "1" vs. "2" 

  newdata = datagrid( 

    Sex = c("Male", "Female"), # Explicitly include both sexes 

    Age = mean(AUS_data$Age, na.rm = TRUE), 

    EDU = mean(AUS_data$EDU, na.rm = TRUE), 

    NMarital_Status = "Married"  # Reference level 

  ) 

) + 

  labs( 

    title = "Predicted Life Satisfaction by Sex", 

    x = "Sex", 

    y = "Life Satisfaction" 

  ) + 

  scale_x_discrete(labels = c("1" = "Male", "2" = "Female")) + 

  theme_minimal() 
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Q. How do you interpret the results depicted in the graph? 

Write your response here: 

Once you complete all exercises, make sure to save your R script before closing R. 
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8. 

STATISTICAL MODERATION AND 
MEDIATION 

So far, we have focused on relationships between two variables. In this 
chapter, we extend our analysis to relationships among three variables, 
with particular attention to statistical moderation and mediation. The goal 
is to help you develop a clear understanding of these concepts and learn 
how to interpret and estimate regression models that incorporate them. 
We will begin by conceptualising moderation and mediation, and then 
apply these ideas through practical exercises. 

1. Moderation Analysis 

1.1 What is Moderation? 

To introduce moderation, consider a bivariate relationship between an independent variable (e.g., age) 
and a dependent variable (e.g., life satisfaction). We hypothesise that life satisfaction increases with age, 
illustrated by a basic diagram: 

A moderator variable ( ) influences the strength and/or direction of the relationship between  and 
. For example, the link between age and life satisfaction may vary by sex. If the association is stronger for 
one sex, sex acts as a moderator. This means the effect of age on life satisfaction depends on whether the 
individual is male or female. In a diagram, moderation is shown when the slope of the relationship differs 
across groups. 
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1.2 Conducting a Moderation Analysis 

Moderation analysis can be conducted by including one or multiple interaction terms in a regression 
analysis. For example, if  moderates the relationship between  and , we can fit a regression model as 

If  represents a binary variable 
(e.g., sex), coded as 0 for males and 1 for females: 

• For male respondents ( ): 

• For female respondents ( ): 

In this case,  represents the difference in the effect of  on  between the two groups. If , this 
indicates that the strength or direction of the relationship between  and  varies by  , which is a clear 
sign of a moderation effect. 

Exercise 1 – Moderation Effect in R 

We have conceptually and mathematically explored the moderation effect. We now turn to a practical 
application using WVS dataset. The explanatory variable is Age, the moderator variable is Sex, and the 
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outcome variable is Life_satisfaction. We also include a series of control variables: health status (Q47), 
education level (EDU), marital status (NMarital_Status), and income (Income). 

1.1 Data Preparation 

Let’s import the dataset and begin by cleaning the control variables: 

1.2 Creating Interaction Terms 

To examine a moderation effect, the first step is to create an interaction term. There are two common 
approaches to generating interaction terms: Manual computation and using R syntax. 

#Set up the working directory first 

setwd("C:/Your folder path/SOCYR") 

#Load the dataset 

WVS <- read.csv("WVS.csv") 

#Load the required packages for Chapter 8 

library(dplyr) 

library(knitr) 

library(sjPlot) 

library(marginaleffects) 

library(ggeffects) 

library(ggplot2) 

library(psych) 

New_data <- WVS %>% 

            filter(Country == 36) %>% #Filter only Australian participants %>% 

             mutate(NMarital_Status = ifelse(Marital_Status == 1, 1, 

                                  ifelse(Marital_Status ==3, 2, 

                                         ifelse(Marital_Status == 6, 3, NA_real_)))) 

New_data <- New_data %>% 

  mutate(Health = 6 - Q47)  #Now higher value indicates better health status 
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1.2.1 Manual Computation 

We begin with the manual approach. An interaction term can be created by simply multiplying the two 
variables. 

When creating an interaction with a categorical variable (here Sex), ensure it is numeric. If coded as a factor, 
direct multiplication may cause errors or unpredictable results. 

New_data$Inter_term <- New_data$Sex * New_data$Age 

Model1 <- lm(Life_satisfaction ~ Age + Sex +Inter_term + Income +Health +EDU + NMari

tal_Status , data = New_data) 

summary(Model1) 

## 

## Call: 

## lm(formula = Life_satisfaction ~ Age + Sex + Inter_term + Income + 

##     Health + EDU + NMarital_Status, data = New_data) 

## 

## Residuals: 

##     Min      1Q  Median      3Q     Max 

## -6.9636 -0.7168  0.1517  0.9878  3.9311 

## 

## Coefficients: 

##                  Estimate Std. Error t value Pr(>|t|) 

## (Intercept)      1.864544   0.555437   3.357 0.000811 *** 

## Age              0.037288   0.008235   4.528 6.51e-06 *** 

## Sex              0.867092   0.279099   3.107 0.001932 ** 

## Inter_term      -0.012601   0.004954  -2.543 0.011093 * 

## Income           0.118423   0.021962   5.392 8.26e-08 *** 

## Health           0.822961   0.051027  16.128  < 2e-16 *** 

## EDU             -0.030899   0.025996  -1.189 0.234820 

## NMarital_Status -0.220405   0.051395  -4.288 1.93e-05 *** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

## 

## Residual standard error: 1.435 on 1301 degrees of freedom 

##   (504 observations deleted due to missingness) 
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Quiz. Is the interaction term statistically significant? How can you determine this, and interpret 

the results. 

Write your response here: 

1.2.2 Using R Syntax 

An alternative approach is to include the interaction term directly in the regression model. 

By including the interaction term using the * operator (Age * Sex), R will automatically estimate both the 
main effects of Age and Sex as well as their interaction effect. Sex should be coded as a factor rather than as 
a numeric. 

## Multiple R-squared:  0.2656, Adjusted R-squared:  0.2616 

## F-statistic: 67.21 on 7 and 1301 DF,  p-value: < 2.2e-16 

New_data$Sex <- factor(New_data$Sex, levels = c(1, 2), labels = c("Male", "Female")) 

Model2 <- lm(Life_satisfaction ~ Age*Sex + Income+ Health + EDU + NMarital_Status , data 

= New_data) 

summary(Model2) 

## 

## Call: 

## lm(formula = Life_satisfaction ~ Age * Sex + Income + Health + 

##     EDU + NMarital_Status, data = New_data) 

## 

## Residuals: 

##     Min      1Q  Median      3Q     Max 

## -6.9636 -0.7168  0.1517  0.9878  3.9311 
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1.3 Creating Regression Tables 

To compare the results from two models, let’s use the tab_model() function to generate a regression table. 
This table presents a side-by-side comparison of the estimates from both models. 

## 

## Coefficients: 

##                  Estimate Std. Error t value Pr(>|t|) 

## (Intercept)      2.731636   0.363318   7.519 1.03e-13 *** 

## Age              0.024687   0.003892   6.343 3.10e-10 *** 

## SexFemale        0.867092   0.279099   3.107  0.00193 ** 

## Income           0.118423   0.021962   5.392 8.26e-08 *** 

## Health           0.822961   0.051027  16.128  < 2e-16 *** 

## EDU             -0.030899   0.025996  -1.189  0.23482 

## NMarital_Status -0.220405   0.051395  -4.288 1.93e-05 *** 

## Age:SexFemale   -0.012601   0.004954  -2.543  0.01109 * 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

## 

## Residual standard error: 1.435 on 1301 degrees of freedom 

##   (504 observations deleted due to missingness) 

## Multiple R-squared:  0.2656, Adjusted R-squared:  0.2616 

## F-statistic: 67.21 on 7 and 1301 DF,  p-value: < 2.2e-16 

tab_model(Model1,Model2, 

          dv.labels = c("Manual computation", "R function")) 
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Table 8.1 

  Manual computation     R function    

Predictors Estimates CI p Estimates CI p 

(Intercept) 1.86 0.77 – 2.95 0.001 2.73 2.02 – 3.44 0.001 

Age 0.04 0.02 – 0.05 0.001 0.02 0.02 – 0.03 0.001 

Sex 0.87 0.32 – 1.41 0.002 

Inter term -0.01 -0.02 – -0.00 0.011 

Income 0.12 0.08 – 0.16 0.001 0.12 0.08 – 0.16 0.001 

Health 0.82 0.72 – 0.92 0.001 0.82 0.72 – 0.92 0.001 

EDU -0.03 -0.08 – 0.02 0.235 -0.03 -0.08 – 0.02 0.235 

NMarital Status -0.22 -0.32 – -0.12 0.001 -0.22 -0.32 – -0.12 0.001 

Sex [Female] 0.87 0.32 – 1.41 0.002 

Age × Sex [Female] -0.01 -0.02 – -0.00 0.011 

Observations 1309 1309 

R2 / R2 adjusted 0.266 / 0.262 0.266 / 0.262 

Q. Do you observe any differences between the two sets of results? 

Write your response here: 

1.4 Visualising the Moderation Effect in R 

We will explore how to calculate model-based predictions and visualise moderation effects using R. We will 
base our predictions on the results of Model 2. To begin, we use the ggpredict() function, which allows 
us to compute predicted values of life satisfaction at specific values of the interacted variables. 

Recall from Chapter 7 that we used the prediction() function. While both functions are useful, 
ggpredict() is often more effective for visualising interaction effects. 

pred <- ggpredict( 
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The terms argument in ggpredict() specifies which variables should vary and how they should vary when 
generating predicted values. In the example above, Age [20:80 by=10] argument indicates that age should 

  Model2, 

  terms = c("Age [20:80 by=10]", "Sex") # Assign the Age range and grouping by Sex 

) 

print(pred) 

## # Predicted values of Life_satisfaction 

## 

## Sex: Male 

## 

## Age | Predicted |     95% CI 

## ---------------------------- 

##  20 |      6.75 | 6.45, 7.06 

##  30 |      7.00 | 6.76, 7.24 

##  40 |      7.25 | 7.07, 7.43 

##  50 |      7.49 | 7.35, 7.64 

##  60 |      7.74 | 7.60, 7.88 

##  80 |      8.24 | 8.01, 8.46 

## 

## Sex: Female 

## 

## Age | Predicted |     95% CI 

## ---------------------------- 

##  20 |      7.37 | 7.13, 7.61 

##  30 |      7.49 | 7.31, 7.67 

##  40 |      7.61 | 7.47, 7.75 

##  50 |      7.73 | 7.62, 7.85 

##  60 |      7.85 | 7.72, 7.98 

##  80 |      8.09 | 7.87, 8.32 

## 

## Adjusted for: 

## *          Income = 6.00 

## *          Health = 3.99 

## *             EDU = 4.00 

## * NMarital_Status = 1.54 
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range from 20 to 80 in increments of 10. For each age value, predictions are generated separately for each 
category of Sex (Male and Female). 

You can also modify the terms argument to suit different scenarios. For instance, to generate predictions 
across all observed values of Age by each level of Sex, you can use: 
terms = c("Age", "Sex"). To learn more about the function and available options, you can run: 
?ggpredict. 

Quiz. What does the output above represent? 

Write your response here: 

Now, let’s create a plot using the predicted values. To do this, we will use the ggplot() function. 

ggplot(pred, aes(x = x, y = predicted, color = group, group = group)) + 

  geom_line(linewidth = 1) + 

  geom_point(size = 2) + 

  labs( 

    title = "Life Satisfaction by Age and Sex", 

    x = "Age", 

    y = "Predicted Life Satisfaction", 

    color = "Sex" 

  ) + 

  scale_x_continuous(breaks = seq(20, 80, by = 10)) +  # Custom age range 

  theme_minimal() 
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Quiz. Interpret the plot outcome above. 

Write your response here: 

1.5 Continuous Moderator 

Suppose we are interested in examining whether education level (EDU) moderates the relationship between 
age and income. In this case, note that the potential moderator, EDU, is a continuous variable. 

Model3 <- lm(Income ~ Age*EDU +Sex + Health   + NMarital_Status , data = New_data) 

summary(Model3) 
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The results of the regression analysis are shown above. The coefficient for the interaction term (Age:EDU) 
is 0.007, with a p-value < .001. This indicates that education level significantly moderates the relationship 
between age and income. 

When you check the main effect of Age and EDU, each of them is negatively and positively associated 
with Income respectively and interaction term is positive. This result suggests that the negative effect of age 
on income weakens as education level increases. In other words, higher education may buffer against age-
related declines in income. 

Since EDU is a continuous variable, there are no discrete groups for direct comparison. To interpret 
the interaction effect more intuitively, we examine the relationship between age and income at three 
representative values of EDU: the mean, one standard deviation below the mean, and one standard 
deviation above the mean. In this example, the three values are 3.02, 5.13, and 7.24. 

## 

## Call: 

## lm(formula = Income ~ Age * EDU + Sex + Health + NMarital_Status, 

##     data = New_data) 

## 

## Residuals: 

##     Min      1Q  Median      3Q     Max 

## -5.3630 -1.1631  0.1455  1.2342  5.6347 

## 

## Coefficients: 

##                  Estimate Std. Error t value Pr(>|t|) 

## (Intercept)      4.709912   0.632094   7.451 1.67e-13 *** 

## Age             -0.042833   0.009071  -4.722 2.59e-06 *** 

## EDU              0.108470   0.104703   1.036  0.30041 

## SexFemale       -0.218932   0.103583  -2.114  0.03474 * 

## Health           0.480500   0.062680   7.666 3.44e-14 *** 

## NMarital_Status -0.414464   0.063771  -6.499 1.14e-10 *** 

## Age:EDU          0.005034   0.001796   2.802  0.00515 ** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

## 

## Residual standard error: 1.809 on 1309 degrees of freedom 

##   (497 observations deleted due to missingness) 

## Multiple R-squared:  0.2301, Adjusted R-squared:  0.2266 

## F-statistic:  65.2 on 6 and 1309 DF,  p-value: < 2.2e-16 
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You can generate predicted values for these levels using the ggpredict() function: 

Table 8.2 

  vars n mean sd median trimmed mad min max sd median trimmed mad 

X1 1 1748 5.127574 2.109014 5 5.208571 2.9652 1 10 2.109014 5 5.208571 2.9652 

describe(New_data$Income) #Check the mean (4.83) and standard deviation (1.67) values 

pred2 <- ggpredict(Model3, terms = c("Age[20:80 by=10]", "EDU [3.02, 5.13, 7.24]")) 

ggplot(pred2, aes(x = x, y = predicted, color = group, group = group)) + 

  geom_line(linewidth = 1) + 

  geom_point(size = 2) + 

  scale_color_discrete(labels = c("Low", "Medium", "High")) + # Low:3.02, Medium: 5.13, 

High: 7.24 

  labs( 

    title = "Income by Age and EDU", 

    x = "Age", 

    y = "Predicted Income", 

    color = "EDU"  # This sets the legend title 

  ) + 

  theme_minimal() 
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Quiz. Interpret the plot outcome above. 

Write your response here: 

2. Statistical Mediation Analysis 

2.1 What is Mediation? 

Mediation is when the effect of an independent variable ( ) on a dependent variable ( ) is transmitted 
through a third variable – called a mediator ( ). For example, suppose higher educational attainment 
is associated with greater life satisfaction (path c). However, this relationship may be explained by an 
underlying mechanism: individuals with higher education tend to earn more income (path a), and higher 

174  |  STATISTICAL MODERATION AND MEDIATION

https://uq.pressbooks.pub/app/uploads/sites/152/2025/10/Ch-8-img-4.png
https://uq.pressbooks.pub/app/uploads/sites/152/2025/10/Ch-8-img-4.png


income, in turn, is associated with greater life satisfaction (path b). In this scenario, income plays as a 
mediator, contributing to explain how or why education influences life satisfaction. 

2.2 Conducting a Mediation Analysis 

To systematically assess mediation, we follow the four-step approach proposed by Baron and Kenny (1986): 

1. Test the total effect (path c): Estimate the association between the independent variable (X) and the 
outcome (Y) while including control variables but excluding the mediator. If X is not significantly 
related to Y, there is no effect to mediate. 

2. Test path a (X → M): Regress the mediator (M) on the independent variable (X) to determine 
whether X significantly predicts M. This step treats the mediator as the outcome. 

3. Test path b and the direct effect (path c′): Regress the outcome (Y) on both the independent variable 
(X) and the mediator (M). This model tests whether the mediator has a significant effect on the 
outcome while controlling for X, and whether the direct effect of X on Y (path c′) is reduced 
compared to the total effect (c). 

4. Assess full or partial mediation: If the effect of X on Y becomes non-significant when controlling for 
M, this suggests full mediation. If the effect is reduced but still significant, it indicates partial 
mediation. 

Exercise 2 – Mediation Effect in R 

We now turn to a practical example of mediation analysis using the WVS dataset. In this exercise, our key 
independent variable is education level (EDU), the mediator (M) is Income, and the dependent variable (Y) 
is Life_satisfaction. We also control for two basic demographic variables: Age and Sex. 

Note however that for mediation analysis it is convenient that we focus only on observations in which 
individuals have no missing data in any of the variables involved in the analysis. Else, each of the models in 
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Steps 1 to 4 of the Baron & Kenny mediation framework could be based on different individuals and have 
a different number of observations. That would invalidate our mediation analysis. 

We will follow the Baron and Kenny’s (1986) approach step-by-step in R: 

Table 8.3 Mediation analysis 

  Step 1: 
X -> Y     Step 2: 

X -> M    
Step 3 & 
4: X + 
M -> Y 

   

Predictors Estimates CI p Estimates CI p Estimates CI p 

(Intercept) 5.83 5.40 – 6.27 0.001 3.84 3.36 – 4.33 0.001 4.88 4.43 – 5.33 0.001 

EDU 0.11 0.06 – 0.16 0.001 0.47 0.41 – 0.52 0.001 0 -0.06 – 0.05 0.862 

Sex [Female] 0.27 0.10 – 0.44 0.002 -0.28 -0.47 – -0.09 0.004 0.34 0.17 – 0.50 0.001 

Age 0.02 0.01 – 0.02 0.001 -0.01 -0.02 – -0.01 0.001 0.02 0.02 – 0.03 0.001 

Income 0.25 0.21 – 0.29 0.001 

Observations 1672 1672 1672 

R2 / 
R2 adjusted 

0.037 / 
0.036 

0.184 / 
0.182 

0.111 / 
0.109 

The total effect of EDU on life satisfaction can be decomposed into the direct effect and the indirect effect, 
calculated as follows: 

#Remove all NAs 

model_data <- na.omit(New_data[, c("Life_satisfaction","Income", "Sex", "Age", "EDU")]) 

#Step 1 (X -> Y) 

Model1 <- lm(Life_satisfaction ~  EDU + Sex + Age     , data = model_data) 

#Step 2 (X -> M) 

Model2 <- lm(Income ~ EDU + Sex +  Age, data = model_data) 

#Step 3 & 4 (X +M -> Y) 

Model3 <- lm(Life_satisfaction ~  EDU + Income   + Sex+  Age   , data = model_data) 

tab_model(Model1,Model2,Model3, 

          dv.labels = c("Step 1: X -> Y", "Step 2: X -> M", "Step 3 & 4: X + M -> Y"), 

          title = "Mediation analysis") 
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You can compare this value with the coefficient for EDU ( ) in Model 1 to evaluate consistency across 
models. 

Based on the output above and address the following questions for each step: 

Q1. Step 1 – Is the independent variable (EDU) significantly associated with the outcome (Life 

satisfaction)? What evidence supports this? 

Q2. Step 2 – Is the independent variable significantly associated with the mediator (Income)? 

What is the evidence? 

Q3. Step 3 – Is the mediator (Income) significantly associated with the outcome (Life 

satisfaction), controlling for EDU? What evidence supports this? 

Q4. Step 4 – Is the coefficient for EDU reduced or no longer significant when Income is added to 

the model? What does this suggest about mediation? 

Write your responses here: 

2.3 Sobel Test 

Although significant relationships between the independent variable and the mediator, and between the 
mediator and the outcome, may suggest mediation, they do not provide formal statistical confirmation. To 
assess whether mediation is occurring, a Sobel test can be used as a post-estimation test. 

The Sobel test evaluates whether the indirect effect of an independent variable on a dependent 
variable—via a mediator—is statistically different from zero. Specifically, it tests the significance of the 
product of the coefficients for path a (X → M) and path b (M → Y), that is: 

This can also be expressed as a proportion of the total effect: 
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To conduct the Sobel test, we use the mediation.test() function from the bda package: 

The output includes several test statistics, but we are particularly interested in the Sobel test result, which 
directly indicates whether the indirect effect is statistically significant. 

Based on the output above and address the following questions: 

Q1. What does the Sobel test output tell about the statistical significance of the mediating role 

of income in the relationship between education and life satisfaction? 

Q2. Based on the results from all models and the Sobel test, what can be concluded about the 

presence and strength of mediation in this analysis? 

Write your responses here: 

Once you complete all exercises, make sure to save your R script before closing R. 

install.packages("bda") 

library(bda) 

# Testing mediation effect 

mediation.test(model_data$Income, model_data$EDU, model_data$Life_satisfaction) #media

tion.test(mv, iv, dv): This is the basic structure to order the variables: mediator, inde

pendent, and dependent variable 
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9. 

INTRODUCTION TO DATA VISUALISATION 

In this chapter, we will practise data visualisation techniques. Data 
visualisation is widely used in the social sciences to present results in a 
more accessible way. By using graphics and visual displays of the data we 
can help readers interpret quantitative findings more intuitively which 
increases the impact of our research. We will begin by exploring the basic 
yet essential grammar of the ggplot2 package and then apply it to create a 
variety of different plot types. 

1. Learning ggplot Package 

Data visualisation is one of R’s greatest strengths. From basic graphs to advanced packages, R offers a 
wide range of tools for creating insightful and appealing visualisations. In this session, we focus on the 
ggplot2 package, which enables users to build complex and professionally presented plots using intuitive 
and modular syntax. 

What makes ggplot2 particularly accessible for beginners is its foundation in the Grammar of Graphics (the 
gg in ggplot2). This approach is similar to how learning basic grammar enables the construction of countless 
sentences. Likewise, learning a few core components of ggplot2, such as data, aesthetics, and geometry, 
allows you to create a wide variety of plots. 

We begin by exploring four key components using scatter plots, then apply them to other types of 
visualisations. For this session, we use the built-in USArrests dataset. We’ll first examine and prepare the 
data before moving into plotting. 

We begin by loading the dataset and the required packages: 

#Set the working directory 

setwd("C:/your own path/SOCYR") 
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We then classify the states into four U.S. Census regions—Northeast, Midwest, South, and West—and 
create new variables for both region and state. 

# View dataset documentation 

?USArrests 

#Load the dataset 

USA <- USArrests 

#Load the required packages for chapter 9 

library(dplyr) 

library(ggplot2) 

library(tidyr) 

options(scipen = 999) #turning off scientific notation 

# Assign region and state variables 

northeast <- c("Connecticut", "Maine", "Massachusetts", "New Hampshire", "Rhode Island", 

"Vermont", 

               "New Jersey", "New York", "Pennsylvania") 

midwest <- c("Illinois", "Indiana", "Michigan", "Ohio", "Wisconsin", 

             "Iowa", "Kansas", "Minnesota", "Missouri", "Nebraska", "North Dakota", 

"South Dakota") 

south <- c("Delaware", "Florida", "Georgia", "Maryland", "North Carolina", "South Car

olina", 

           "Virginia", "West Virginia", "Alabama", "Kentucky", "Mississippi", "Tennessee", 

           "Arkansas", "Louisiana", "Oklahoma", "Texas") 

west <- c("Arizona", "Colorado", "Idaho", "Montana", "Nevada", "New Mexico", "Utah", 

"Wyoming", 

          "Alaska", "California", "Hawaii", "Oregon", "Washington") 

USA$Region <- ifelse(rownames(USA) %in% northeast, "Northeast", 

                           ifelse(rownames(USA) %in% midwest, "Midwest", 

                                  ifelse(rownames(USA) %in% south, "South", 

                                         ifelse(rownames(USA) %in% west, "West", NA)))) 

USA$State <- rownames(USA) 

rownames(USA) <- NULL 

#Check the updated dataset 

USA 
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Table 9.1 
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Murder Assault UrbanPop Rape Region State 

13.2 236 58 21.2 South Alabama 

10 263 48 44.5 West Alaska 

8.1 294 80 31 West Arizona 

8.8 190 50 19.5 South Arkansas 

9 276 91 40.6 West California 

7.9 204 78 38.7 West Colorado 

3.3 110 77 11.1 Northeast Connecticut 

5.9 238 72 15.8 South Delaware 

15.4 335 80 31.9 South Florida 

17.4 211 60 25.8 South Georgia 

5.3 46 83 20.2 West Hawaii 

2.6 120 54 14.2 West Idaho 

10.4 249 83 24 Midwest Illinois 

7.2 113 65 21 Midwest Indiana 

2.2 56 57 11.3 Midwest Iowa 

6 115 66 18 Midwest Kansas 

9.7 109 52 16.3 South Kentucky 

15.4 249 66 22.2 South Louisiana 

2.1 83 51 7.8 Northeast Maine 

11.3 300 67 27.8 South Maryland 

4.4 149 85 16.3 Northeast Massachusetts 

12.1 255 74 35.1 Midwest Michigan 

2.7 72 66 14.9 Midwest Minnesota 

16.1 259 44 17.1 South Mississippi 

9 178 70 28.2 Midwest Missouri 

6 109 53 16.4 West Montana 

4.3 102 62 16.5 Midwest Nebraska 

12.2 252 81 46 West Nevada 

2.1 57 56 9.5 Northeast New Hampshire 

7.4 159 89 18.8 Northeast New Jersey 

11.4 285 70 32.1 West New Mexico 

11.1 254 86 26.1 Northeast New York 
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Murder Assault UrbanPop Rape Region State 

13 337 45 16.1 South North Carolina 

0.8 45 44 7.3 Midwest North Dakota 

7.3 120 75 21.4 Midwest Ohio 

6.6 151 68 20 South Oklahoma 

4.9 159 67 29.3 West Oregon 

6.3 106 72 14.9 Northeast Pennsylvania 

3.4 174 87 8.3 Northeast Rhode Island 

14.4 279 48 22.5 South South Carolina 

3.8 86 45 12.8 Midwest South Dakota 

13.2 188 59 26.9 South Tennessee 

12.7 201 80 25.5 South Texas 

3.2 120 80 22.9 West Utah 

2.2 48 32 11.2 Northeast Vermont 

8.5 156 63 20.7 South Virginia 

4 145 73 26.2 West Washington 

5.7 81 39 9.3 South West Virginia 

2.6 53 66 10.8 Midwest Wisconsin 

6.8 161 60 15.6 West Wyoming 

1.1 The Setup 

To begin, you need to specify the dataset that ggplot2 will use. This is done using the ggplot() function. 
The ggplot2 package is designed to work with data in tidy format, where each row represents an observation 
and each column represents a variable. This initial step does not produce a plot on its own—it simply 
establishes the foundation for further layers to be added. 

 

#Assign the dataset 

ggplot(USA) 

#Alternatively, you can use the pipe operator (%>%) 

#USA %>% ggplot() 
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1.2 Geometries 

Plots in ggplot2 are constructed by adding layers. Layers typically define geometric objects, or geoms, which 
specify the type of visual representation—such as points, bars, or lines. 

To add a layer, use the + symbol. A typical line of code in ggplot2 looks like this: 

The first layer usually defines the geometry using a geom_() function: 

If you run the above examples without specifying variables, you will receive an error message stating that 
required aesthetics (such as  and ) are missing. Once you have chosen a dataset and geometry, the next 
essential step is to define aesthetic mappings, which tell ggplot2 how variables should be mapped to visual 
properties like position, colour, or size. 

1.3 Aesthetic mapping 

Aesthetic mapping defines how variables in the dataset are visually represented in the plot, such as through 
position (  and  axes), colour, or size. The aes() function is used to map data variables to these visual 
features. 

You can place aes() inside the main ggplot() function or within individual geom_() layers. Both 
approaches are valid, and the choice often depends on whether the aesthetic applies to the entire plot or 
just a specific layer. 

For example, you can create a scatter plot by mapping urban population to the x-axis and murder rate to the 
y-axis, and assign colour based on a third variable (region): 

ggplot(USA) + geom_point() # Create a scatter plot 

ggplot(USA) + geom_bar() # Create a bar chart from counts 

ggplot(USA) + geom_line() # Draw a line graph for trends 

#Basic syntax 

ggplot(USA, aes()) +geom_point() 

ggplot(USA) +geom_point(aes()) 

# Aesthetic defined in ggplot() 
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ggplot(USA, aes(x = UrbanPop, y = Murder)) + geom_point() 

# Aesthetic defined in geom_point() 

#ggplot(USA) + geom_point(aes(x = UrbanPop, y = Murder)) 

# To add a third variable (Region), as a colour aesthetic 

ggplot(USA, aes(x = UrbanPop, y = Murder, color = Region)) + geom_point() 
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1.4 Additional Features 

Beyond the core plot structure, ggplot2 allows for easy enhancements such as labels, themes, and size 
adjustments. These features improve readability and customise your visual output. 

1.4.1 Adding Labels 

By default, axis labels and scales are derived from the data. However, you can customise them using the 
labs() function to add a plot title and modify axis labels. 

#ggplot(USA) + geom_point(aes(x = UrbanPop, y = Murder, color = Region)) 

# Adding x- and y-xis labels and plot title. 

ggplot(USA, aes(x = UrbanPop, y = Murder, color = Region)) + 

                       geom_point() + 

                          labs(title = "A scatter plot", x = "Urban Population", y = "Mur

der") 
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1.4.2 Themes 

Once your basic plot is constructed, you may want to refine its appearance. For example, you can adjust 
the size of the title and axis labels, or change the legend title. These enhancements are made using the 
theme() function, which allows you to customise individual plot elements by specifying them inside 
element_text(). If you wish to hide any element, use element_blank() to remove it entirely. 

To modify the legend title associated with a colour aesthetic that maps a factor variable, use the 
scale_color_discrete() function. This is because the default legend in such cases is based on discrete 
colour mapping. 

ggplot(USA, aes(x = UrbanPop, y = Murder, color = Region)) + 

                 geom_point() + 

                 labs(title = "A scatter plot", x = "Urban Population", y = "Murder") + 

                 theme( 

                  plot.title = element_text(size = 15, face = "bold"), # Sets the plot 

title size and makes it bold 

                  axis.text.x = element_text(size = 10), # Sets the font 
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You can also modify the overall style of the plot background using pre-built themes: 

size of x-axis tick labels 

                  axis.text.y = element_text(size = 10), # Sets the font 

size of y-axis tick labels 

                  axis.title.x = element_text(size = 10), # Sets the font 

size of the x-axis title 

                  axis.title.y = element_text(size = 10),  # Sets the font 

size of the y-axis title 

                  legend.title = element_text(size = 10),  # Sets the leg

end title font size 

                  legend.text = element_text(size = 10))  + # Sets the leg

end item labels font size 

                  scale_color_discrete(name = "Label legend: Region") # Sets the leg

end title 

#White background with grid liens 

ggplot(USA, aes(x = UrbanPop, y = Murder, color = Region)) + 
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  geom_point() + 

  labs(title = "A scatter plot", x = "Urban Population", y = "Murder")  + 

  theme_bw() 

# Minimalist background with no annotations 

ggplot(USA, aes(x = UrbanPop, y = Murder, color = Region)) + 

  geom_point() + 

  labs(title = "A scatter plot", x = "Urban Population", y = "Murder")  + 

  theme_minimal() 
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#Empty background 

ggplot(USA, aes(x = UrbanPop, y = Murder, color = Region)) + 

  geom_point() + 

  labs(title = "A scatter plot", x = "Urban Population", y = "Murder")  + 

  theme_void() 
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1.4.3. Facets 

So far, we have visualised either single variables or relationships between two variables in a single plot. 
However, in many cases, it is useful to examine how these patterns differ across categories. The 
facet_wrap() function allows you to split a plot into multiple panels, each representing a subset of the data 
based on a categorical variable. 

# Facet by Region (2 columns) 

ggplot(USA) +geom_point(aes(x=UrbanPop, y = Murder)) + 

  labs(title = "A scatter plot", x = "Urban Population", y = "Murder")  + 

  theme_bw()+ 

  facet_wrap(~ Region, ncol = 2) 
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You can also colour the points by state and add labels using 
geom_text(): 

ggplot(USA) + geom_point(aes(x=UrbanPop, y = Murder, color = State)) + 

  labs(title = "A scatter plot", x = "Urban Population", y = "Murder")  + 

    geom_text(aes(x = UrbanPop, y = Murder, label = State), 

    size = 3, vjust = -0.5, check_overlap = TRUE) + 

    theme(legend.position = "none") + 

    facet_wrap(~ Region, ncol = 2) 
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1.5 Summary: Building a Plot Template 

Once you understand the building blocks of ggplot2, you can construct a wide range of plots by combining 
them. Below is a general template for assembling a plot: 

For further customisation and advanced plotting techniques, refer to the official gglot2 cheatsheet (PDF, 
2.1MB). 

2. Practicing Visualisations in R 

2.1 Histogram Plot 

Histogram plots are a useful way to visualise the distribution of a continuous variable. This is especially 

ggplot(data) + 

  <Geom_Function>(<Aesthetic_Mappings>) + 

  labs(...) + 

  facet_wrap(...) + 

  theme(...) 
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important in regression analysis, where one of the assumptions is that the outcome variable follows a 
normal distribution. 

Let’s begin by creating a histogram of the urban population variable: 

Q. Based on the plot above, do you think the variable follows a normal distribution? 

#Basic histogram 

ggplot(data = USA, aes(x=UrbanPop)) + 

  geom_histogram() + 

  labs(title = "Urban population")+ 

   theme(plot.title = element_text(hjust = 0.5))+ theme_bw() 

## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`. 
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Write your response here: 

While histograms are helpful, they may not always clearly reveal whether a distribution is normal. In such 
cases, a density plot offers a smoother visualisation. 

We can see that the density plot does not follow a clear or symmetrical pattern. To explore this further, you 
can overlay a normal distribution curve based on the variable’s mean and standard deviation. 

#Basic density plot 

ggplot(data = USA, aes(x=UrbanPop)) + 

  geom_density(fill = "lightblue") + 

  labs(title = "Urban population")+ theme_bw() 

#adding density line in the histogram plot 

ggplot(USA, aes(x = UrbanPop)) + 

INTRODUCTION TO DATA VISUALISATION  |  195

https://uq.pressbooks.pub/app/uploads/sites/152/2025/10/Ch-9-img-12.png
https://uq.pressbooks.pub/app/uploads/sites/152/2025/10/Ch-9-img-12.png


• Solid black line: Theoretical normal distribution 
• Red dashed line: Actual data density 

  geom_histogram(aes(y = ..density..), 

                 binwidth = 1, 

                 fill = "lightblue", 

                 color = "black") + 

  stat_function(fun = dnorm, #draw a normal distribution curve 

                args = list(mean = mean(USA$UrbanPop, na.rm = TRUE), 

                            sd = sd(USA$UrbanPop, na.rm = TRUE)), 

                color = "black", 

                size = 1.2) + 

  geom_density(color = "red", linetype = "dashed", size = 1.2) + #Draw actual data density 

  labs(title = "Histogram of Urban population", 

       x = "Urban population", 

       y = "Density") + 

  theme_bw() + 

  theme(plot.title = element_text(hjust = 0.5)) 
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Q. Based on the comparison between the theoretical and actual density curves, how would you 

assess whether the data is normally distributed? 

Write your response here: 

You can repeat the above procedure to visualise the distributions of other crime-related variables such as 
Murder, Assault, and Rape. Instead of presenting each plot individually, we can combine them into a single 
display using the grid.arrange() function. 

# Individual histogram plots 

p1 <- ggplot(data = USA, aes(x=Murder)) +geom_histogram() + labs(title = "Murder") + 

theme_bw() 

p2 <- ggplot(data = USA, aes(x=Assault)) +geom_histogram() + labs(title ="Assault") + 

theme_bw() 

p3 <- ggplot(data = USA, aes(x=Rape)) +geom_histogram() + labs(title ="Rape") + 

theme_bw() 

install.packages("gridExtra") 

library(gridExtra) 

# Arrange plots in one row 

grid.arrange(p1, p2, p3, ncol = 3) 
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Q. Interpret the distribution patterns observed in each histogram. Are any of the variables 

skewed? 

Write your response here: 

2.2 Box Plot 

Box plots are a useful tool for visualising the distribution of a continuous variable and identifying the 
central tendency, spread, and outliers. In this example, we will examine murder rates across different U.S. 
regions. 

ggplot(data = USA, aes(x= Murder, y = Region, color= Region)) + 
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Q. Which region shows the highest median murder rate? Can you identify any outliers? 

Write your response here: 

Sometimes, it is helpful to display individual data points alongside the boxplot to observe the actual 
distribution of values within each group. One simple way to do this is by using the geom_jitter() function, 
which adds a small amount of random noise to prevent overlapping points. You can explore its usage 
further by typing ?geom_jitter in the console. 

Below, we compare all three crime variables: Murder, Assault, and Rape using box plots. 

  geom_boxplot() + 

  labs(title = "Murder") + #Add the title "Murder" to the plot 

  theme_bw() + #Apply a clean black-and-white theme. 

  coord_flip() # Flips the x and y axes 
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Q. Interpret the results shown in the box plots. How do the distributions of the three crime 

variables compare across regions? Are there differences in variability or presence of outliers? 

Write your response here: 

ggplot(data = USA, aes(x= Murder, y = Region, color= Region)) + 

  geom_boxplot() + 

  geom_jitter() + #Add individual data points with slight random noise (jitter) to avoid 

overlap 

  labs(title = "Murder") + 

  theme_bw() + 

  coord_flip() 

#Save each plot without individual data points 

b1 <- ggplot(data = USA, aes(x= Murder, y = Region, color= Region)) +geom_boxplot() + 

labs(title = "Murder") + theme_bw() +coord_flip() 

b2 <- ggplot(data = USA, aes(x= Assault, y = Region, color= Region)) +geom_boxplot() + 

labs(title = "Assault") + theme_bw() +coord_flip() 

b3 <- ggplot(data = USA, aes(x= Rape, y = Region, color= Region)) +geom_boxplot() + 

labs(title = "Rape") + theme_bw() +coord_flip() 

# Display all three plots side by side 

grid.arrange(b1, b2, b3, ncol = 3) 
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2.3 Bar Plot 

While histograms, density plots, and box plots are ideal for visualising numerical variables, bar plots are 
used to visualise the distribution of categorical variables. Bar plots are especially helpful for comparing the 
frequency or proportion of categories. 

Let’s begin by examining the number of states in each U.S. region: 

In the output, you will notice that the South region has the highest count, with over 15 states falling under 
this category. This plot uses the default setting, which counts the number of observations for each category 
on the x-axis. 

In many cases, you may already have a table summarising frequencies or proportions. For example: 

# Basic bar plot showing counts by region 

ggplot(USA) +geom_bar(aes(x=Region)) 

USA_region <- USA %>% 

  count(Region) %>% # #Count number of rows per Region (creates 'n') 
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Table 9.2 

Region n proportion 

Midwest 12 0.24 

Northeast 9 0.18 

South 16 0.32 

West 13 0.26 

To visualise these pre-calculated proportions, you need to use stat = "identity" argument in your 
geom_bar()function. This tells ggplot2 to use the provided y-values instead of computing counts internally. 

  mutate(proportion = n/sum(n)) #Calculate proportion by dividing by total count (creates 

'proportion') 

USA_region 

# Bar plot using pre-calculated proportions 

ggplot(USA_region) +geom_bar(aes(x=Region, y=proportion), stat = "identity") 
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You can also customise the plot’s appearance and add labels to display the proportion values on each bar. 

 

ggplot(data = USA_region, aes(x=Region, y=proportion)) + 

  geom_bar(stat = "identity", fill = "steelblue") + 

     geom_text(aes(label=proportion), #Display the formatted percentage as the label. 

            vjust = 1.3, #Vertically adjust the label position (1.3 pushes it down 

inside the bar). 

            color = "white", #Set the text colour to white 

            size =4)    + #the size of the text label 

  theme_bw() 
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To improve readability, you can reorder the bars based on the proportions. Use the reorder() function in 
the aes() to sort categories in ascending or descending order. Combining it with coord_flip() can make 
horizontal bar plots that are often easier to read: 

# Ascending order 

ggplot(USA_region) + 

  geom_bar(aes(x= reorder(Region, proportion), #Reorder the bars based on the propor

tion values from lowest to highest. 

               y = proportion), 

               stat = "identity") + 

                theme_bw()   + 

                  coord_flip() 
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# Descending order 

ggplot(USA_region) + 

  geom_bar(aes(x= reorder(Region, -proportion), #Reorder the bars based on the proportion 

values from highest to lowest. 

               y = proportion), 

               stat = "identity") + 

                  theme_bw()   + 

                  coord_flip() 
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2.4 Correlation Heat map 

In Chapters 5 and 6, we explored correlation plots and added fitted regression lines to examine relationships 
between variables. In this section, we introduce another powerful visualisation technique: the correlation 
heatmap. 

A heatmap represents data values using colour intensity, allowing you to easily visualise the strength and 
direction of correlations between variables. In this case, colours will indicate the magnitude of correlation 
coefficients, ranging from –1 (strong negative) to +1 (strong positive). 

Let’s create a heatmap using the geom_tile() function, with UrbanPop on one axis and the three crime 
related variables: Murder, Assault, and Rape on the other. 

# Load required package 

library(reshape2) 

## 

## Attaching package: 'reshape2' 

206  |  INTRODUCTION TO DATA VISUALISATION

https://uq.pressbooks.pub/app/uploads/sites/152/2025/10/Ch-9-img-21.png
https://uq.pressbooks.pub/app/uploads/sites/152/2025/10/Ch-9-img-21.png


## The following object is masked from 'package:tidyr': 

## 

##     smiths 

# Select relevant variables 

cor_data <- USA %>% 

  select(Murder, Assault, Rape, UrbanPop) # Include the variable that you are interested 

in to explore the correlation 

# Compute the correlation matrix 

cor_matrix <- cor(cor_data, use = "complete.obs") 

# Convert the matrix to long format 

cor_melted <- melt(cor_matrix) #The correlation matrix is originally in wide (square) for

mat, but ggplot2 requires data in long format for plotting. The ‘melt()’ function from 

the reshape2 package transforms it accordingly. 

#Correlation heatmap 

ggplot(cor_melted, aes(x = Var1, y = Var2, #Each tile of heat meap represents a pair of 

variables (Var1 and Var2) 

                       fill = value)) + #Each tile is filled with the corresponding cor

relation value. 

  geom_tile() + 

  scale_fill_gradient2(low = "blue", #Colour for negative correlations (closer to -1) 

                       high = "red", #Colour for positive correlations (closer to +1) 

                       mid = "white",#Colour at the midpoint, which is 0 (no correlation). 

                       midpoint = 0, #Set value 0 as the midpoint 

                       limit = c(-1, 1), #The range of correaltion values from -1 to 1 

                       name = "Correlation") + #Title for the legend 

  theme_minimal() + 

  labs(title = "Correlation Heatmap") 
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Each tile in the heatmap represents a pairwise correlation between two variables, with colour indicating the 
strength and direction of the relationship. 

You can also display the correlation coefficient values directly on the heatmap tiles: 

# Plot heatmap of correlations with text labels 

ggplot(cor_melted, aes(x = Var1, y = Var2, fill = value)) + 

  geom_tile() + 

  geom_text(aes(Var2, Var1, #Places text at each tile 

                label = round(value ,2))) + #Present the correlation value, rounded to 2 

decimal place 

  scale_fill_gradient2(low = "blue", high = "red", mid = "white", midpoint = 0, limit = 

c(-1, 1), name = "Correlation") + 

  labs(title = "Correlation Heatmap") 
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Q. Which pair of variables shows the highest positive correlation? Which pair has the weakest 

(or most negative) correlation? 

Write your response here: 

2.5 Time Series 

Time series visualisations are essential for exploring data collected over multiple time periods. These plots 
help reveal how a variable changes over time, making them particularly useful for longitudinal datasets. In 
this exercise, we use the Victim_rate dataset. 

# Import the dataset 
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Table 9.3 

  Year Physical_assault FacetoFace_threatened_assault Non_facetoFace_threatened_assault Robbery Sexual_assaul

1 2008 3.1 3.9 1.2 0.6 0.3 

2 2009 2.9 3.1 0.8 0.4 0.3 

3 2010 2.7 3.1 1 0.4 0.3 

4 2011 3 3.3 1.2 0.4 0.3 

5 2012 2.7 2.8 1.1 0.4 0.2 

6 2013 2.3 2.7 1 0.4 0.3 

Let’s begin by examining how physical assault has changed over 
time. 

Victim <- read.csv("Victimisation_rate.csv") 

head(Victim) 

# Simple line plot of physical assault over time 

ggplot(Victim, aes(x= Year, y = Physical_assault)) + geom_line() + theme_bw() 
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Overall, this plot suggests a downward trend in the rate of physical assault in Australia over the years. 

To display trends for multiple crime types on a single plot, we first need to reshape the data. The current 
structure is in wide format (each crime type in a separate column), but for plotting multiple lines, we need 
to convert it to long format using 
pivot_longer(). 

# Reshape to long format 

Victim_long <- Victim %>% 

  pivot_longer( 

    cols = c("Physical_assault", "FacetoFace_threatened_assault", 

             "Non_facetoFace_threatened_assault", "Robbery", "Sexual_assault"), 

    names_to = "Crime_Type", #Create a new column called 'Crime_Type' to store the origi

nal column names 

    values_to = "Rate"        #Create a new column called 'Rate' to store the correspond

ing values 

    ) 

#pivot_longer() turns your dataset from wide to long, stacking all five crime types into 
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You can compare head(Victim) (wide format) vs head(Victim_long) (long format) to observe the 
transformation. 

This plot displays trends for all five crime types in one figure, allowing for easier comparison across years. 

a single column with their values in Rate. 

# Multi-Line Time Series Plot 

ggplot(Victim_long, aes(x = Year, y = Rate, color = Crime_Type)) + 

  geom_line(size = 1) + 

  labs(title = "Trends in Types of Crime Over Time", 

       x = "Year", 

       y = "Rate", 

       color = "Type of Crime") + 

  theme_minimal() 
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Q. Interpret the result. Which crime type shows the most fluctuation over time? Which appears 

to have the most stable trend? 

Write your response here: 

2.6 Mapping 

The final exercise involves geospatial visualisation using maps. While a wide range of global and regional 
maps can be generated in R (e.g., using worldmap), this exercise focuses on mapping Australian states using 
real-world data. We will create choropleth and bubble maps to visualise state-level. 

To do this, we will use the ozmaps package, which provides shapefiles for Australian geographic boundaries. 

We can draw a simple map of Australia using the ozmap() 
function: 

# Load Required Packages and Plot a Base Map 

install.packages("ozmaps") 

library(ozmaps) 

library(sf) 

# Draw base map of Australia 

ozmap() 
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Now, we extract the shapefile of Australian states and store it in an object for plotting in ggplot2. 

# Load state-level map data 

OZ_2023 <- ozmap("states") 
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#Create a map using ggplot 

ggplot(data = OZ_2023) + geom_sf() 
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With the map data prepared, we can now add real-world state-level data. In this case, we map two variables: 

• Net Overseas Migration (NOM) in 2023 (from ABS) 
• International Student Commencements in 2023 (from the Department of Education) 

# Net Overseas Migration values in 2023 

NOM_2023 <- c(185000 , 160000 , 88000 , 29000 , 69000 , 5100 , 4300 , 81000 , 547000) 

 OZ_2023$NOM_2023 <- NOM_2023 

OZ_2023 
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Table 9.4 

  NAME geometry NOM_2023 

1 New South Wales 185000 

2 Victoria 160000 

3 Queensland 88000 

4 South Australia 29000 

5 Western Australia 69000 

6 Tasmania 5100 

7 Northern Territory 4300 

8 Australian Capital Territory 81000 

9 Other Territories 547000 

we have successfully included NOM_2023 variable into the OZ_2023 dataset. let’s map the net oversea 
migration in 2023 into the map: 

ggplot(data = OZ_2023, aes(fill = NOM_2023)) + geom_sf() +theme_bw() 
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Now, let’s include Commencements_2023 variable into the dataset as well and draw a bubble map 

#Commencements_2023: The number of new students who have started a course or program for 

the first time. 

Commencements_2023 <- c(299838, 286442, 137741, 60369, 109060, 12463, 10238, 38882, NA) 

OZ_2023$Commencements_2023 <- Commencements_2023 

st_centroid() # Computes the geometric center (centroid) of each shape (here center of 

each state) 

# Add Centroids for Bubble Placement 

OZ_centroids_2023 <- st_centroid(OZ_2023) 

# Plot Map with Choropleth and Bubbles 

Result_2023 <- ggplot(data = OZ_2023) + 

  geom_sf(aes(fill = NOM_2023)) + # Base map with NOM_2023 as fill 

  geom_sf(data = OZ_centroids_2023, aes(size = Commencements_2023), shape = 21, fill = 

"white", color = "black", alpha = 0.7) + 

  scale_size(range = c(2, 10)) + # Adjust circle size 

  labs(title = "Commencements_2023 and NOM_2023 across Australian Regions", 

       fill = "Net Overseas Migration", 

       size = "Commencements_2023") + 

  theme_minimal() 

Result_2023 
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You can also add labels to display the commencement values directly on the map using geom_sf_text(). 

ggplot(data = OZ_2023) + 

  geom_sf(aes(fill = NOM_2023)) + 

  geom_sf(data = OZ_centroids_2023, aes(size = Commencements_2023), 

          shape = 21, fill = "white", color = "black", alpha = 0.7) + 

  geom_sf_text(data = OZ_centroids_2023, aes(label = Commencements_2023), size = 3, 

nudge_y = 0.5) + # Add text labels 

  scale_size(range = c(2, 10)) + 

  labs(title = "Commencements_2023 and NOM_2023 across Australian Regions", 

       fill = "Net Overseas Migration", 

       size = "Commencements_2023") + 

  theme_minimal() 
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*Additional Exercise 

Let’s draw a map with 2020 year and compare how the 2023 and 2020 were different. 

#Load map 

OZ_2020 <- ozmap("states") 
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# Net Overseas Migration and International Student Commencements in 2020 

NOM_2020 <- c(11513 , -18950 , -24 , 4414 , 5720 , 729 , 76 , -252 , 3253) 

Commencements_2020 <- c(129993, 139747, 59176, 30330, 29922, 8586, 2391, 15806, NA) 

OZ_2020$NOM_2020 <- NOM_2020 

OZ_2020$Commencements_2020 <- Commencements_2020 

# Add Centroids for Bubble Placement 

OZ_centroids_2020 <- st_centroid(OZ_2020) 

# Plot Map with Choropleth and Bubbles 

Result_2020 <- ggplot(data = OZ_2020) + 

  geom_sf(aes(fill = NOM_2020)) + # Base map with NOM_2020 as fill 

  geom_sf(data = OZ_centroids_2020, aes(size = Commencements_2020), shape = 21, fill = 

"white", color = "black", alpha = 0.7) + 

  scale_size(range = c(2, 10)) + # Adjust circle size 

  labs(title = "Refugees and NOM_2020 across Australian Regions", 

       fill = "Net Overseas Migration", 
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Let’s compare the two years side by side: 

       size = "Refugee Count") + 

  theme_minimal() 

Result_2020 

grid.arrange(Result_2023, Result_2020, nrow = 2) 
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Q. Based on the maps, how did Net Overseas Migration and international student 

commencements differ between 2020 and 2023? What might explain these changes? 

Write your responses here: 

Once you complete all exercises, make sure to save your R script before closing R. 
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10. 

NON-LINEAR ASSOCIATIONS 

In this chapter, we will explore regression models that capture non-linear 
relationships between variables. Our focus will be on polynomial models, especially 
those with quadratic terms, which help us model curved relationships between a 
continuous predictor and an outcome variable. We will then practise visualising 
quadratic relationships, calculate turning points, and interpret the results. 

1. A Non-linear Association 

A quadratic function captures curvilinear patterns, such as U-shaped or inverted U-shaped trends where 
the direction of the association changes at a turning point. For example, student enrolments may initially 
increase and later decline due to policy shifts or demographic transitions. Similarly, income may rise during 
early career stages and plateau or fall in later years. By including a squared term (X²) of the independent 
variable, regression models can capture these non-linear dynamics. 

In this exercise, we revisit the dataset provided by the Department of Education (available through the 
International student monthly summary: Interactive Report) and investigate the relationship between 
school enrolment numbers (dependent variable) and year (independent variable) from 2015 to 2023. We 
explore whether a quadratic functional form provides a better fit to the data than a linear regression model. 

1.1 Load the Dataset and View Summary Statistics 

We begin by creating a dataset that includes the annual number of school enrolments from 2015 to 2023: 

#Load the required packages for Chapter 10 

library(dplyr) 

library(psych) 

library(ggplot2) 

library(marginaleffects) 

# Create a dataset    

Data <- data.frame(Year = c(2015, 2016, 2017, 2018, 2019, 2020, 2021, 2022, 2023), 
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1.2 Visualising the Association Using a Scatter Plot 

Next, we draw a scatterplot to explore the relationship between School_Enrolment and Year. To compare 
model fits, we overlay two regression lines: a linear fit (blue) and a quadratic fit (red). 

Q. Which of the two lines seems to fit the data better? 

                School_Enrolment = c(20526, 23245, 25644, 26708, 25459, 20070, 13019, 

11714, 15830)) 

head(Data) 

ggplot(Data, aes(x = Year , y = School_Enrolment)) + 

  geom_point() + # Scatter plot 

  geom_smooth(method = "lm", se = FALSE, formula = y ~ x, colour = "blue") + # Linear fit 

  geom_smooth(method = "lm", formula = y ~ x + I(x^2), color = "red") +# Quadratic fit 

  theme_bw() 
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Write your responses here: 

1.3 Fitting a Quadratic Model Using Manual Computation 

To estimate a non-linear association between year and school enrolment, we include both the original 
predictor (Year) and its squared term (sq_Year) as independent variables. 

We begin by manually computing the squared term and then fitting the regression model: 

# Generate the quadratic term manually 

Data$sq_Year <- Data$Year^2 #^2 computes the square of the Year variable 

# Fit a quadratic regression model 

Manual_outcome <- lm(School_Enrolment ~ Year + sq_Year, data = Data) 

# View model summary 

summary(Manual_outcome) 

## 

## Call: 

## lm(formula = School_Enrolment ~ Year + sq_Year, data = Data) 

## 

## Residuals: 

##     Min      1Q  Median      3Q     Max 

## -5398.0 -1858.7  -377.9  2680.2  4814.0 

## 

## Coefficients: 

##               Estimate Std. Error t value Pr(>|t|) 

## (Intercept) -1.546e+09  8.798e+08  -1.757    0.129 

## Year         1.533e+06  8.715e+05   1.759    0.129 

## sq_Year     -3.799e+02  2.158e+02  -1.760    0.129 

## 

## Residual standard error: 3788 on 6 degrees of freedom 

## Multiple R-squared:  0.658,  Adjusted R-squared:  0.544 
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Q. Based on this output, what do you conclude about the linearity of the relationship between 

Year and School_Enrolment? What piece of information did you use to reach your conclusion? 

Write your responses here: 

1.4 The Turning Point 

In a quadratic model, the turning point represents the value of the predictor at which the direction of the 
relationship shifts. This point represents either the peak or the trough of the curve. For a model in the form: 

Here,  refers to the coefficient on the linear term (Year), and  refers to the coefficient on the quadratic 
term (sq_Year). 

In R, we can calculate the turning point as follow: 

## F-statistic: 5.772 on 2 and 6 DF,  p-value: 0.04 

# Extract coefficients 

b1 <- coef(Manual_outcome)["Year"] 

b2 <- coef(Manual_outcome)["sq_Year"] 

# Calculate the turning point 

turning_point <- -b1 / (2 * b2) 

turning_point 

##    Year 

## 2017.13 
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Q. What is the value of the turning point? 

Write your response here: 

1.5 Visualising Model Predictions 

To help interpret the quadratic relationship more intuitively, we can generate predicted values from 
the fitted model and visualise them using a plot. We begin by creating a new dataset that includes the 
range of years used in the original analysis and then generate predicted school enrolment values using the 
predictions() function. 

We then visualise the predicted values with the following plot: 

Pred <-predictions(Manual_outcome) 

Pred 

## 

##  Estimate Std. Error     z Pr(>|z|)     S 2.5 % 97.5 % 

##     22385       3073  7.28   <0.001  41.5 16362  28407 

##     23623       2001 11.81   <0.001 104.4 19701  27545 

##     24101       1697 14.21   <0.001 149.7 20776  27427 

##     23820       1826 13.04   <0.001 126.8 20241  27399 

##     22779       1917 11.89   <0.001 105.8 19022  26535 

##     20978       1818 11.54   <0.001  99.9 17415  24541 

##     18417       1697 10.85   <0.001  88.7 15090  21744 

##     15096       2001  7.54   <0.001  44.3 11174  19019 

##     11016       3094  3.56   <0.001  11.4  4953  17079 

## 

## Columns: rowid, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, 

School_Enrolment, Year, sq_Year 

## Type:  response 
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ggplot(Pred, aes(x = Year, y = estimate)) + 

  geom_point(data = Pred, aes( y = estimate), size = 3, color = "black") + #predicted 

values 

  geom_line(color = "blue", linewidth = 1) + # Predicted trend line 

  geom_vline(xintercept = 2017.13, color = "red") + #Turning point 

  scale_y_continuous( 

    limits = c(10000, 30000), 

    breaks = seq(10000, 30000, by = 5000), 

    labels = scales::comma # Format numbers with commas 

  ) + 

  labs( 

    title = "Predictions", 

    y = "School Enrolment", 

    x = "Year" 

  ) + 

  theme_bw() 
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Q. What insights can you draw from the plot of predicted values? How does the graph help you 

interpret the pattern of the association between Year and School Enrolment, particularly around 

the turning point? 

Write your responses here: 

2. Non-Linear Association Using Survey Data 

We now turn to a non-linear modelling application using survey data. Income generally increases with 
accumulated work experience, often approximated by age. However, this relationship is rarely linear across 
the life course. Income may rise during early adulthood but tends to plateau or decline as individuals 
approach retirement. In this exercise, we use data from the World Values Survey (WVS) to examine how 
income varies with age, while controlling for education level and sex. 

2.1 Load and Prepare the Data 

We begin by importing the dataset and selecting relevant variables. For this analysis, we only focus on 
Australian respondents (Country code: 36). 

#Set up the working directory first 

setwd("C:/Your folder path/SOCYR") 

#Load the dataset 

WVS <- read.csv("WVS.csv") 

#Data cleaning 

WVS <- WVS %>%  

   filter(Country ==36) %>% #36 – Australia 

   select(Age, Income, Sex, EDU) %>% 

   mutate(Sex =  factor(Sex,levels = c(1, 2), labels = c("Male", "Female"))) 

#View summary statistics 

describe(WVS) 
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2.2 Fitting a Quadratic Model Using R syntax 

In this exercise, we use the built-in I(Age^2) syntax to generate the quadratic term directly within the 
regression formula. We also control for sex and education. 

Q. Based on this output, what do you conclude about the linearity of the relationship between 

Income and Age? What piece of information did you use to reach your conclusion? 

# Fit quadratic regression 

Outcome <- lm(Income ~ Age + I(Age^2) +Sex + EDU, data  = WVS) 

# View model summary 

summary(Outcome) 

## 

## Call: 

## lm(formula = Income ~ Age + I(Age^2) + Sex + EDU, data = WVS) 

## 

## Residuals: 

##     Min      1Q  Median      3Q     Max 

## -5.8673 -1.1873  0.1683  1.2193  6.1037 

## 

## Coefficients: 

##               Estimate Std. Error t value Pr(>|t|) 

## (Intercept)  2.6473110  0.4222981   6.269 4.61e-10 *** 

## Age          0.0404180  0.0157252   2.570 0.010247 * 

## I(Age^2)    -0.0005028  0.0001475  -3.409 0.000667 *** 

## SexFemale   -0.2771026  0.0956675  -2.897 0.003822 ** 

## EDU          0.4558558  0.0281223  16.210  < 2e-16 *** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

## 

## Residual standard error: 1.89 on 1679 degrees of freedom 

##   (129 observations deleted due to missingness) 

## Multiple R-squared:  0.1899, Adjusted R-squared:  0.188 

## F-statistic: 98.39 on 4 and 1679 DF,  p-value: < 2.2e-16 
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Write your responses here: 

2.3 Turning Point 

To determine the age at which income peaks (or begins to decline), we calculate the turning point of the 
quadratic function using the coefficients from the regression model. 

Q. What is the value of the turning point? 

Write your responses here: 

2.4 Plotting Model Predictions 

We calculate the predicted income values based on the regression model and visualise them across a range 
of ages, holding the control variables (sex and education) constant. 

# Extract coefficients 

b1 <- coef(Outcome)["Age"] 

b2 <- coef(Outcome)["I(Age^2)"] 

# Calculate the turning point 

turning_point <- -b1 / (2 * b2) 

turning_point 

##      Age 

## 40.19171 
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Now, we visualise the predicted income at different ages, including a vertical line at the calculated turning 
point (age 40) to indicate where the income trajectory changes direction. 

# Calculate the predicted income values (holding Sex and EDU constant) 

Pred2 <- predictions( 

  Outcome, 

  newdata = datagrid(Age = seq(20, 90, by = 10), 

                     Sex = "Male", 

                     EDU = mean(WVS$EDU, na.rm = TRUE)) 

) 

Pred2 

## 

##  Age  Sex  EDU Estimate Std. Error    z Pr(>|z|)     S 2.5 % 97.5 % 

##   20 Male 4.66     5.38     0.1689 31.8   <0.001 736.0  5.05   5.71 

##   30 Male 4.66     5.53     0.1101 50.2   <0.001   Inf  5.31   5.75 

##   40 Male 4.66     5.58     0.0907 61.5   <0.001   Inf  5.40   5.76 

##   50 Male 4.66     5.53     0.0881 62.8   <0.001   Inf  5.36   5.71 

##   60 Male 4.66     5.38     0.0828 65.0   <0.001   Inf  5.22   5.55 

##   70 Male 4.66     5.13     0.0826 62.2   <0.001   Inf  4.97   5.30 

##   80 Male 4.66     4.78     0.1193 40.1   <0.001   Inf  4.55   5.02 

##   90 Male 4.66     4.33     0.2021 21.4   <0.001 336.4  3.94   4.73 

## 

## Columns: rowid, estimate, std.error, statistic, p.value, s.value, conf.low, conf.high, 

Age, Sex, EDU, Income 

## Type:  response 

ggplot(Pred2, aes(x = Age, y = estimate)) + 

  geom_point(size = 3, color = "black") + # predicted observations 

  geom_line(color = "blue") + 

  geom_vline(xintercept = 40, color = "red") + # Turning point 

  labs( 

    title = "Predicted Income", 
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Q. What does the graph indicate about the relationship between age and income? How does 

the predicted curve help you understand the timing and direction of income changes across the 

life course? 

Write your responses here: 

Once you complete all exercises, make sure to save your R script before closing R. 

    y = "Income", 

    x = "Age" 

  ) + 

  theme_bw() 
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11. 

BEYOND LINEAR MODEL: LOGISTIC 
REGRESSION 

This chapter focuses on practicing logistic regression. We will start with a brief 
overview of key concepts, followed by a hands-on application using the WVS data. 
First, we will fit a logistic regression model with a binary outcome and interpret the 
results using odds ratios and predicted probabilities. Then, we will practice 
recoding a continuous variable into binary form and apply logistic regression using
the newly created binary outcome. 

1. Logistic Regression 

Linear regression is commonly used to model the relationship between a continuous outcome and one 
or more predictor variables. However, it is not suitable when the outcome is binary (e.g., Yes/No, Pass/
Fail, Agree/Disagree). In such cases, logistic regression provides a more appropriate approach. While it 
shares many similarities with linear regression, logistic regression is specifically designed for categorical 
outcome and is widely used in the social sciences. In this session, we will explore key concepts and practical 
applications of logistic regression for modelling binary response variables. 

For example, suppose we have data on students’ weekly study hours and whether they pass the statistics 
course. We might initially consider applying linear regression to predict the probability of passing, as shown 
in the left plot in the figure below. However, linear regression can produce predicted probabilities below 0 
or above 1, which are not meaningful. Logistic regression resolves this issue by modelling the probability 
of the outcome using a logistic function, which generates an S-shaped curve that appropriately constrains 
predicted probabilities between 0 and 1 (right plot). 

BEYOND LINEAR MODEL: LOGISTIC REGRESSION  |  235



<Predicted probabilities from linear regression (left) can fall outside the 0–1 range, while logistic regression 
(right) correctly constrains predictions between 0 and 
1.> 

Mathematically, the logistic function is defined as: 

Here,  represents the probability of the outcome (e.g., passing the course), and the coefficients 
and  function similarly to those in linear regression. 

Rearranging the logistic function gives the logit transformation: 

This transformation establishes a linear relationship between the predictor  and the log-odds of the 
outcome. The coefficient  reflects the change in the log-odds associated with a one-unit increase in , 
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and when exponentiated ( ), it can be interpreted as the multiplicative change in the odds of the outcome 
occurring. 

We will now practise fitting a logistic regression model using data from the World Values Survey (WVS). 
In this exercise, we aim to explore a binary outcome variable whether Australians believe immigration 
increases crime. We will examine how this perception is associated with age, sex, and education level 

1.1 Load the Dataset and View Summary Statistics 

Begin by loading the dataset and preparing the necessary the variables for analysis. 

The outcome variable: perceptions of whether immigration increases crime rates is originally coded with 
three categories: 0 = Disagree, 1 = Hard to say, and 2 = Agree. Since logistic regression requires a binary 
outcome, we will recode these variables by treating responses coded as 1 (“Hard to say”) as missing values, 
retaining only the two clear categories of disagreement (0) and agreement (1). 

setwd("C:/Your Own Path/SOCYR") 

#Load the dataset 

WVS <- read.csv("WVS.csv") 

#Load the required packages for Chapter 11 

library(ggplot2) 

library(dplyr) 

library(tidyr) 

library(gridExtra) 

library(sjPlot) 

library(ggeffects) 

options(scipen = 999) #turning off scientific notation 

#Data cleaning 

AUS_WVS <- WVS %>% 

  filter(Country == 36)%>% 

  mutate(Sex = factor(Sex,levels = c(1, 2), labels = c("Male", "Female"))) 

#Recode the outcomes variables as a binary outcome 
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1.2 Exploring the Outcome Variable 

Before proceeding with the regression analysis, we first explore the distribution of the binary outcome 
variable. You can check the frequency of each response using the table() function: 

1.3 Visualising the Outcome Variables 

Next, we create bar plots to visualise the distribution of the newly recoded binary outcomes. 

First, calculate the proportions: 

AUS_WVS <- AUS_WVS %>% 

  mutate(Immi_Crime = ifelse(Q124 == 0, 0, 

                                  ifelse(Q124 ==1, NA, 

                                         ifelse(Q124 == 2, 1, NA)))) %>% 

  mutate(Immi_Crime = factor(Immi_Crime,levels = c(0, 1), labels = c("Disagree", 

"Agree"))) 

# Examine the original and recoded outcome variables 

table(AUS_WVS$Q124) 

## 

##   0   1   2 

## 415 810 571 

table(AUS_WVS$Immi_Crime) 

## 

## Disagree    Agree 

##      415      571 

#Calculate the proportion 

Immi_Crime <- AUS_WVS %>% 

  filter(!is.na(Immi_Crime)) %>%        # Exclude NA values 

  count(Immi_Crime) %>%                 # Count non-missing values 

  mutate(proportion = n / sum(n)) # Calculate proportion 
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Then, draw bar plots for the outcome variable: 

Q. What was the most commonly selected response for this variable? 

Write your response here: 

#Draw a plot 

ggplot(Immi_Crime) + 

  geom_bar(aes(x=Immi_Crime, y=proportion), stat = "identity", fill = "steelblue") + 

  labs(title = "Proportion of responses for the variable Immi_Crime", 

       y = "Proportion") + 

  theme_minimal() 
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1.4 Fitting a Logistic Regression Model 

We now proceed to fit a logistic regression model. In R, logistic regression can be fitted easily using the 
glm() function. The process is similar to fitting a linear regression model with lm() function, except that 
we must specify the argument family = "binomial" to indicate that we are fitting a logistic model. 

We first fit a model predicting perceptions that immigration increases crime. Running summary(Crime) will 
produce output similar to the table below: 

#Fit a logistic model 

Crime <- glm(Immi_Crime ~ EDU + Sex + Age , data = AUS_WVS, family = binomial) 

summary(Crime) 

## 

## Call: 

## glm(formula = Immi_Crime ~ EDU + Sex + Age, family = binomial, 

##     data = AUS_WVS) 

## 

## Deviance Residuals: 

##     Min       1Q   Median       3Q      Max 

## -2.0800  -1.0529   0.6900   0.9194   1.7846 

## 

## Coefficients: 

##              Estimate Std. Error z value             Pr(>|z|) 

## (Intercept)  3.298098   0.391129   8.432 < 0.0000000000000002 *** 

## EDU         -0.470049   0.045137 -10.414 < 0.0000000000000002 *** 

## SexFemale   -0.291994   0.145128  -2.012              0.04422 * 

## Age         -0.011572   0.004333  -2.671              0.00756 ** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

## 

## (Dispersion parameter for binomial family taken to be 1) 

## 

##     Null deviance: 1284.5  on 940  degrees of freedom 

## Residual deviance: 1158.2  on 937  degrees of freedom 

##   (872 observations deleted due to missingness) 

## AIC: 1166.2 

## 
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The table presents the estimated coefficients and associated statistics for the logistic regression model 
predicting the probability that a respondent agrees immigration increases crime. 

It is important to remember that logistic regression coefficients are expressed on the log-odds scale. 
For example, the estimated coefficient for Age is =−0.012, indicating that a one-year increase in age is 
associated with a 0.012 decrease in the log-odds of agreeing that immigration increases crime, holding 
sex and education constant. 

1.5 Odds Ratios 

What does the estimated log-odds of agreeing that immigration increases crime actually mean? 
Because interpreting effects on the log-odds scale can be unintuitive, it is common to transform logistic 
regression coefficients into odds ratios for easier interpretation. 

An odds ratio (OR) is a measure of association between an exposure and an outcome. It represents 
the odds that an outcome will occur given a particular exposure, compared to the odds of the outcome 
occurring without that exposure. In simpler terms, odds reflect the likelihood that an event will occur and 
can be understood as the ratio of the probability of the event happening to the probability that it does not 
(e.g., the odds of agreeing versus disagreeing). 

In the context of logistic regression, the estimated regression coefficient ( ) represents the change in the 
log-odds of the outcome associated with a one-unit increase in the predictor. Taking the exponential of the 
coefficient, , gives the odds ratio associated with a one-unit increase in the explanatory variable. 

Thus, odds ratios indicate how the likelihood of agreeing that immigration increases crime, compared to 
disagreeing, varies across different values of predictor variables such as age, sex, and education. 

Interpretation of the odds ratio follows: 

• OR = 1: Exposure has no effect on the odds of the outcome. 
• OR > 1: Exposure is associated with higher odds of the outcome. 
• OR < 1: Exposure is associated with lower odds of the outcome. 

You can also calculate the percent change in odds using the formula: 

## Number of Fisher Scoring iterations: 4 
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To obtain the odds ratios from a logistic regression model, you can simply exponentiate (exp()) the 
estimated log-odds coefficients: 

This output presents the odds ratios for each predictor in the model. Let’s practise interpreting each 
variable. There are two common ways to do this: 

Option 1: 

• Age (0.99): A one-year increase in age is associated with 0.99 times lower odds of 

agreeing that immigration increases crime, holding sex and education constant. 

• Female (0.75): Being female compared to men is associated with 0.75 times lower 

odds of agreeing that immigration increases crime, holding sex and education 

constant. 

• Education (0.62): A one-unit increase in education level is associated with 0.62 times 

lower odds of agreeing that immigration increases crime, holding sex and education 

constant. 

Option 2: 

• Age (0.99): For each additional year of age, the odds of agreeing that immigration 

increases crime decrease by about 1%, holding sex and education constant. 

• Female (0.75): Female respondents, the odds of agreeing that immigration increases 

crime decreases by 25% compared to male respondents, holding age and education 

constant. 

• Education (0.62): For each additional level of education attainment, the odds of 

agreeing that immigration increases crime decrease by about 38%, holding age and 

education constant. 

1.6 Goodness of fit 

# Get odds ratios for model coefficients 

exp(coef(Crime)) 

## (Intercept)         EDU   SexFemale         Age 

##  27.0611225   0.6249714   0.7467727   0.9884943 
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The regression summary presents an Akaike Information Criterion (AIC) value instead of an R-squared 
value. AIC is commonly used to compare statistical models, particularly to determine which model best 
balances goodness of fit and model complexity. Specifically, AIC penalises models with more parameters, 
helping to avoid over-fitting. A lower AIC indicates a better fitting model relative to others being 
compared. 

In addition, since traditional R-squared is not applicable to logistic regression, alternative measures known 
as pseudo R-squared values are used to provide a rough indication of model fit. There are several types 
of pseudo R-squared, including McFadden’s and Tjur’s. In a later section, we will examine Tjur’s pseudo 
R-squared, which is suited for models with a binary outcome variable. 

1.7 Predicted Probability 

While odds ratios are more intuitive than log-odds, they can still be challenging to interpret. For clearer 
interpretation, we can use predicted probabilities instead. The process is similar to what we used when 
calculating predicted means in linear models. 

We will first focus on predicted probabilities of the outcome variable by Sex, while holding the other 
explanatory variables (Age and Education) constant at their mean values. 

To do this, we use the ggpredict() function: 

# Predict probabilities for "Sex", holding other variables at their means 

pred_sex <- ggpredict(Crime, terms = "Sex") 

pred_sex 

pred_sex$predicted # predicted probabilities 

## [1] 0.6859858 0.6199708 

pred_sex$conf.low # lower CI 

## [1] 0.6345951 0.5740910 
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We can visualise the predicted probabilities using the plot() function: 

Q. Based on the output above, what are your conclusions? How is sex related to the probability 

of agreeing that immigration increases crime? 

pred_sex$conf.high # upper CI 

## [1] 0.7331877 0.6638026 

# Plot 

plot(pred_sex) + 

  labs(title = "Predicted Probability of Crime by Sex", 

       y = "Predicted Probability", 

       x = "Sex") 
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Write your response here: 

You can also explore how the predicted probability of agreeing that immigration increases crime varies with 
age: 

Q. Based on the output above, what are your conclusions? How is age related to the probability 

of agreeing that immigration increases crime? 

pred_age <- ggpredict(Crime, terms = "Age") 

plot(pred_age) + 

  labs(title = "Predicted Probability of Crime with Age", 

       x = "Age", y = "Predicted Probability") 
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Write your response here: 

2. Logistic Regression – Recording a Numeric variable as 
a Binary 
Variable 

Sometimes, a non-binary variable can be recoded into a binary format to fit a logistic regression model. For 
example, consider the variable Justifiable: For a man to beat his wife (hereafter referred to as Wife_Abuse). 
As shown in the figure below, the distribution of responses is right-skewed, with the tail extending to the 
right. Due to the lack of variation, a linear regression model would not be appropriate. Instead, we can 
convert the variable into a binary outcome and fit a logistic regression model. 

Let’s now recode the Wife_Abuse variable into a binary format (0: Never justify vs 1: Somewhat justify) 
for use as the outcome variable in our logistic regression model. 
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2.1 Load the Dataset and View Summary Statistics 

We begin by recoding the original Wife_Abuse variable into a new binary variable, DWife_Abuse: 

After recoding, we can confirm that the new variable has been created correctly using the table() function: 

Q. What was the most commonly selected response for each variable? 

#Load the dataset 

WVS <- WVS %>% 

  mutate(DWife_Abuse = case_when( 

    Wife_Abuse == 1 ~ 0, 

    Wife_Abuse >= 2 & Wife_Abuse <= 10 ~ 1, 

    TRUE ~ NA_real_ 

  )) %>% 

  mutate(Sex = factor(Sex,levels = c(1, 2), labels = c("Male", "Female"))) 

table(WVS$Wife_Abuse) 

## 

##     1     2     3     4     5     6     7     8     9    10 

## 68628  7383  4583  2748  4070  1815  1110   826   499  1482 

table(WVS$DWife_Abuse) 

## 

##     0     1 

## 68628 24516 
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Write your response here: 

2.2 Fitting a Logistic Regression Model 

We now fit a logistic regression model predicting justifiability of wife abuse based on education, sex, and 
age: 

# Fit a logistic regression model 

Wife_Abuse <- glm(DWife_Abuse ~ EDU + Sex + Age , data = WVS, family = binomial) 

# View the model summary 

summary(Wife_Abuse) 

## 

## Call: 

## glm(formula = DWife_Abuse ~ EDU + Sex + Age, family = binomial, 

##     data = WVS) 

## 

## Deviance Residuals: 

##     Min       1Q   Median       3Q      Max 

## -1.0489  -0.8094  -0.7194   1.4169   2.0708 

## 

## Coefficients: 

##               Estimate Std. Error z value             Pr(>|z|) 

## (Intercept) -0.1154880  0.0275056  -4.199            0.0000268 *** 

## EDU         -0.0715070  0.0038294 -18.673 < 0.0000000000000002 *** 

## SexFemale   -0.3706489  0.0151239 -24.508 < 0.0000000000000002 *** 

## Age         -0.0114444  0.0004728 -24.206 < 0.0000000000000002 *** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

## 

## (Dispersion parameter for binomial family taken to be 1) 

## 

##     Null deviance: 106010  on 92142  degrees of freedom 

## Residual deviance: 104607  on 92139  degrees of freedom 
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You can also present the results in a formatted regression table displaying odds ratios using the 
table_model() function. You can either manually compute the odds ratios and 95% confidence intervals by 
exponentiating the coefficients (Exercise 1), or use the table_model() function. 

Logistic Regression Outcome 

Justifiability of Wife Abuse 

Predictors Odds Ratios CI 

(Intercept) 0.89 *** 0.84 – 0.94 

EDU 0.93 *** 0.92 – 0.94 

Sex [Female] 0.69 *** 0.67 – 0.71 

Age 0.99 *** 0.99 – 0.99 

Observations 92143 

R2 Tjur 0.015 

• p<0.05   ** p<0.01   *** p<0.001 

Q. Provide a full interpretation of the Justifiability of Wife Abuse model results using odds ratios 

##   (5077 observations deleted due to missingness) 

## AIC: 104615 

## 

## Number of Fisher Scoring iterations: 4 

tab_model(Wife_Abuse, 

          p.style = "stars", 

          dv.labels = "Justifiability of Wife Abuse", 

          title = "Logistic Regression Outcome") 

## Profiled confidence intervals may take longer time to compute. 

##   Use `ci_method="wald"` for faster computation of CIs. 
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(refer to Option 2) 

Write your response here: 

2.3 Predicted Probability 

Next, we explore the predicted probabilities for the discrete variable Sex, holding the other explanatory 
variables (Age and Education) constant at their mean values by using the ggpredict() function. 

# Predict probabilities for "Sex" 

pred_WA_sex <- ggpredict(Wife_Abuse, terms = "Sex") 

# View predicted probabilities and confidence intervals 

pred_WA_sex 

pred_WA_sex$predicted # predicted probabilities 

## [1] 0.3101904 0.2368770 

pred_WA_sex$conf.low # Lower 95% CI 

## [1] 0.3057183 0.2330209 

pred_WA_sex$conf.high # Upper 95% CI 

## [1] 0.3146982 0.2407769 
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We can then visualise the predicted probabilities: 

Q. Based on the output above, what conclusions can you draw? How is sex related to the 

probability of justifying wife abuse? 

Write your response here: 

You can also explore how the predicted probability of justifying wife abuse by EDU: 

plot(pred_WA_sex) + 

  labs(title = "Predicted Probability of Justifying Wife Abuse by Sex", 

       y = "Predicted Probability", 

       x = "Sex") 
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Q. Based on the output above, what are your conclusions? How is education level related to the 

probability of justifying wife abuse? 

Write your response here: 

After completing all exercises, make sure to knit your R Markdown file. 

pred_WA_edu <- ggpredict(Wife_Abuse, terms = "EDU") 

plot(pred_WA_edu) + 

  labs(title = "Predicted Probability of Justifying Wife Abuse by EDU", 

       x = "EDU", y = "Predicted Probability") 
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12. 

BEYOND LINEAR MODEL: FITTING 
ORDINAL AND MULTINOMIAL LOGISTIC 
REGRESSION MODEL 

In this chapter, we will explore regression models that capture non-linear 
relationships between variables. Our focus will be on polynomial models, 
especially those with quadratic terms, which help us model curved 
relationships between a continuous predictor and an outcome variable. We 
will then practise visualising quadratic effects, calculate turning points, and 
interpret the results. 

1. Ordinal Logistic Regression 

An ordinal variable is a type of categorical variable in which the response categories have a natural and 
meaningful order (e.g., Low, Medium, and High, or Disagree, Hard to say, and Agree). To model the 
relationship between predictor variables and an ordinal outcome, the polr() function is commonly used to 
estimate ordinal logistic regression models in R. 

We will call the function using MASS::polr() rather than loading the MASS package, as 

attaching the package can lead to conflicts with other libraries, particularly by masking the 

select() function from the dplyr package. 

In this session, we will examine cross-national variation in agreement with the statement: ‘Immigration 
increases unemployment’. Specifically, we will compare responses from four countries: Australia, 
Canada, New Zealand, and the United States. The model will also include a set of demographic control 
variables (e.g., age, sex, and education level). 

BEYOND LINEAR MODEL: FITTING ORDINAL AND MULTINOMIAL LOGISTIC REGRESSION MODEL  |  253



1.1 Data Loading and Cleaning 

We begin by importing the dataset and preparing the necessary the variables for analysis. 

To confirm that the outcome variable has been correctly re-labelled, we inspect the distribution of both the 
original and the recoded variables using the table() function: 

setwd("C:/Your Own Path/SOCYR") 

#Load the dataset 

WVS <- read.csv("WVS.csv") 

#Load the required packages for Chapter 12 

library(ggplot2) 

library(dplyr) 

library(tidyverse) 

library(gridExtra) 

library(sjPlot) 

library(ggeffects) 

options(scipen = 999) #turning off scientific notation 

#Data cleaning  

EN_WVS <- WVS %>% 

  filter(Country %in% c(36, 124, 554, 840))%>%  #36: Australia, 124: Canada, 554: New 

Zealand, 840: USA 

    mutate(Immi_Unemploy = factor(Q128, 

                           levels = c(0,1,2), labels = c("Disagree", "Hard to say", 

"Agree"))) %>% 

    mutate(Sex = factor(Sex,levels = c(1, 2), labels = c("Male", "Female"))) %>% 

    mutate(COUNTRY = factor(Country, 

                           levels = c(36, 124, 554, 840), 

                           labels = c("Australia", "Canada", "New Zealand", "United 

States"))) 

table(EN_WVS$Q128) 
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1.2 Summary Statistics 

Before conducting regression analysis, we should first review an informative overview of the data. Below, 
we present the relative frequencies of categorical variables and the mean values of continuous variables. 

## 

##    0    1    2 

## 3088 3843 2457 

table(EN_WVS$Immi_Unemploy) 

## 

##    Disagree Hard to say       Agree 

##        3088        3843        2457 

#Percentage of each categorical variable 

prop.table(table(EN_WVS$COUNTRY)) 

## 

##     Australia        Canada   New Zealand United States 

##     0.1911641     0.4236609     0.1114509     0.2737242 

prop.table(table(EN_WVS$Immi_Unemploy)) 

## 

##    Disagree Hard to say       Agree 

##   0.3289305   0.4093524   0.2617171 

prop.table(table(EN_WVS$Sex)) 
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Q. Interpret the summary statistics output. 

Write your response here: 

1.3 Fitting an Ordinal Logistic Regression 

We now proceed to fit the ordinal logistic regression model using the MASS::polr() function. You should 
include the argument Hess = TRUE to ensure that the variance-covariance matrix is returned, which is 
necessary for calculating standard errors and confidence intervals. 

## 

##      Male    Female 

## 0.4861861 0.5138139 

# Mean values for each continuous predictor 

EN_WVS %>% 

  summarise( 

    Mean_Age = mean(Age, na.rm = TRUE), 

    Mean_EDU = mean(EDU, na.rm = TRUE) 

  ) 

Ordinal_model <- MASS::polr(Immi_Unemploy ~ COUNTRY + Age + Sex + EDU, 

                      data = EN_WVS, 

                      Hess= TRUE) # Hess = TRUE saves the variance-covariance 

matrix 

summary(Ordinal_model) 

## Call: 

## MASS::polr(formula = Immi_Unemploy ~ COUNTRY + Age + Sex + EDU, 
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The outcome differs from that of linear or binary logistic regression models. The polr() function provides: 
Coefficient estimates, Standard errors, and t-values. However, it does not report p-values or 95% 
confidence intervals by default. We will demonstrate how to compute these values manually in a later 
section. 

1.4 Interpretation of the Regression Table 

In an ordinal logistic regression model, each coefficient represents the change in the log-odds of being in 
a higher category of the outcome variable (in this case, stronger agreement that immigration increases 
unemployment) for a one-unit increase in the predictor, holding all other variables constant. 

For example, a one-year increase in age is associated with a 0.001 increase in the log-odds of being in a 
higher category of agreement that immigration increases unemployment. In contrast, Canada (relative to 
the reference category, Australia) is associated with a 0.53 decrease in the log-odds of being in a higher 
agreement category. This indicates that Canadian respondents are less likely than Australians to believe that 
immigration increases unemployment 

##     data = EN_WVS, Hess = TRUE) 

## 

## Coefficients: 

##                          Value Std. Error  t value 

## COUNTRYCanada        -0.526494   0.055291  -9.5223 

## COUNTRYNew Zealand   -0.545578   0.074689  -7.3047 

## COUNTRYUnited States  0.223130   0.059628   3.7421 

## Age                   0.001165   0.001184   0.9838 

## SexFemale            -0.097822   0.039802  -2.4577 

## EDU                  -0.211179   0.012286 -17.1890 

## 

## Intercepts: 

##                      Value    Std. Error t value 

## Disagree|Hard to say  -1.9719   0.1100   -17.9323 

## Hard to say|Agree     -0.1327   0.1078    -1.2311 

## 

## Residual Deviance: 19376.90 

## AIC: 19392.90 

## (255 observations deleted due to missingness) 
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Q. Interpret the coefficients for New Zealand, sex (Female), and education (EDU). 

Write your response here: 

1.5 Intercepts (Thresholds) in Ordinal Logistic Regression 

Since the outcome variable consists of three ordered categories (Disagree, Hard to say, and Agree), the 
model includes two intercepts, also known as thresholds or cut points. These thresholds represent the 
boundaries on the latent scale that separate adjacent outcome categories. 

For example: 

• The first threshold (−1.97) defines the point at which the model distinguishes between Disagree 
versus the combined categories Hard to say and Agree. 

• The second threshold (−0.13) defines the boundary between the combined categories Disagree and 
Hard to say versus Agree. 

Ordinal logistic regression relies on the proportional odds assumption, which assumes each predictor 
has a consistent effect across all outcome thresholds. In other words, the relationship between the 
independent variables and the outcome is assumed to be consistent, regardless of which boundary is being 
evaluated. We will examine this assumption and how to test it further in Section 1.8. 

1.6 Odds Ratios 

As with binary logistic regression, odds ratios in ordered logistic regression can be obtained by 
exponentiating the log-odds coefficients. We begin by extracting the coefficient estimates and computing 
the odds ratios, 95% confidence intervals, and p-values. 

*Note: To calculate 95% confidence intervals (CIs): 
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Once all values have been calculated, you can compile the results into a clean table using the data.frame() 
function: 

The output includes odds ratios, 95% confidence intervals, and p-values for each predictor. The 
interpretation of odds ratios is consistent with logistic regression: values greater than 1 indicate increased 
odds of being in a higher outcome category, while values less than 1 indicate decreased odds. You can also 
express the percent change in odds using the formula: (OR – 1) * 100. 

Country: 

Canada (compared to Australia) is associated with a 41% decrease in the odds of expressing stronger 
agreement that immigration increases unemployment, holding other variables constant (OR = 0.59, p < 
0.05). 

# Extract coefficients and standard errors 

coefs <- summary(Ordinal_model)$coefficients 

# Calculate odds ratios 

OR <- exp(coefs[, "Value"]) 

Std_Error = exp(coefs[, "Std. Error"]) 

lower <- exp(coefs[, "Value"] - 1.96 * coefs[, "Std. Error"]) 

upper <- exp(coefs[, "Value"] + 1.96 * coefs[, "Std. Error"]) 

# Calculate the two-tailed p-values = 2 * (1 - CDF of normal distribution at |t-value|) 

p_values <- 2 * (1 - pnorm(abs(coefs[, "t value"]))) #A two-tailed p-value from a z-

score.  #The pnorm() is   cumulative probability and abs()is an absolute value (x) 

# Compile results into a tidy data frame 

Result <- data.frame( 

  OR = round(OR, 3), #round() means show the decimal place to third 

  Std_Error = round(Std_Error, 3), 

  lower = round(lower, 3), 

  upper = round(upper, 3), 

  p_value = round(p_values, 3) 

) 

Result 
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New Zealand (compared to Australia) is associated with a 42% decrease in the odds of expressing stronger 
agreement that immigration increases unemployment, holding other variables constant (OR = 0.58, p < 
0.05). 

The United States (compared to Australia) is associated with a 25% increase in the odds of expressing 
stronger agreement that immigration increases unemployment, holding other variables constant (OR = 
1.25, p < 0.05). 

Education Level: 

A higher level of education is associated with a 19% decrease in the odds of expressing stronger agreement 
that immigration increases unemployment, holding other variables constant (OR = 0.81, p < 0.05). 

1.7 Predicted Probability 

We now compute and visualise predicted probabilities for each response category across countries. This 
allows us to observe how the likelihood of agreement with the statement: ‘Immigration increases 
unemployment’ varies by country. 

We use the ggpredict() function to generate predicted probabilities, followed by the plot() function to 
visualise the results. 

# Compute predicted probabilities by country 

pred <- ggpredict(Ordinal_model, terms = "COUNTRY") 

# Plot predicted probabilities 

plot(pred) + 

  labs(title = "Predicted Probability of Perception of Immigration increases unemploy

ment", 

       y = "Predicted Probability", 

       x = "Country") + 

  theme(axis.text.x = element_text(angle = 45, hjust = 1)) #Rotate the x-axis labels 45 

degrees 
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Q. Based on the output above, what conclusions can you draw? Do the patterns of perception 

differ across countries? 

Write Your response here: 

1.8 The Proportional Odds Assumption 

The proportional odds assumption is a key assumption in ordinal logistic regression. It means that the 
effect of each predictor is assumed to be constant across all thresholds of the ordinal outcome. 

In other words, the relationship between the predictors and the outcome is the same, whether you’re 
comparing: 

• Disagree vs. Hard to say and Agree, or 
• Disagree and Hard to say vs. Agree. 
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If this assumption holds, you can use a single set of coefficients for all comparisons across the ordered 
outcome levels. If it is violated, you may need a more flexible model (e.g., partial proportional odds or 
multinomial regression). 

To test the proportional odds assumption, we can use the Brant test, which is specifically designed to assess 
this assumption in models fitted with the polr() function. 

The Brant test evaluates whether the coefficients significantly differ across thresholds. A non-significant 
result (p > .05) suggests that the assumption holds for that variable. If the test yields significant results, the 
proportional odds assumption is violated for one or more predictors. If this assumption is violated, you can 
use a generalised ordinal logistic regression (also called a partial proportional odds model), which allows the 
effects of some predictors to vary across thresholds while keeping others constant. 

2. Multinomial Logistic Regression Model 

Multinomial logistic regression is an extension of binary logistic regression used when the outcome variable 
is categorical with more than two unordered categories. Unlike ordinal logistic regression, multinomial 
logistic regression assumes no inherent ordering or rank among outcome categories. Intuitively, this model 

install.packages("brant") # Install the package if not already installed 

library(brant) 

brant(Ordinal_model) 

## ---------------------------------------------------- 

## Test for     X2  df  probability 

## ---------------------------------------------------- 

## Omnibus          59.98   6   0 

## COUNTRYCanada        2.27    1   0.13 

## COUNTRYNew Zealand   2.73    1   0.1 

## COUNTRYUnited States 10.9    1   0 

## Age          1.85    1   0.17 

## SexFemale        18.66   1   0 

## EDU          0.24    1   0.62 

## ---------------------------------------------------- 

## 

## H0: Parallel Regression Assumption holds 
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can be thought of as stacking multiple binary logistic regressions, each comparing one outcome category to 
a chosen reference category. 

For this exercise, we use the variable Q152: Aims of Country as the outcome. This question asks respondents 
to identify the most important national priority for the next ten years. The response options are: 1 (A high 
level of economic growth), 2 (Strong defense forces), 3 (People have more say about how things are 
done), and 4 (Trying to make our cities and countryside more beautiful). Our analysis focuses only 
on Australian respondents and examines how education level (EDU) is associated with their top national 
priorities, while controlling for age and sex. 

2.1 Data Cleaning 

Before fitting the model, we first prepare the data. The outcome variable (Aim) is initially coded as numeric, 
but because it represents categorical, non-ordinal responses, we need to recode it as a factor and assign labels 
to each category. 

2.2 Summary Statistics 

We begin by exploring the distribution of the outcome variable using the ‘table()’ and ‘prop.table()’ 
functions. 

#Data cleaning 

AUS_WVS <- WVS %>% 

  filter(Country == 36) %>% 

  mutate(Sex = factor(Sex,levels = c(1, 2), labels = c("Male", "Female"))) %>% 

  mutate(Aim = factor(Q152, 

         levels = c(1,2,3,4), labels = c("A high level of economic growth", "Strong 

defense forces", 

                              "People have more say about how things are done", "Trying 

to make our cities and countryside more beautiful"))) 

# Frequency and proportion of responses 

table(AUS_WVS$Aim) 

## 

##                           A high level of economic growth 

##                                                       912 
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Q. What national priority was selected most by Australian respondents? 

Write your response here: 

2.3 Fitting a Multinominal Logistic Regression 

Before fitting the multinomial logistic regression model, we should understand how the model differs from 
binary and ordinal logistic regression. In multinomial logistic regression, the outcome variable consists of 
more than two unordered categories, and the model estimates the log-odds of each non-reference category 
relative to a base (reference) category. 

Rather than modeling a single log-odds outcome, the model estimates the relative log-odds—that is, the 

##                                     Strong defense forces 

##                                                       322 

##            People have more say about how things are done 

##                                                       477 

## Trying to make our cities and  countryside more beautiful 

##                                                        75 

prop.table(table(AUS_WVS$Aim)) 

## 

##                           A high level of economic growth 

##                                                0.51063830 

##                                     Strong defense forces 

##                                                0.18029115 

##            People have more say about how things are done 

##                                                0.26707727 

## Trying to make our cities and  countryside more beautiful 

##                                                0.04199328 
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natural logarithm of the probability of choosing a specific category over the probability of choosing the 
base category. 

These log-odds are interpreted similarly to those in binary logistic regression, but each category is compared 
to the same reference point. We now proceed to fit the multinominal logistic regression model using the 
multinom() function from the nnet package. 

The summary(Multinom_model) output provides coefficient estimates and standard errors for each non-
reference category of the outcome variable. The reference category in this case is A high level of economic 
growth, which is omitted from the output. All reported coefficients represent the relative log-odds of 
selecting a given category compared to this baseline reference. 

For example, a one-level increase in education is associated with a 0.29 decrease in the relative log-odds 
of selecting Strong defense forces over A high level of economic growth. This means that individuals with 
higher education levels are less likely to prioritise strong defense forces relative to economic growth. 

2.4 Relative Risk Ratios (RRR) 

install.packages("nnet") # Install the package if not already installed 

library(nnet) 

# Fit the multinomial logistic regression model 

Multinom_model <- multinom(Aim ~ EDU + Age + Sex  , data = AUS_WVS) 

## # weights:  20 (12 variable) 

## initial  value 2374.722241 

## iter  10 value 1888.841361 

## final  value 1861.959814 

## converged 

# View model summary 

summary<- summary(Multinom_model) 

# Compute p-values from z-statistics 

z <- summary$coefficients / summary$standard.errors 

p <- 2 * (1 - pnorm(abs(z))) 
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In multinomial logistic regression, the relative risk ratio (RRR) represents the ratio of the probability of 
selecting a given outcome category relative to the baseline reference, for a one-unit change in the predictor 
variable. 

Although the term relative risk is sometimes used interchangeably with odds, in this context it reflects the 
change in relative risk of choosing one category over the reference. 

You can compute the RRR using the tidy() function from the broom package. You should also include the 
argument exponentiate = TRUE. 

The output includes RRRs, confidence intervals, and p-values for each non-reference category relative to 
the baseline (A high level of economic growth). 

For interpretation, you can express the percent change in relative risk using the formula: (RRR−1)*100 

• Strong defense forces: Higher educational level is associated with a 25% decrease in the relative risk of 
selecting Strong defense forces as the top national priority, compared to A high level of economic 
growth, holding other variables constant (RRR = 0.75, p < 0.05). 

• People have more say about how things are done: Higher education level is associated with a 17% 
increase in the relative risk of selecting people have more say about how things are done over A high 
level of economic growth, holding other variables constant (RRR = 1.17, p < 0.05). 

• Trying to make our cities and countryside more beautiful: higher education level is associated with 
an 18% increase in the relative risk of selecting this option compared to A high level of economic 
growth, holding other variables constant (RRR = 1.18, p < 0.05). 

2.5 Predicted Probability 

We now calculate and visualise predicted probabilities across levels of educational level. This allows us to 
examine how the likelihood of selecting each national priority varies by education level, while holding other 
variables constant. 

install.packages("broom") # Install the package if not already installed 

library(broom) # for using the tidy() function 

# Calculate Relative Risk Ratios 

tidy(Multinom_model, conf.int = TRUE, exponentiate = TRUE) %>% 

  mutate(p.value = as.vector(p)) %>% 

  mutate(across(where(is.numeric), ~ round(.x, 3))) # Round all numeric columns to 3 deci

mal places. 
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Q. Based on the output above, what conclusions can you draw? Do patterns in national 

priorities differ by educational attainment? 

# Compute predicted probabilities by education level 

pred <- ggpredict(Multinom_model, terms = "EDU") 

# Plot predicted probabilities 

plot(pred) + 

  labs(title = "Predicted Probability of Aims of Country", 

       y = "Predicted Probability", 

       x = "Educational attainment") + 

  theme(strip.text = element_text(face = "bold"))  #Make each outcome category 

label bold 
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Write your response here: 

2.6 Independence of Irrelevant Alternatives (IIA) Assumption 

One of key assumptions in multinomial logistic regression is the Independence of Irrelevant 
Alternatives (IIA) assumption. This assumption holds that the relative odds of choosing one category 
over another are independent of the presence or absence of other categories. In other words, the addition 
or removal of an alternative category should not affect the odds between any two existing categories. 

The IIA assumption can be tested using the Hausman-McFadden test. However, this test cannot be 
directly applied to models estimated using the nnet package. To test the IIA assumption, you can re-
estimate your model using the mlogit package. For further details and examples, refer to the mlolgit package 
documentation (PDF, 175KB). 

Final Note 

This concludes the final chapter of the project. We hope it has strengthened your ability to think critically 
about social science issues through a quantitative lens and inspired you to apply these tools in your future 
studies and research. 

 

Appendix 

A1. A list of required R packages 

install.packages("tidyverse") 

install.packages("dplyr") 

install.packages("readxl") 

install.packages("writexl") 

install.packages("corrplot") 

install.packages("tidyverse") 

install.packages("rmarkdown") 

install.packages("ggplot2") 

install.packages("patchwork") 

install.packages("stargazer") 
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A2. Code Demonstration of Inner, Left, Right, and 
Full Joins (Chapter 4) 

install.packages("sjplot") 

install.packages("marginaleffects") 

install.packages("bda") 

install.packages("gridExtra") 

install.packages("ozmaps") 

install.packages("brant") 

install.packages("nnet") 

install.packages("ggeffects") 

install.packages("broom") 

# Creating sample WA dataset 

WA_df <- data.frame( 

  D_INTERVIEW = c(36070000, 36070001, 36070002, 36070004, 36070005, 

                  36070006, 36070010, 36070011, 36070012, 36070013), 

  Wife_Abuse = c(1, 5, 1, 1, 1, 1, 1, 1, NA, 1), 

  avg_Wife_Abuse = rep(1.24, 10) 

) 

# Creating sample VO dataset 

VO_df <- data.frame( 

  D_INTERVIEW = c(36070000, 36070001, 36070002, 36070003, 36070004, 

                  36070005, 36070006, 36070007, 36070008, 36070009), 

  Violence_otherPPL = c(10, 6, 1, 10, 3, 1, 1, 2, 1, 1), 

  avg_Violence_otherPPL = rep(1.60, 10), 

  total_Violence_otherPPL = rep(1.62, 10) 

) 

# Inner Join (only matching D_INTERVIEW values) 

inner_join <- merge(VO_df, WA_df, by = "D_INTERVIEW") 

# Left Join (all VO dataset values, matching WA dataset where possible) 

left_join <- merge(VO_df, WA_df, by = "D_INTERVIEW") 
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# Right Join (all WA dataset values, matching VO dataset where possible) 

right_join <- merge(VO_df, WA_df, by = "D_INTERVIEW") 

# Full Join (all values from both datasets) 

full_join <- merge(VO_df, WA_df, by = "D_INTERVIEW") 

# Display datasets 

print(inner_join) 

print(left_join) 

print(right_join) 

print(full_join) 
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APPENDIX 

A1. A list of required R packages 

A2. Code Demonstration of Inner, Left, Right, and Full 
Joins (Chapter 4) 

install.packages("tidyverse") 

install.packages("dplyr") 

install.packages("readxl") 

install.packages("writexl") 

install.packages("corrplot") 

install.packages("tidyverse") 

install.packages("rmarkdown") 

install.packages("ggplot2") 

install.packages("patchwork") 

install.packages("stargazer") 

install.packages("sjplot") 

install.packages("marginaleffects") 

install.packages("bda") 

install.packages("gridExtra") 

install.packages("ozmaps") 

install.packages("brant") 

install.packages("nnet") 

install.packages("ggeffects") 

install.packages("broom") 

# Creating sample WA dataset 

WA_df <- data.frame( 

  D_INTERVIEW = c(36070000, 36070001, 36070002, 36070004, 36070005, 

                  36070006, 36070010, 36070011, 36070012, 36070013), 

  Wife_Abuse = c(1, 5, 1, 1, 1, 1, 1, 1, NA, 1), 

  avg_Wife_Abuse = rep(1.24, 10) 
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) 

# Creating sample VO dataset 

VO_df <- data.frame( 

  D_INTERVIEW = c(36070000, 36070001, 36070002, 36070003, 36070004, 

                  36070005, 36070006, 36070007, 36070008, 36070009), 

  Violence_otherPPL = c(10, 6, 1, 10, 3, 1, 1, 2, 1, 1), 

  avg_Violence_otherPPL = rep(1.60, 10), 

  total_Violence_otherPPL = rep(1.62, 10) 

) 

# Inner Join (only matching D_INTERVIEW values) 

inner_join <- merge(VO_df, WA_df, by = "D_INTERVIEW") 

# Left Join (all VO dataset values, matching WA dataset where possible) 

left_join <- merge(VO_df, WA_df, by = "D_INTERVIEW") 

# Right Join (all WA dataset values, matching VO dataset where possible) 

right_join <- merge(VO_df, WA_df, by = "D_INTERVIEW") 

# Full Join (all values from both datasets) 

full_join <- merge(VO_df, WA_df, by = "D_INTERVIEW") 

# Display datasets 

print(inner_join) 

print(left_join) 

print(right_join) 

print(full_join) 
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GLOSSARY 

Data frame 

A two-dimensional table-like structure where each column can contain different data types, 
commonly used for datasets. 

Element 

A single item or value within a vector, list, matrix, or other data structure. 

Function 

A reusable block of code that performs a specific task when called, often taking inputs (arguments) 
and returning outputs. 

Library 

A collection of R functions, data, and documentation packaged together; you load it using 
'library(package name)'. 

List 

A flexible data structure in R that can contain elements of different types and lengths, including other 
lists. 

Matrix 

A two-dimensional structure of data elements of the same type, arranged in rows and columns. 

Tibble 

A modern version of a data frame from the tibble package that prints more cleanly and handles data 
types consistently. 

Vector 

A one-dimensional sequence of data elements of the same type (e.g., numeric, character, logical). 
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OPEN TEXTBOOKS @ UQ 

A portable workbook for data analysis: R for the social sciences is made possible by the Library’s Open 
Textbooks @ UQ program. The Library supports the adoption or creation of open educational resources, 
such as this open textbook, that are free for everyone. Open textbooks provide an alternative to commercial 
textbooks and benefit you, your students and the community. Find out how you can author, adapt or 
adopt open textbooks. 

Your feedback is always welcome 

Contact Pressbooks@library.uq.edu.au if you have questions or feedback about Open Textbooks @ UQ. 
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