Nikolaus Correll, Bradley Hayes,
Christoffer Heckman, and Alessandro Roncone

Introduction to Autonomous Robots:
Mechanisms, Sensors, Actuators, and Algorithms

v3.0, December 1, 2021

©05le)

Copyright in this monograph has been licensed exclusively to The MIT
Press, http://mitpress.mit.edu, which will be releasing the final version
to the public in 2022. All inquiries regarding rights should be addressed to
The MIT Press, Rights and Permissions Department. Source code of this
book is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivatives 4.0 International (CC BY-NC-ND 4.0). You are free to share,
i.e., copy, distribute and transmit sources under the following conditions:
you must attribute the work to its main author, you may not use this work
for commercial purposes, and if you remix or modify this work you may
not distribute the modified material. For more information, please consult
https://creativecommons.org/licenses/by-nc-nd/4.0/.

http://mitpress.mit.edu
https://creativecommons.org/licenses/by-nc-nd/4.0/

For Arthur, Tatiana, Benedict and Silvester
David
Leonardo and Lily
future robot users

Contents

1. Introduction
1.1. Intelligence and embodiment
1.2. A roboticists’ problem
1.3. Ratslife: an example of autonomous mobile robotics
1.4. Autonomous mobile robots: some core challenges
1.5. Autonomous manipulation: some core challenges

I. Mechanisms

Locomotion, manipulation and their representations

Locomotion and manipulation examples
Static and dynamic stabilityo,
Degrees of freedom
Coordinate Systems and Frames of Reference

Matrix notationo
Mapping from one frame to another
Concatenation of Transformations
Other representations for orientation

3.1. Forward Kinematics

Forward Kinematics of a simple robot arm
The Denavit-Hartenberg notation

Inverse Kinematics

2.
2.1.
2.2.
2.3.
2.4.
2.4.1.
2.4.2.
2.4.3.
2.4.4.
3. Kinematics
3.1.1.
3.1.2.
3.2.
3.2.1.
3.2.2.

Solvability o L
Inverse Kinematics of a Simple Manipulator Arm . . .

19
20
21
22
24
24

29

33
33
36
37
42
43
47
48
48

55
56
o7
99
62
63
63

Contents

3.3. Differential Kinematics
3.3.1. Forward Differential Kinematics . . .

3.3.2. Forward Kinematics of a Differential Wheeled Robot .

3.3.3. Forward kinematics of Car-like steering
3.4. Inverse Differential Kinematics
3.4.1. Inverse Kinematics of Mobile Robots .
3.4.2. Feedback Control for Mobile Robots .
3.4.3. Under-actuation and Over-actuation .

4. Forces
4.1, Statics e e e e
4.2. Kineto-Statics Duality 0.

4.3. Manipulability 0o

4.3.1.

Manipulability Ellipsoid in Velocity space

4.3.2. Manipulability Ellipsoid in Force space
4.3.3. Manipulability Considerations
5. Grasping
5.1. The theory of grasping
5.1.1. Friction L
5.1.2. Multiple contacts and deformation
5.1.3. Suction
5.2. Simple grasping mechanismso
5.2.1. 1-DoF scissor-like gripper
5.2.2. Paralleljaw o0
5.2.3. 4-bar linkage parallel gripper
5.2.4. Multi-fingered hands

Il. Sensing and actuation

6. Actuators

6.1. Electric motors e

6.1.1.
6.1.2.

ACand DCmotors.
Stepper motor

6.1.3. Brushless DC motor
6.1.4. Servomotor e
6.1.5. Motor controllers,

87
88
90
91
91
92
94

97

97

98
100
101
102
102
103
105
105

Contents

6.2. Hydraulic and pneumatic actuators 119
6.2.1. Hydraulic actuators 119

6.2.2. Pneumatic actuators and soft robotics 119

6.3. Safety considerations L. 120

7. Sensors 125
7.1. Terminology 127
7.1.1. Proprioception vs. Exteroception 128

7.2. Sensors that measure the robot’s joint configuration 129
7.3. Sensors that measure ego-motion 130
7.3.1. Accelerometers 130

7.3.2. GYTOSCOPES . . v v v v v it i e e 130

7.4. Measuring forceo oo oL 132
7.4.1. Measuring pressure or touch 133

7.5. Sensors to measure distanceo L 135
7.5.1. Reflection 135

7.5.2. Phaseshift, 135

7.5.3. Time-of-flight 137

7.6. Sensors to sense global pose 138
I1l. Computation 143
8. Vision 147
8.1. Images as two-dimensional signals 147
8.2. From signals to information 149
8.3. DBasic image operations Lo, 152
8.3.1. Threshold-based operations 152

8.3.2. Convolution-based filters. 152

8.3.3. Morphological Operations 155

8.4. Extracting Structure from Vision 156
8.5. Computer Vision and Machine Learning 159

9. Feature extraction 163
9.1. Feature detection as an information-reduction problem 163
9.2. Features 164
9.3. Linerecognition. oL, 165
9.3.1. Line fitting using least squares 166

Contents

9.3.2. Split-and-merge algorithm
9.3.3. RANSAC: Random Sample and Consensus
9.3.4. The Hough transform
9.4. Scale-invariant feature transforms
9.4.1. Overview i i
9.4.2. Object Recognition using scale-invariant features . . .
9.5. Feature detection and machine learning

10. Artificial Neural Networks
10.1. The simple Perceptron
10.1.1. Geometric interpretation of the simple perceptron
10.1.2. Training the simple perceptron
10.2. Activation Functions
10.3. From the simple perceptron to Multi-layer neural networks
10.3.1. Formal description of Artificial Neural Networks
10.3.2. Training a multi-layer neural network
10.4. From single outputs to higher dimensional data
10.5. Objective functions and optimization
10.5.1. Loss functions for regression tasks
10.5.2. Loss functions for classification tasks
10.5.3. Binary and Categorical cross-entropy
10.6. Convolutional Neural Networks
10.6.1. From convolutions to 2D neural networks
10.6.2. Padding and striding
10.6.3. Pooling
10.6.4. Flattening o o
10.6.5. Asample CNN
10.6.6. Convolutional Networks beyond 2D image data
10.7. Recurrent Neural Networks

11. Task execution
11.1. Reactive control
11.1.1. Limitations of reactive control
11.2. Finite State Machines
11.2.1. Implementation
11.3. Hierarchical Finite State Machines
11.3.1. Implementation,

177
178

. 179

180
181

. 183
. 184

185
186
188
188
189
190
191
193
193
194
195
195
195
196

Contents

11.4. Behavior Trees 209
11.4.1. Node Definition and Status 210

11.4.2. Node Types i v i i vt e e 211

11.4.3. Behavior Tree Execution 212

11.4.4. Implementation 213

11.5. Mission Planning L. 214
11.5.1. The General Problem Solver and STRIPS 214

12. Mapping 221
12.1. Map representations 223
12.2. Tterative Closest Point for Sparse Mapping 224
12.3. Octomap: dense mapping of voxels 227
12.4. RGB-D mapping: dense mapping of surfaces 228
13. Path Planning 233
13.1. The configuration space 234
13.2. Graph-based planning algorithms 234
13.2.1. Dijkstra’s algorithm 235

13.2.2. A% L o e 237

13.3. Sampling-based path planning 238
13.3.1. Rapidly Exploring Random Trees 239

13.4. Planning at different length scales 243
13.5. Coverage path planning 245
13.6. Summary and Outlook 245
14. Manipulation 251
14.1. Non-Prehensile Manipulation 252
14.2. Choosing the right grasp 252
14.2.1. Finding good grasps for simple grippers 253

14.2.2. Finding good grasps for multi-fingered hands 256

14.3. Pick and place Lo 257
14.4. Peg-in-hole problemso oL, 258
IV. Uncertainty 265
15. Uncertainty and Error Propagation 269
15.1. Uncertainty in Robotics as Random Variable 270

Contents

15.2. Error Propagation 270
15.2.1. Example: Line Fitting 273

15.2.2. Example: Odometry 274

15.3. Optimal Sensor Fusion, 276
15.3.1. The Kalman Filter 277

15.4. Take-home lessons 278
16. Localization 281
16.1. Motivating Example 0. 282
16.2. Markov Localization 283
16.2.1. Perception Update 283

16.2.2. Action Update 285

16.2.3. Example: Markov Localization on a Topological Map 286

16.3. The Bayes Filter 289
16.3.1. Example: Bayes filter ona grid 291

16.4. Particle Filter oo 293
16.5. Extended Kalman Filter 296
16.5.1. Odometry using the Kalman Filter 297

16.6. Summary: Probabilistic Map based localization 299
17.Simultaneous Localization and Mapping 303
17.1. Introduction 304
17.1.1. Landmarks 304

17.1.2. Special Case I: one landmark 304

17.1.3. Special Case II: two landmarks 305

17.2. The Covariance Matrix 306
17.3. EKF SLAM 307
17.3.1. Algorithm 307

17.3.2. Multiple Sensors 309

17.4. Graph-based SLAM 310
17.4.1. SLAM as a Maximum-Likelihood Estimation Problem 311

17.4.2. Numerical Techniques for Graph-based SLAM 314

V. Appendices 319
A. Trigonometry 323
A.1. Inverse trigonometry 324

10

Contents

A.2. Trigonometric identities

. Linear Algebra

B.1. Dot product
B.2. Cross product
B.3. Matrix producto o oo
B.4. Matrix inversion L o
B.5. Principal Component Analysis

. Statistics

C.1. Random Variables and Probability Distributions
C.1.1. The Normal Distribution
C.1.2. Normal distribution in two dimensions

C.2. Conditional Probabilities and Bayes Rule

C.3. Sum of two random processes

C.4. Linear Combinations of Independent Gaussian Random Vari-
ables L

C.5. Testing Statistical Significance
C.5.1. Null Hypothesis on Distributions
C.5.2. Testing whether two distributions are independent . .
C.5.3. Statistical Significance of True-False Tests
C.o4., Summaryo e e e

. Backpropagation
D.1. Backward propagation of error
D.2. Backpropagation algorithm

. How to write a research paper

E.1. Original o
E.2. Hypothesis: Or, what do we learn from this work?
E.3. Survey and Tutorialo oL

. Sample curricula

F.1. An introduction to autonomous mobile robots
F.1.1. Overview
F.1.2. Content,
F.1.3. Implementation suggestions

343
345
347

349
349
351
352
352

11

Contents

F.2. An introduction to robotic manipulation 358
F.2.1. Overview 358
F.2.2. Content 359
F.2.3. Implementation suggestions 359

F.3. An introduction to robotic systems 360
F.3.1. Overview i 360
F.3.2. Content 361
F.3.3. Implementation suggestions 361

F.4. Classdebates 361

12

Preface

This book provides an algorithmic perspective to autonomous robotics to
students with a sophomore-level of linear algebra and probability theory.
Robotics is an emerging field at the intersection of mechanical engineering,
electrical engineering, and computer science. With computers becoming
more powerful, making robots smart is getting more and more into the focus
of attention and robotics research most challenging frontier. While there
is a large number of textbooks on the mechanics and dynamics of robots
available to sophomore-level undergraduates, books that provide a broad
algorithmic perspective are mostly limited to the graduate level. This book
has therefore been developed not to create “yet another textbook, but better
than the others”, but to allow us to teach robotics to the 3rd and 4th year
undergraduates at the Department of Computer Science at the University
of Colorado.

Although falling under the umbrella of “Artificial Intelligence”, standard
AT techniques are not sufficient to tackle problems that involve uncertainty,
such as a robot’s interaction in the real world. This book uses simple
trigonometry to develop the kinematic equations of manipulators and mobile
robots, then introduces path planning, sensing, and lastly uncertainty. The
robot localization problem is introduced by formally defining error propa-
gation, which leads to Markov localization, Particle filtering and finally the
Extended Kalman Filter, and Simultaneous Localization and Mapping.

Instead of focusing on state-of-the-art solutions to a particular sub-problem,
emphasis of the book is on a progressive step-by-step development concepts
through recurrent examples that capture the essence of a problem. The de-
scribed solutions might not necessarily be the best, however they are easy
to comprehend and widely used in the community. For example, odome-
try and line-fitting are used to explain forward kinematics and least-squares
solutions, respectively, and later serve as motivating examples for error prop-

15

Contents

agation and the Kalman filter in a localization context.

Notably, the book is explicitly robot-agnostic, reflecting the timeliness
of fundamental concepts. Rather, a series of possible project-based cur-
ricula are described in an Appendix and available online, ranging from a
magze-solving competition that can be realized with most camera-equipped
differential-wheel robots to manipulation experiments with a robotic arm,
all of which can be entirely conducted in simulation to teach most of the
core concepts.

After multiple years of development and distribution mainly via Github,
this new edition of the book has been co-authored by my colleagues in the
Computer Science department, Bradley Hayes, Christoffer Heckman, and
Alessandro Roncone, each having thaught multiple iterations of our “Intro-
duction to Robotics” and “Advanced Robotics” courses as well as special
topics courses that pertain to their sub-fields of robotics research. They are
adding not only tremendous technical depth, but also years of experience on
how certain subjects should be taught to remain engaging and exciting.

This book is released under a Creative Commons CC BY-NC-ND 4.0
International license, which allows anyone to copy and share its source code.
However, neither the compiled version nor the code shall be used to create
derivatives for commercial purposes. We have chosen this format as it seems
to maintain the best trade-off between a freely available textbook resource
that others may contribute to and maintaining a consistent curriculum that
others can refer to. We are incredibly grateful to MIT Press and our editor
Elizabeth Swayne to support this forward-looking model.

Writing this book would not have been possible without the excellent work
of others before us, most notably “Introduction to Robotics: Mechanics and
Control” by John Craig and “Introduction to Autonomous Mobile Robots”
by Roland Siegwart, Illah Nourbakhsh and Davide Scaramuzza, and innu-
merable other books and websites from which I learned and borrowed ex-
amples and notation. We are also grateful to Brian Amberg, Aaron Becker,
Bachir El-Kadir, James Grime, Michael Sambol, Cyrill Stachniss, Subh83,
Ethan Tiran-Thompson who made lecture video snippets and animations
available online, and which are referenced throughout the book using QR
codes.

I would like to acknowledge Mike Miles and Harel Biggie, graduate stu-
dents in the authors’ shared laboratory at the University of Colorado Boul-
der, for their careful reading and contributions. Finally, I would also like to

16

Contents

acknowledge Github users AIWiVo, beardicus, mguida22, aokeson, aslndu,
apnorton, JohnAllen, jmodares, countsoduku, choffmann, and chrstphrdlz
for their pull requests and comments as well as Haluk Bayram. Your inter-
est and motivation in this project has been one of our biggest rewards.

Nikolaus Correll
Boulder, Colorado, December 1, 2021

17

Chapter 1

Introduction

Robotics celebrated its 60th birthday in 2021, dating back to the first com-
mercial robot in 1961 (the Unimate). In a “Tonight Show” at the time, this
robot did amazing things: it opened a bottle of beer, poured it, put a golf
ball into a hole, and even conducted an orchestra. This robot did all of the
things we expect a good robot to do: it was dexterous, accurate, and even
creative. Since this robot’s appearance on the Tonight show, more than 60
years have passed—so how incredible must the capabilities of today’s robots
be and what must they be able to do?

Interestingly, we only recently developed the techniques to autnomously
do all of the things demonstrated by the Unimate. Unimate indeed did what
was shown on TV, but all of its motions were preprogrammed and the envi-
ronment was carefully staged. Only the advent of cheap and powerful sensors
and the surge in computation capabilities have recently enabled robots to
detect objects by themselves, plan motions to reach for them, and ultimately
grasp and manipulate. Yet, robotics is still far away from doing these tasks
with human-like performance.

This book introduces you to the computational fundamentals behind the
design and control of autonomous robots. Robots are considered to be au-
tonomous when they make decisions in response to their environment (rather
than simply following a pre-programmed set of motions). They achieve this
using a multitude of modern techniques ranging from signal processing, con-
trol theory, artificial intelligence, and more. These techniques are tightly
intertwined with the mechanics, the sensors, and the actuators of the robot.
Designing a robot therefore requires a deep understanding of both algorithms

19

1. Introduction

= ﬁ
O w7 t -

Figure 1.1. A wind-up toy that does not fall off the table using purely mechanical
control. A fly-wheel that turns orthogonal to the robot’s motion induces a right
turn as soon as it hits the ground once the front caster wheel goes off the edge.

and its interfaces to the physical world.
The goals of this introductory chapter are to introduce the kind of prob-
lems roboticists deal with and how they solve it.

1.1. Intelligence and embodiment

Our notion of “intelligent behavior” is strongly biased by our understanding
of the brain and how computers work: intelligence is located in our heads.
In fact, however, a lot of behavior that looks intelligent can be achieved by
very simple mechanisms. For example, mechanical wind-up toys can avoid
falling off an edge simply by using a fly-wheel that rotates at a right angle
to their direction of motion and a caster wheel. Once the caster wheel loses
contact with the ground—that is, when the robot has reached the edge—the
fly-wheel kicks in and pulls the robot to the right (Figure 1.1).

A robot vacuum cleaner might solve the same problem very differently: it
employs infrared sensors that are pointed downwards to detect edges such
as those found on stairs and issues a command to make an avoiding turn
in response. Given that on-board electronics is needed, this is a much more
efficient, albeit more complex, approach.

Even though the above examples provide different approaches to imple-
ment intelligent behaviors, similar trade-offs exist for robotic planning. For
example, ants can find the shortest path between their nest and a food source
by simply choosing the trail that already has more pheromones (the chem-
icals ants communicate with) on it. As shorter paths have ants not only
moving faster towards the food, but also returning faster, their pheromone
trails build up quicker (Figure 1.2). But ants are not stuck to this solution.

20

1.2. A roboticists’ problem

N

Figure 1.2. Ants finding the shortest path from their nest (bottom) to a food source
(top). From left to right: The ants initially have equal preference for the left and
the right branch, both going back and forth. As ants return faster on the shorter
branch there will be more pheromones present on the short branch once a new
ant arrives from the nest.

Every now and then, ants give the longer path another shot, eventually find-
ing new food sources. What looks like intelligent behavior at the swarm
level, is essentially achieved by a pheromone sensor that occasionally fails.
A modern industrial robot would solve the problem completely differently:
it would first acquire some representation of the environment in the form of
a map populated with obstacles, and then plan a path using an algorithm.
Which solution to achieve a certain desired behavior is best depends on
the resources that are available to the designer. We will now study a more
elaborate problem for which many, more or less efficient, solutions exist.

1.2. A roboticists’ problem

Imagine the following scenario. You are a robot in a maze-like environment
such as a cluttered warehouse, hospital, or office building. There is a chest
full of gold coins hidden somewhere inside. Unfortunately, you don’t have a
map of the maze. In case you find the chest, you may only take a couple of
coins at a time, and bring them to the exit door where your car is parked.

Think about a strategy that will allow you to harvest as many coins in
the shortest time as possible. Think about the cognitive and perception
capabilities you would use. Now discuss alternative strategies: if you
could not use these capabilities, what would you do? I.e., what if you
were blind, or had no memory of the past?

These are exactly the same problems a robot has. A robot is a mobile

21

1. Introduction

machine that may reason about its environment with sensors and computa-
tion. Current robots are far from possessing the capabilities humans have,
therefore it is worth considering what strategies you would employ to solve
a problem if you were to lack some important perception or computational
capabilities.

Before we move forward to discuss potential strategies for robots with
impeded sensory systems, let’s rely on a little bit on what we know from
studying algorithms and briefly consider a particular strategy. You will
need to explore the maze without entering any branch twice. You can use
a technique known as depth-first search to do this, but will need to be able
to not only map the environment, but also localize in it, e.g., by recognizing
places and dead-reckoning on the map. Once you find the gold, you would
need to plan the shortest path back to the exit, which you can then use to
go back and forth until all the gold is harvested.

1.3. Ratslife: an example of autonomous mobile robotics

Ratslife is a miniature robot maze competition developed by Olivier Michel
from Cyberbotics S.A., which exemplifies a broad range of topics covered
in this book. The Ratslife environment can easily be created from LEGO
bricks, cardboard or wood and the game can be played with any two mobile
robots, preferably ones with the ability to identify markers in the environ-
ment. These include simple differential-wheel educational platforms with
onboard cameras or even a smartphone driven robot. Figure 1.3 shows an
example environment that can be constructed from craft materials and il-
lustrates some practical aspects of mobile robots for competitions.

In Ratslife, two miniature robots compete on searching for four “feeders”
that are hidden in a maze. Once a robot reaches a feeder, it receives “energy”
to go on for another 60 seconds, and the feeder becomes temporarily unavail-
able. After a short while, the feeder becomes available again. The feeders
can be either controlled by a referee who also takes care of time-keeping or
constructed as part of a simple curriculum on electronics or mechatronics.

It should be clear by now how you might solve these tasks using your
abilities, and you may have also thought about some fall-back strategies
in case a sensor or two of yours were unavailable. Here are some possible
algorithms for a robot, ordered by increasingly sophisticated capabilities the
robot might wield:

22

1.3. Ratslife: an example of autonomous mobile robotics

+=1
+=1AD>V::
+=1

oo+ > [

V£ 4

Figure 1.3. A simple maze made from cardboard, wood, or Lego bricks with one or
more charging stations. Locations in the maze are marked with unique markers
that can be recognized by a simple robot.

e Imagine you have a robot that can only drive (actuation) and bounce
off a wall. The resulting random walk will eventually let the robot
reach a feeder. As the allowed time to do so is limited, it is likely that
the robot’s energy will soon deplete.

e Now imagine a robot that has a sensor that gives it the ability to
estimate its distance from a wall. This could be a whisker, an infrared
distance sensor, an ultrasound distance sensor, or a laser range finder.
The robot could now use this sensor to keep following a wall to its right.
Using this strategy for solving the maze, it will eventually explore the
entire maze except for islands inside of it.

e Finally, think about a robot that could identify simple patterns using
vision, has distance sensors to avoid walls, and an “odometer” to keep
track of its wheel rotations. Using these capabilities, a potential win-
ning strategy would be to explore the environment, identify markers
in the environment using vision and use them to create a map of all
feeder locations, calculate the shortest path from feeder to feeder and
keep going back and forth between them. Strategy-wise, it might make
sense to wait just in front of the feeder and approach it only shortly
before the robot runs out of power.

23

1. Introduction

1.4. Autonomous mobile robots: some core challenges

Being able to stitch sensor information together to map the environment
just by counting your own steps and orienting yourself by using distinct
features of the environment is known as simultaneous localization and map-
ping (SLAM). The key challenge here is that the length of the steps you
take are uncertain (a wheeled robot might slip or have slightly differently
sized wheels) and it is not possible to recognize places with 100% accuracy
(even humans can have trouble with this). In order to be able to implement
something like the last algorithm on a real robot, we will therefore need to
understand:

e How does a robot move? How does the rotation of its wheels affect its
position and speed in the world?

e How might we to control the wheel speed in order to reach a desired
position?

e What sensors exist for a robot to perceive its own status and its envi-
ronment?

e How can we extract structured information (e.g., features of the world)
from this vast amount of sensor data?

e How can we localize in the world?

e How can error be represented and how can we reason in the face of
uncertainty?

In order to answer these questions, we will rely on trigonometry, calculus,
linear algebra, probability, and algorithms. Specific concepts that will be
used throughout this book are basic trigonometry, derivatives and integrals,
matrix notation, Bayes’ formula, and the concept of probability distribu-
tions. Robotics is a great vehicle to add meaning to these concepts!

1.5. Autonomous manipulation: some core challenges

Think about the last time you worked with your hands. This includes typing
on your keyboard, writing on a piece of paper, sewing a button onto a shirt,
and using a hammer or a screwdriver. You will notice that these activities

24

1.5. Autonomous manipulation: some core challenges

require a wide range of dexterity (i.e. the ability to manipulate objects with
precision), a wide range of forces, and a wide range of sensorial capabilities.
You will also notice that some tasks go beyond your natural capabilities,
such as putting yarn through a hole in fabric, turning a screw, or driving a
nail into a piece of wood, but can be easily solved with the right tool.

Present-day robotic hands are far from reaching the dexterity of a human
hand. Yet, with the right tool (called “end-effector” in robotics speech) some
tasks can be solved even faster and more precisely than human capability.
Just as with solving a mobile robotics problem, manipulation problems re-
quire you to think about the right mix of reasoning and mechanism design.
For example, grasping tiny parts might be impossible with tweezers, but
quite easy when employing a sucking mechanism. Or, picking up a test tube
that is nearly invisible can be picked up almost blindly when using a funnel-
like mechanism at your end-effector. Unfortunately, these tricks will most
likely limit the versatility of your robot, requiring you to think about the
problem and the users’ needs as a whole.

Take-home lessons

e The best solution to a problem is a function of the available sens-
ing, actuation, computation and communication abilities of the avail-
able platform. Usually, there exist trade-offs that allow you to solve a
problem using a minimal set of resources but compromise performance
characteristics such as speed, accuracy or reliability.

e Robotics problems are different from many problems in pure Artificial
Intelligence, particularly those that do not deal with unreliable sensing
or actuation.

e The unreliability of sensors, actuators and communication links require
a probabilistic notion of the system and the ability to reason with
uncertainty.

Exercises

1. What kind of sensors do you need to solve the “Ratslife” game? Think both
about trivial and close-to-optimal approaches.

2. What devices in your home could be considered robots? Why and why not?

3. Is a mechanical clock a robot? Why and why not?

25

1. Introduction

26

. Which industries have been recently revolutionized by robotics? Into which

industries were robots introduced first? Which industries are currently being
transformed?

. What sensors are you using when you grasp an object? Enumerate them all.

Which ones are absolutely necessary and which one could you live without?

. Think about robots vacuuming your floor or mowing your lawn. Do they use

any planning? Is planning necessary? Why or why not?

. What kind of sensors would you need in a car that drives completely au-

tonomously? Think first about the kind of information that the car needs to
be aware of and then discuss possible sensors that could capture this infor-
mation.

. Implement a simple line-following using a robot of your choice. How does the

thickness of the line affect the sensor placement on the robot? How does its
curvature affect the robot’s maximum speed?

. Implement a maze solving algorithm that uses simple wall-following using

a robot of your choice. How does the sensor geometry affect the robot’s
performance? What are the parameters that you find yourself tuning?

Part |I.

Mechanisms

29

Chapter 2

Locomotion, manipulation and their
representations

Autonomous robots are systems that sense, compute, communicate, and
actuate. Actuation, the focus of this chapter, is the ability of the robot to
move and to manipulate the world. Specifically, we differentiate between
locomotion as the robot’s ability to move itself and manipulation as the
robot’s ability to move objects in the environment. Both activities are closely
related: during locomotion the robot uses its motors to exert forces on its
environment (ground, water, or air) to move itself; during manipulation it
uses motors to exert forces on objects to move them relative to the rest of
the environment. This might not even require different motors. Insects are
good examples for this: they can use their six legs not only for locomotion,
but also for picking up and manipulating objects. In short, the goals of this
chapter are to:

e Introduce the concepts of locomotion, manipulation and their duality,
e Explain static vs. dynamic stability,

e Introduce the concept of “Degree of Freedom” (DoF),

e introduce coordinate systems and their transformations.

2.1. Locomotion and manipulation examples

Locomotion includes very different concepts of motion, including rolling,
walking, running, jumping, sliding (undulatory locomotion), crawling, climb-

33

2. Locomotion, manipulation and their representations

ing, swimming, and flying. The mechanisms that might achieve these feats
could be drastically different in terms of energy consumption, kinematics,
stability, and other capabilities required by the robot that implements them.
Furthermore, the above definitions are loose and ambiguous: for example,
“swimming” can be performed using many different forms of propulsion.
Similarly, a sliding motion on the ground might work well for swimming too
with only few modifications.

The way in which the individual parts of a robot can move with respect
to each other and the environment is called the kinematics of the robot.
Kinematics (which will be discussed in detail in Chapter 3) are only con-
cerned with the position and speed (first derivative of position) of those
parts; depending on the application, one may want to use a deeper level
of abstraction called dynamics, which is concerned with quantities such as
acceleration (second derivative of position) and jerk (third derivative of po-
sition).

Commercially, the most widespread form of locomotion is rolling. This
is partially due to the fact that rolling provides by far the most efficient
energy to speed ratio (see Figure 2.1), making the invention of the wheel
one of the greatest technological breakthroughs in history. It also is a widely
implemented form of locomotion, e.g. with cars and bicycles. Consequently,
humans have modified their environment to have as many smooth surfaces
as possible—e.g. roads, warehouses, and residential floors. In contrast,
evolution has not equipped any animal with wheel-like actuators because of
their poor performance in natural environments such as an unmown meadow,
a forest floor, a mountains or a cave; consequently, wheeled robots perform
poorly in such environments, whereas legged robots can shine.

Can you find examples of robots from the above categories (legged vs
wheeled robots)? Identify the different types of actuators that are used
in them.

Most mechanisms capable of locomotion can also be used for manipula-
tion with only minor modifications. Most industrial manipulators consist of
a chain of rotary (or revolute) actuators that are connected by rigid links. In
general, they are equipped with six or more independently rotating axes—we
will see why further down below. In addition, modern industrial manipu-
lators have the ability to not only control the position of each of its joints,
but to also control the torque at each individual joint; this capability allows

34

2.1. Locomotion and manipulation examples

100

unit power (hp/ton)

1 L0 100
speed (miles/hour)

Figure 2.1. Power consumption vs. speed for various means of locomotion. From
Todd (1985).

35

2. Locomotion, manipulation and their representations

control over the compliance of a robot, which in a mechanical sense is the
inverse of stiffness. Finally, for dexterous manipulation a robot does not
only need an arm, but also a gripper or hand. Grasping is a hard problem
on its own and is therefore treated in its own chapter (Chapter 5).

Regardless of whether the robot is rolling or walking, the dominant ac-
tuator type is rotational. Another type of mechanism is the prismatic or
linear joint (see Figure 2.5 for example) that allows the robot to extend and
contract a link. This type of joints are usually combined with rotating joints
and allow, for example, a robot arm to move up and down, or a robotic
walker to extend or retract its leg.

2.2. Static and dynamic stability

A fundamental difference between locomotion mechanisms is whether they
are statically or dynamically stable. A statically stable mechanism will not
fall even when not actuated (Figure 2.2, left). A dynamically stable robot
instead requires constant actuation to prevent it from falling. Technically,
stability requires the robot to keep its center of mass to fall within the
polygon spanned by its ground-contact points. For example, a quadrupedal
robot’s feet span a rectangle. Once such a robot lifts one of its feet, this
rectangle becomes a triangle. If the projection of the center of mass of the
robot along the direction of gravity is outside of this triangle, the robot will
fall. A dynamically stable robot can overcome this problem by changing its
configuration so rapidly that a fall is prevented. An example of a purely
dynamically stable robot is an inverted pendulum on a cart (Figure 2.2,
middle). Such a robot has no statically stable configurations and needs to
keep moving all the time to keep the pendulum upright. While dynamic sta-
bility is desirable for high-speed, agile motions, robots should be designed so
that they can easily switch into a statically stable configuration (Figure 2.2,
right).

An example of a robot that has both statically and dynamically stable
configurations is a quadruped running. Unlike walking, a running quadruped
robot will always have two legs in the air and alternate between them faster
than the robot may fall in either direction. Although statically stable walking
is possible with only four legs, most animals (and robots) require six legs for
statically stable walking and use dynamically stable gaits (such as galloping)
when they have four legs. Six legs allow the animal to move three legs at a
time while the three other legs maintain a stable pose.

36

2.3. Degrees of freedom

N\
o) <lael”

VN

Figure 2.2. From left to right: statically stable robot; dynamically stable inverted
pendulum robot; static and dynamically stable robot (depending on configura-
tion).

2.3. Degrees of freedom

The concept of degree of freedom, often abbreviated as DoF, is important for
defining the possible positions and orientations a robot can reach. An object
in the physical world can have up to six Cartesian degrees of freedom, namely
forward /backward, sideways, and up/down as well as rotations around those
axes. These rotations are known as pitch, yaw, and roll and are illustrated
in Figure 2.3. These Cartesian degrees of freedom are distinct from the
robot’s mechanical degrees of freedom, which correspond to the number of
points of actuation for a robot (i.e., a robotic arm with five joint motors is
referred to as having five mechanical degrees of freedom in joint space, see
Chapter 3). As a rule of thumb, the number of mechanical DoFs available
to the user depends on the robot platform and cannot easily be changed by
the user unless mechanical modifications to the robot are made; conversely,
the number of Cartesian DoFs depends on the task, can be modified by the
user, and varies according to what the robot needs to do.

After specifying the mechanical and Cartesian DoFs for your kinematic
problem, the number of Cartesian DoFs (i.e. directions) a robot can actually
move in depends on the configuration of its actuators and the constraints the
robot has with the environment. These relationships are not always intuitive
and require more rigorous mathematical treatment (see Chapter 3). The goal
of this section is to introduce the degrees of freedom of standard mechanisms
that are recurrent in robot design such as wheels or simple arms. For wheeled
platforms, the degrees-of-freedom are defined by the types of wheels used and
their orientation. Common wheel types are listed in Table 2.1.

Only robots that use exclusively use wheels with three degrees-of-freedom

37

2. Locomotion, manipulation and their representations

Pitch axis

Roll axis

Yaw axis

Figure 2.3. Pitch, yaw, and roll around the principal axis of an airplane.

38

2.3. Degrees of freedom

Wheel type Example Degrees of Freedom
Standard Front-wheel of Two:
a wheelbarrow

e Rotation around the

wheel axle
. e Rotation around its con-
¢ tact point with the ground

Caster: wheel Office chair Three:

e Rotation around the
wheel axle

e Rotation around its con-
tact point with the ground

e Rotation around the

¢ caster axis

Swesh wheel Standard wheel Three:
,‘!L‘."‘?' ‘ with non- .
S actuated rollers ® Rotation around the

around its wheel axle

: circumference e Rotation around its con-
¢ tact point with the ground

e Rotation around the
roller axles

Spherical Ball Bearing Three:

wheel o o
e Rotation in any direction

e Rotation around its con-
{\ """" tact point

>

Table 2.1. Different types of wheels and their degrees of freedom. Adopted from
Siegwart et al. (2011).

39

2. Locomotion, manipulation and their representations

(3-DoF wheels) will be able to freely move on a plane. This is because the
pose of a robot on a plane is fully determined by its position (two values,
e.g. vertical and horizontal position) and its orientation (one value, e.g. an
angle). Robots that don’t have wheels with three degrees of freedom will
have kinematic constraints that prevent them from reaching every possible
point at every possible orientation. For example, a bicycle wheel can only
roll along one direction and turn on the spot. Moving the bicycle wheel
orthogonally to its direction of motion is not possible, unless it is forcefully
dragged (“skidding”). Importantly, not having three degrees of freedom does
not imply that some poses in the plane are unreachable—it may just require
additional movements to achieve them!

A good analogue are figures on a chess-board. For example, a knight can
reach every cell on a chess-board but might require multiple moves to do
so. This is similar to a car, which can parallel park using back-and-forth
motions. Instead, a bishop can only reach either black or white fields on the
board, based upon its starting position.

Similar reasoning applies to aerial and underwater robots. Here, the posi-
tion of the robot is affected by the position and orientation of its thrusters,
either in the form of jets or propellers. Things become complicated quickly,
however, as the dynamics of the system are subject to fluid-dynamic and
aero-dynamic effects, which also change as a function of the size of the robot.
This book will not go into the details of flying and swimming robots, but
the general principles of localization and planning will be applicable to them
as well.

Think about possible wheel, propeller and thruster configurations. Don’t
limit yourself to robots, but consider also street and aerial vehicles and
be creative—if you can think about a setup that makes sense, i.e., allows
for reasonable mobility—somebody has already built it and analyzed it.
What are the advantages and disadvantages of each?

For manipulating arms, Cartesian DoFs refer to the positions and orienta-
tions (rotations around the primary axes (x, y, and z) that the end-effector
can reach. Each actuated joint will typically add a degree of freedom, un-
less it is redundant (moving in the same direction, with the same physical
effect, as a different joint). Figures 2.4 and 2.5 show a series of manipulators
operating on a planar surface. In such a scenario, the degrees of freedom of
the end-effector are limited to moving up and down, sideways, and rotating

40

2.3. Degrees of freedom

around their pivot point. As a plane only has those three degrees of freedom,
adding additional joints will not increase the number of Cartesian DoFs un-
less they allow the robot to also move in and out of the plane (“vertical”
axis). An exact definition of the number of degrees of freedom is tricky
and requires deriving analytical expressions for the end-effector position and
orientation, which will be the subject of Chapter 3.

Figure 2.4. From left to right: Manipulators with one, two, three and four mechan-
ical DoFs. The Cartesian DoFs needed for the end-effector to move in a plane
are: the vertical displacement of the end-effector with respect to the base, its
horizontal displacement, and its orientation.

LD

Figure 2.5. From left to right: Manipulators with one, two, three, and four DoF's
using a combination of rotational and prismatic joints.

Z

Choosing the “right” kinematics involves a very complex trade-off be-
tween mechanical complexity, maneuverability, achievable precision, cost,
and ease of control. The very popular differential-wheel drive—consisting of
two independently controlled wheels that share a common axis, such as those
mounted on a robotic vacuum cleaner—is cheap, highly maneuverable, and
easy to control; however, it is hard to drive the robot in a perfectly straight
line. This motion requires both motors to turn at the exact same speed
and both wheels to have the exact same diameter, which is hard to achieve
in practice. This problem is solved well by car-like steering mechanisms—

41

[=]

[=]

2. Locomotion, manipulation and their representations

N

(>. > X

Figure 2.6. A coordinate system indicating the direction of the coordinate axes and
rotation around them. These directions have been derived using the right-hand
rules.

which in turn have poor maneuverability and are difficult to control (as a
reference, think about the complexity of parallel parking).

2.4. Coordinate Systems and Frames of Reference

Every robot assumes a pose in the real world that can be described by its

E position (z, y, and z) and orientation (pitch, yaw, and roll) along the three

major axes of a Cartesian Coordinate system. Such a coordinate system
is shown in Figure 2.6. Note that the directions and orientations of the
coordinate axes are arbitrary. This book uses the “right hand rule”, which is
illustrated in Figure 2.6 to determine axes labels and directions throughout.
Pitch, yaw, and roll, are also known as bank, attitude, and heading in other
communities. This makes sense, considering the colloquial use of the word
“heading”, which corresponds to a rotation around the z-axis of a vehicle
driving on the z-y-plane.

42

http://youtu.be/klBJi-MEeNQ

2.4. Coordinate Systems and Frames of Reference

Defining all three position axes and orientations might be cumbersome.
What level of detail we care about, where the origin of this coordinate system
is, and even what kind of coordinate system we choose, depends on the
specific application. For example, a simple mobile robot would typically
require a representation with respect to a room, a building, or the earth’s
coordinate system (given by the longitude and latitude of each point on
earth), whereas a static manipulator usually has the origin of its coordinate
system at its base. More complicated systems, such as mobile manipulators
or multi-legged robots, make life much easier by defining multiple coordinate
systems, e.g. one for each leg and one that describes the position of the robot
in the world frame. These local coordinate systems are known as Frames
of Reference. An example of two nested coordinate systems is shown in
Figure 2.7. In this example, a robot located at the origin of ',y and
2’ might plan its motions in its own reference frame, which can then be
expressed in the coordinate system x, y and z by performing a translation
and a rotation—as we will later see.

Depending on its degrees of freedom in Cartesian space—that is, the num-
ber of independent translations and rotations a robot can achieve in such a
space—it is also customary to ignore components of position and orienta-
tion that remain constant. For example, a simple floor-cleaning robot’s pose
might be completely defined by its x and y coordinates in a room as well
as its orientation, i.e. its rotation around the z-axis. In this case, z position
and rotation around x and y axes would be ignored.

2.4.1. Matrix notation

Given some kind of fixed coordinate system, we can describe the position
of a robot’s end-effector by a 3 x 1 position vector. As there can be many
coordinate systems defined on a robot and the environment, we identify the
coordinate system a point relates to by a preceeding super-script, e.g., 4P
to indicate that point P is in coordinate system {A}. Each point consists of
three elements 4P = [pm,py,pz]T

More formally, 4P is a linear combination of the three basis vectors that
span A:

1 0 0
AP=p, [0 +p, | 1| +p. |0 (2.1)
0 0 1

43

[=] g (]

http://youtu.be/QdHO_9M8-UI

2. Locomotion, manipulation and their representations

\> > X

Figure 2.7. Two nested coordinate systems (also referred to as frames of reference).

44

2.4. Coordinate Systems and Frames of Reference

As we know, not only the position of the robot is important, but also its
orientation. In order to describe the orientation of a point, we will attach
a coordinate system to it. Let X B, ffB and Z B be unit vectors that corre-
spond to the principal axes of a coordinate system {B}. When expressed in
coordinate system {A}, they are denoted #Xp5,4Yp and 4Z5. In order to
express a vector that is given in one coordinate system in another, we need
to project each of its components to the unit vectors that span the target
coordinate system. For example, if we consider only the axis AX g, which is
given by

AXp=(Xp-Xa,Xp-Ya,Xp-Za)" (2.2)
that is, the projections of XB onto XA, YA and ZA. Here, ‘-’ denotes the
scalar product (also known as dot or inner product, see Appendix B.1). Note
that all vectors in (2.2) are unit vectors, i.e. their length is one. By following
the definition of the scalar product, we have that A - B = ||A]|||B]| cosa =
cos o, indeed reduces the projection of Xp onto the unit vectors of {A}.
This projection is illustrated in Figure 2.8.
We can now apply the same procedure to all three vectors that span coor-
dinate system { B} and stack these three vectors together into a 3 x 3 matrix
to obtain the rotation matrix

4R=["Xp Avp “Zp, (2.3)

which describes { B} relative to {A}. It is important to note that all columns
in gR are unit vectors, so that the rotation matrix is orthonormal. This is
important as it allows us to easily obtain the inverse of gR as gRT or
BR _A RT
A .

The reason why the unit vectors of a coordinate system {B} expressed
in coordinate system {A} actually make up a rotation matrix can be easily
seen when re-arranging Equation 2.1 in matrix form:

100 Dz
Ap=1010]||p,|, (2.4)
001 o

where the rotation matrix is the identity as both points already are in the
same coordinate system, that is, no rotation is needed.

We have now established how to express the orientation of a coordinate
system using a rotation matrix. Usually, coordinate systems don’t lie on top

45

2. Locomotion, manipulation and their representations

Za
A
}X A
Za
A
i Xp
Qy
§°A %6 Ny % .
S
COS Oy > >XA

Figure 2.8. Top: A coordinate system {B} with position given by 4P and orienta-
tion given by Xpg, Yp, and Zg. Bottom: The projection of the unit vector Xpg

onto the unit vectors that span coordinate system {A} after moving {B} into
the origin of {A}. As all vectors are unit vectors, A- B = ||A||||B|| cos a = cos a.

46

2.4. Coordinate Systems and Frames of Reference

of each other, but are also displaced from each other. Together, position and
orientation are known as a frame, which is a set of four vectors, one for the
position and three for the orientation, and we can write

{B} = {5R" P} (2.5)

to describe the coordinate frame { B} with respect to {A} using a vector 4P
and a rotation matrix ‘gR. Robots usually have many such frames defined
along their bodies.

2.4.2. Mapping from one frame to another

Having introduced the concept of frames, we need the ability to map co-
ordinates in one frame to coordinates in another frame. For example, let’s
consider frame {B} having the same orientation as frame { A} and sitting at
location 4P in space. As the orientation of both frames is the same, we can
express a point 2@ in frame {A} as:

AQ=BQ+ip (2.6)

In reality, adding two vectors that are in different reference frames, i.e.,
BQ+AP, is only possible if both of them have the same orientation. We can,
however, convert from one reference frame to the other using the rotation
matrix:

Ap=4 RBP (2.7)
and therefore solve the mapping problem regardless of the orientation of {A}
to {B}:
AQ =4 REQ+4 P (2.8)
Using this notation, we can see that leading subscripts cancel the leading
superscripts of the following vector/rotation matrix. Even though we have
now a solution to transform a point from one frame of reference to another
by combining a rotation and a translation, it would be more appealing to
write it in a more compact form, i.e.:

4Q =5 TPQ (2.9)

In order to do this, we need to introduce a 4 x 1 position vector such that
A A A B
@ = plt P @ (2.10)
1 0 0 0|1 1

47

http://youtu.be/NsiJNvsuO3s

2. Locomotion, manipulation and their representations

and 47 is a 4 x 4 matrix. Note that the added ‘1’s and [0 0 0 1] do not
affect the other entries in the matrix during matrix multiplication. A 4 x 4
matrix of this form is called a homogeneous transform.

The inverse of an homogeneous transform can be constructed by inverting
rotation and translation part independently, leading to

4R [AP]7" [ART |-ARTAP 2.11)
0001 0o of 1 '

We have now established a convenient notation to convert points from one
coordinate system to another. There are many possible ways this can be
done, in particular how rotation can be represented (see below), but all can
be converted from one form into the other.

2.4.3. Concatenation of Transformations

Transformations can be combined: consider for example an arm with two
links, reference frame {A} at the base, { B} at its first joint, and {C'} at its
end-effector. Given the transforms gT and g,T, we can write

Ap =2 TP =2TCP (2.12)

to convert a point in the reference frame of the end-effector to that of its
base. As this works for rotation and translation operators independently, we
can construct éT as

ARER |ARPP;+ Py
0 0 0 1

AT = (2.13)

where 4 Pg and B Po are the translations from {A} to {B} and from {B} to
{C}, respectively.

2.4.4. Other representations for orientation

So far, we have represented orientation by a 3 x 3 matrix whose column vec-
tors are orthogononal unit vectors describing the orientation of a coordinate
system. Orientation is therefore represented with nine different values. We
chose this representation mainly because it is the most intuitive to explain
and is derived from simple geometry.

48

2.4. Coordinate Systems and Frames of Reference

Euler Angles

In fact, three values are sufficient to describe orientation. This becomes clear
when considering that orthogonality (dot product of all columns is zero)
and vector length (each vector must have length 1) impose six constraints
on the nine values in the rotation matrix. Indeed, an orientation can be
represented as a rotation by certain angles around the x, the y, and the
z-axis of the reference coordinate system. This is known as the X-Y-Z fixed-
angle notation. Mathematically, this can be represented by a rotation matrix
of the form:

cosa —sina 0 cosf 0 sinf 1 0 0
s = [S2wme][5 Nh, 8] g
0 0 1 —sin 0 cos 8 0 siny cos~y

While the X-Y-Z fixed angles approach expresses a coordinate frame using
rotations with respect to the original coordinate frame (say, {A}), another
possible description is to start with a coordinate frame { B} that is coincident
with frame {A}, then rotate around the Z-axis with angle «, then the Y-axis
with angle 8 and finally around the X-axis with angle . This representation
is called Z-Y-X Euler angles. As the coordinate axis do not necessarily need
to be different, there are twelve possible valid combinations of sub-sequent
rotations: XYX, XZX, YXY, YZY, ZXZ,7ZYZ,XYZ,XZY,Y7ZX,YXZ, ZXY
and ZYX. The reason for which there are only twelve is that sub-sequent
rotations around the same axis are not valid. Such rotations would not add
any information, but are equivalent to a rotation by the sum of both angles.

It is important to understand the subtle differences between the available
transformations as there is neither “right” nor “wrong” convention, however
different manufacturers of hardware and software products might use differ-
ent ones, often based on preferences in the various different fields, such as
aviation or geology, that these algorithms and products originally catered
to. There is a fundamental caveat with all of the above approaches: each
of the rotation matrices can look like subsequent rotations around the same
axis for certain values of angles. For example, this happens for the XYZ
rotation matrix if the angle of rotation around the Y-axis is 90°. These
cases are known as a singularities of the specific notation. We therefore
need additional representations that work across the entire range of possible
motions.

Quaternions

49

https://youtu.be/3BR8tK-LuB0

2. Locomotion, manipulation and their representations

Among the many possible conventions, the preferred representation for com-
putational and stability reasons are quaternions. A quaternion is a 4-tuple
that extends the complex numbers with very general applications in mathe-
matics and representing orientation and rotation in particular. Quaternions
are generally represented in the form

qg=a+bi+cj+dk (2.15)

Here, a is referred to the scalar part of the Quaternion and the elements b,
c and d as the vector part.
A Quaternion’s conjugate is given by

¢ =a—bi—cj—dk (2.16)

It can be shown that that each rotation can be represented as a rotation
around a single axis (a vector in space) by a specific angle, also known
as Buler axis. Given such an axis K = [kzk‘y/cz]T and an angle 6, one can
calculate the so-called Euler parameters or unit quaternion q = (1, €2, €3, €4)
with

6

€1 = cos 5 (2.17)
0

€9 = kaZn§ (2.18)
0

€3 = k:ysm§ (2.19)

€4 = kzsing (2.20)

These four quantities are constrained by the relationship
Etetatre=1, (2.21)

which might be visualized by a point on a unit hyper-sphere.
Given a vector p € R? that should be rotated by a unit Quaternion q, we
can compute the new vector p’ as

p' = apq’ (2.22)
with q* the conjugate of q as defined above.

50

2.4. Coordinate Systems and Frames of Reference

Computing the equivalent rotation to two subsequent rotations, requires
multiplying the Quaternions. Given two quaternions € and €, multiplication
is defined by the following matrix multiplication:

€4 €1 € €3 €
/
—€] €4 —€3 € €
; (2.23)
—€9 €3 €4 —€1| | €

—€3—€9 €] €4 2

Unlike multiplying two rotation matrices, which requires 27 multiplications
and 18 additions, multiplying two quaternions only requires 16 multiplica-
tions and 12 additions, making the operation computationally more efficient.
Importantly, this representation does not suffer from singularities for spe-
cific joint angles, making the approach computationally more robust. This is
particularly relevant for robotics, as mathematical singularities have pretty
significant real-world impact on physical robots.

Take-home lessons

e In order to perform planning for a robot, it is necessary to understand
how its control parameters map to actions in the physical world.

e The kinematics of a robot are fully defined by the position and orien-
tation of its wheels, joints and links no matter whether it swims, flies,
crawls or drives.

e Many robotic systems cannot be fully understood by considering kine-
matics alone, but require you to model their dynamics as well. This
book will be limited to modeling kinematics, which is sufficient for
low-speed mobile robots and arms.

Exercises

1. What are the Cartesian DoF's of a push lawnmower with four wheels? How
is it still possible to mow an entire lawn with one, even though the wheels
don’t yaw?

2. Is a car statically or dynamically stable? What about a motorcycle?
3. What are the Cartesian DoF's of an office chair with all caster-wheels?

4. What are the maximum Cartesian DoF's for orientable objects driving on the
2D plane?

o1

2. Locomotion, manipulation and their representations

52

. What are the maximum Cartesian DoF's for objects that can freely translate

and rotate in the world?

. Calculate the Cartesian DoFs of a differential drive robot with two powered

rear wheels and a central, front-mounted caster wheel. What happens when
you add a second caster wheel?

. Calculate the Cartesian DoF's of a standard car. How is it possible to still

reach every point on the plane?

. A steering wheel allows you to change the yaw of your car. Can you also

change its pitch and its roll? See Figure 2.3 for reference.

Chapter 3

Kinematics

In order to plan a robot’s movements, we have to understand the relation-
ship between our control variables (i.e. the input to the motors that we
can control at any given time) and the effect of these control variables on
the motion of the robot. The simplest models of such relationships can be
built by looking at the geometry of our robot, known as the field of kinemat-
ics. For simple arms in static configurations, a kinematic model is rather
straightforward: if we know the generalized position / configuration angle
of each joint, we can calculate the generalized position of its end-effectors
using trigonometry—a process known as forward kinematics. This process
is usually more involved for mobile robots, as the speeds of the wheels need
to be integrated to determine changes in robot pose, which we refer to as
odometry. Roboticists are often concerned with trying to compute the in-
verse relationship: the position each joint must be at for the end-effector
to be in a desired position or pose. This is generally a far more complex,
underdetermined problem, known as inverse kinematics.

As we will see below, kinematics is the simplest and most fundamental level
of abstraction that a roboticist can use to model the motion of a robot and
its geometry: it deals exclusively with positional quantities, and considers
the robot as if it was frozen in time. Although this simplification is far from
being realistic, we will see that a lot can be done through kinematics alone!
However, a more expressive tool at our disposal is to do a similar modeling
in a second level of abstraction that operates in velocity space; this domain
is called differential kinematics and is introduced in Section 3.3. In all, the
goals of this chapter are to:

95

3. Kinematics

e Introduce the forward kinematics of simple arms and mobile robots,
and understand the concept of holonomy

e Provide an intuition on the relationship between inverse kinematics
and path-planning

e Become familiar with differential kinematics and the Jacobian tech-
nique

Within the scope of a kinematic analysis, the term generalized position or
generalized configuration means “any position-equivalent quantity needed
to describe the element”. For what concerns joint space, it depends on
the type of actuation: a revolute joint imparts a rotational motion around
its axis and its configuration is fully described by an angle; a prismatic
joint commands a translational motion along its axis and its configuration
is represented by a distance. Conversely, generalized position in task space
depends on the specific task; in its most general case, a generalized position
equates to the end-effector pose, which is comprised of a 3D position and a
3D orientation—as we will see below.

Remember: configuration space = joint space; cartesian space = task
space. Forward kinematics maps from joint space to task space, and in-
verse kinematics does the opposite. The number of mechanical degrees-
of-freedom n (i.e. DoFs in task space) depends on the robot, while the
number of Cartesian degrees-of-freedom m (i.e. DoFs in task space)
depends on the task. In general, n % m/!

3.1. Forward Kinematics

Now that we have introduced the notion of local coordinate frames, we are
interested in calculating the pose and speed of these coordinate frames as
a function of the robot’s actuators and joint configuration. That is, we are
interested in computing a function f that allows us to map a joint configu-
ration to its corresponding end-effector pose:

r= f(q), f:R*" - R™, (3.1)

where r is the task-space (end-effector) configuration and ¢ is the joint-
space configuration. It is important to remember that the choice of ¢ and

56

3.1. Forward Kinematics

r (and, consequently, the complexity of f) depends on your specific robot
platform and the specific task you are investigating. ¢ generally refers to the
actuators/joints that you can control on your robot; it is of size n, where
n is the number of degrees of freedom in joint space (see also Section 2.3).
Conversely, r depends on the task and its dimensionality is m, where m is
the number of DoF's in task space.

We will focus on the problem of computing the forward kinematics map-
ping f for a variety of robot arms to build intuition. While it is always pos-
sible to compute the forward kinematics analytically (i.e. by inspecting the
arm mechanism and the relationship between joint and task configuration,
see Section 3.1.1), in Section 3.1.2 we will introduce a scalable, geometric
technique to compute forward kinematics with more complex arms composed
of many mechanical Degrees of Freedom.

3.1.1. Forward Kinematics of a simple robot arm

. .

Figure 3.1. A simple 2-DOF arm.

Consider the robot arm in Figure 3.1; it is mounted to a table, and is
composed of two links and two joints. Let the length of the first link be I;
and the length of the second link be l5. You could specify the position of
the link closer to the table by the angle o and the angle of the second link
relative to the first link using the angle 3. Therefore, ¢ = [, 3]T specifies
the two degrees of freedom that we can control. Our goal is to calculate the
position [x,%]” and orientation § of the end-effector given the values of ¢;

o7

3. Kinematics

consequently, f will map to r = [z,y,0]".
Let’s now calculate the position P; = (z1,y1) of the joint between the first
and the second link using simple trigonometry:

x1 =11 cosa

y1 =1 sina (3.2)
Similarly, the position of the end-effector Py = (2, 2) is given by:

x9 =x1 + ly cos(a + B)
Y2 =y1 + la2sin(a + B) (3.3)

For what concerns the orientation of the arm’s end-effector 6, we know it is
just the sum of o + 5. Altogether, the configuration r of the end-effector is
given by:

x =1y cosa+lycos(a+)
y=Ilisina+ lysin(a + f) (3.4)
f=a+p

The above equations represent the forward kinematic equations of the robot—
as they relate its control parameters o and 3 (also known as joint configura-
tion) to the pose of its end-effector in the local coordinate system spanned
by x and y with the origin at the robot’s base. Note that both « and 3
shown in the figure are positive: both links rotate around the z—axis. Using
the right-hand rule, the direction of positive angles is defined to be counter-
clockwise.

The configuration space of the robot—i.e. the set of angles each actuator
can be set to—is given by 0 < o < 7 as it is not supposed to run into the
table, and —m < B < w. The configuration space is defined with respect
to the robot’s joints and allows us to use the forward kinematics equations
to calculate the workspace of the robot, i.e. the physical space it can move
to. This terminology will be identical for mobile robots. An example of
configuration and workspace for both a manipulator and a mobile robot is
shown in Figure 3.4.

We can now write down a transformation that includes a rotation around

o8

3.1. Forward Kinematics

the z-axis:
Ca —Sap 0 caple + caly
| 8ag cap 0 sapla+ saly

0 0 O 1

The notation s,g and c,g are shorthand for sin(a + 3) and cos(a +), re-
spectively. This transformation now allows us to transform from the robot’s
base to the robot’s end-effector configuration r = [z,y,0]7 as a function of
the joint configuration ¢ = [a, 8]7. This transformation will be helpful if we
want to calculate suitable joint angles in order to reach a certain pose (i.e.,
inverse kinematics) or if we want to convert measurements taken relative to
the end-effector back into the base’s coordinate system (e.g., when we have
sensors mounted on the end effector whose output needs to be mapped back
to the world reference frame).

3.1.2. The Denavit-Hartenberg notation

So far, we have considered the forward kinematics of a simple arm and de-
rived relationships between actuator parameters and end-effector positions
using basic trigonometry. In the case of multi-link arms (the vast majority
of robot manipulators in existence), the approach detailed in Section 3.1.1 is
difficult to scale, and alternative solutions are needed. Interestingly, we can
think of the forward kinematics as a chain of homogeneous transformations
with respect to a coordinate system mounted at the base of a manipulator
(or a fixed position in the room). Deriving these transformations can be
confusing and can be facilitated by following a “recipe” such as the one con-
ceived by Denavit and Hartenberg in 1955 (see (Hartenberg & Denavit 1955)
and (Craig 2009)). The so-called Denavit-Hartenberg (DH) representation
has since evolved as a de-facto standard.

A manipulator consists of a series of typically rigid links that are connected
by joints. In the vast majority of cases, a joint can either be revolute (i.e.
change its angle/orientation) or prismatic (i.e. change its length). Knowing
the robot’s kinematic properties (e.g. the length of all rigid links, similarly
to l; and ls in Figure 3.1), the pose of its end-effector is fully described by
its joint configuration (angle for revolute joints, length for prismatic joints).

In order to use the DH convention, we first need to define a coordinate
system at each joint. With reference to Figure 3.2, we choose the z—axis to
be the axis of rotation for a revolute joint and the axis of translation for a

99

http://youtu.be/rA9tm0gTln8

3. Kinematics

i

*x o = 0

Figure 3.2. Example of selected Denavit-Hartenberg parameters for three sequential
revolute joints. The z-axes of joint ¢ and ¢+ 1 are parallel, which results in a;; = 0.

prismatic joint. We can now find the common normal between the z—axes
of two subsequent joints, i.e. a line that is orthogonal to each z—axis and
intersects both. While the direction of the x—axis at the base can be chosen
arbitrarily, subsequent x—axes are chosen such that they lie on the common
normal shared between two joints. Whereas the direction of the z—axis
is given by the positive direction of rotation (right-hand rule), the x—axis
points away from the previous joint. This allows defining the y—axis using
the right-hand rule. Note that these rules, in particular the requirement that
z-axes lie along the common normal, might result in coordinate systems with
their origins outside the joint. This is not problematic as the kinematics of a
manipulator is a mathematical representation that need only represent the
geometric and kinematic properties of the robot, and does not need to bear
any physical correspondence to the system. The transformation between two
joints is then fully described by the following four parameters:

1. The length r (sometimes, a is used) of the common normal between
the z-axes of two joints ¢ and ¢ — 1 (link length).

60

3.1. Forward Kinematics

2. The angle a between the z-axes of the two joints with respect to the
common normal (link twist), i.e. the angle between the old and the
new z-axis, measured about the common normal.

3. The distance d between the joint axes (link offset), i.e. the offset along
the previous z-axis to the common normal.

4. The rotation € around the common axis along which the link offset is
measured (joint angle), i.e. the angle from the old z-axis to the new
x-axis, about the previous z-axis.

Two of the above D-H parameters describe the link between the joints, and
the other two describe the link’s connection to a neighboring link. Depending
on the link/joint type, these numbers are fixed by the specific mechanical
instance of the robot or can be controlled. For example, in a revolute joint
is the varying joint angle, while all other quantities are fixed. Similarly, for
a prismatic joint d is the joint variable. An example of two revolute joints
is shown in Figure 3.2.

The final coordinate transform from one link (i —1) to another (i) can now
be constructed by concatenating the four steps above, which are nothing but
a series of rotations and translations, one for each DH parameter:

n1T = T.(dn) R.(0n) Ty (1) Re (i) (3.6)

n—1

with
cosb, —siné, 0(0
sinf,, cosf, 00
T.(dn) = 0 o 1lo (3.7)
0 0 o1
and
1 0 0 0
Ty(rn) = 0 cosay,, —sinay,|0 (3.8)

0 sina, cosa, [0

0 0 0 |1

These are a translation of d,, along the previous z-axis (7%(dy)), a rotation
of 6,, about the previous z-axis (R’ (6,)), a translation of r, along the new

z-axis (T,(r,))and a rotation of a,, around the new z-axis (Ry(ay,)). By

61

3. Kinematics

replacing each element in Equation (3.6), the following matrix is created:

cosf, —sinb, cosa,, sinb,sina, |r,cosb,
sinf,, cosb, cosca, — cosb,sinaoy,|r,sinb,

w1l = 0 sin vy, COS (v, dy,
0 0 0 ‘ 1
R t
N {O 0 0 1] (3.9)

where R is the 3 x 3 rotation matrix and ¢ is the 3 x 1 translation vector.
Like for any homogeneous transform, the inverse ?_; 7~ !n is given by

(3.10)

HT:[R R_lT]

0 0 0 1

with the inverse of R simply being its transpose, R~ = R”.

Similar to the concatenation of transformations detailed in Section 2.4.3,
»_,T in Equation (3.6) can be concatenated with the other transformation
matrices relative to the remaining links in order to compute a the full kine-
matics of the robot arm from the base reference frame up to the end-effector.

3.2. Inverse Kinematics

The forward kinematics of a system are computed by means of a transfor-
mation matrix from the base of a manipulator (or fixed location, such as the
corner of a room) to the end-effector of a manipulator (or a mobile robot).
As such, they are an exact description of the pose of the robot and they
fully characterize its kinematic state. Inverse Kinematics deal with the op-
posite problem: finding a joint configuration that results in a desired pose
at the end effector. To achieve this goal, we will need to solve the forward
kinematics equations for joint angles as a function of the desired pose. With
reference to Equation (3.1), inverse kinematics aims to solve the following;:

q=f"1(r), fR™ 5 R (3.11)

with a notation similar to Equation (3.1). For a mobile robot, we can do
this only for velocities in the local coordinate system, and need more sophis-
ticated methods to calculate appropriate trajectories. We will discuss this
in depth in Section 3.3.

62

3.2. Inverse Kinematics

3.2.1. Solvability

Equation (3.11) is the inverted version of Equation (3.1), and is heavily non-
linear except for trivial mechanisms. Therefore, it makes sense to briefly
think about whether we can solve it at all for specific parameters before
trying. Here, the workspace of a robot becomes important. The workspace
is the sub-space that can be reached by the robot in any configuration.
Clearly, there will be no solutions for the inverse kinematic problem outside
of the workspace of the robot.

A second question to ask is how many solutions we actually expect to
exist and what it means to have multiple solutions geometrically. Multiple
solutions to achieve a desired pose correspond to multiple ways in which a
robot can reach a target (i.e., joint configurations). For example a three-link
arm that wants to reach a point that can be reached without fully extending
all links (which would have only a single solution) can do this by either
folding its links in a concave or a convex fashion. Reasoning about how
many solutions will exist for a given mechanism and desired pose quickly
becomes non-intuitive. For example, a 6-DOF arm can reach certain points
with up to 16 different configurations!

3.2.2. Inverse Kinematics of a Simple Manipulator Arm

We will now look at the inverse kinematics of the 2—link arm that we in-
troduced in Figure 3.1. We need to solve the equations determining the
robot’s forward kinematics by solving for o and 8. This is tricky, however,
as we have to deal with more complicated trigonometric expressions than
the forward kinematics case.

To build an intuition, assume there to be only one link, /;. Solving (3.2)
for « yields to two distinct solutions:

11
0
as cosine is symmetric for positive and negative values. Indeed, for any pos-
sible position on the z—axis ranging from —Iy to [y, there exist two solutions:
the first one with the arm above the table, and the other one with the arm
below it. At the extremes of the workspace, both solutions are the same.
Solving 3.4 for o and S adds two additional solutions that are cumbersome
to reproduce here, involving terms of z and y to the sixth power, and is left
as an exercise to the reader, for example using an online symbolic solver.

o = % cos (3.12)

63

3. Kinematics

What will drastically simplify this problem, is to not only specify the
desired position, but also the orientation 6 of the end-effector. In this case,
a desired pose can be specified in the following form

cost —sinf 0 x
stnf cosf 0y
0 0 10
0 0 01

(3.13)

A solution can now be found by simply equating the individual entries of
the transformation (3.5) with those of the desired pose. Specifically, we can
observe:

cost = cos(a +) (3.14)
T = capla + cal

y= Saﬁl2 + sal1

These can be reduced to

0=a+f
Ca/glg — X Cglg — X
1o pr— prm— .1
c L L (3.15)
. _Sapla —y _ spla—y
@ l1 l1

Providing the orientation of the robot in addition to the desired position
therefore allows solving for o and § just as a function of x, y and 6.

The main issue with the geometric approach detailed above is that it does
not scale easily with an increase of DoF at the joints, and it quickly becomes
unwieldy with more dimensions. For higher-DoF platforms, we can calculate
a numerical solution using an approach that we will later see is very similar to
path planning in mobile robotics. To this end, we will take an optimization-
based approach: first we calculate a measure of error between the current
solution and the desired one, and then change the joint configuration in
a way that minimizes this error. In our example, the measure of error is
the Euclidean distance between the current end-effector pose (given by the
forward kinematics equations in Section 3.1.1) and the desired solution [z, y]
in configuration space, i.e. (assuming [l = lo = 1 for simplicity):

P (@ B) =\ (50 + 00— 1) + (Cap + o — 2 (3.16)

64

3.2. Inverse Kinematics

Figure 3.3. Distance to (x = 1,y = 1) over the configuration space of a two-arm
manipulator. Minima corresponds to exact inverse kinematic solutions.

Here, the first two terms in parentheses are given by the forward kinematics
of the robot, whereas the third term in the parentheses is the desired y and
x position, respectively. Equation (3.16) can be plotted as a 3D function of
« and [, our joint-space variables. As shown in Figure 3.3 this function has
a minima, in this case zero, for values of o and 3 that bring the manipulator
to (1,1). These values are (« — 0,b = —%) and (o — —5,b — 7).

You can now think about inverse kinematics as a path finding problem
from anywhere in the configuration space to the nearest minima. A more
formalized approach to this will be discussed in Section 3.4.2. How to find
the shortest path in space, that is finding the shortest route for a robot to
get from A to B, is one of the subjects covered within Chapter 13.

65

3. Kinematics

3.3. Differential Kinematics

The two-link arm in Figure 3.1 involved only two free parameters, but was
already pretty complex to solve analytically if the end-effector pose was not
specified. One can imagine that things become very hard with more degrees
of freedom or more complex geometries (mechanisms in which some axes
intersect are simpler to solve than others, for example). It is worth noting
that, so far, we have analyzed the geometry of motion of a robot at its
simplest level of abstraction, i.e. in the space of positions. This abstraction
becomes useless as soon as the order of motions matters. For example, in a
differential wheel robot, turning the left wheel first and then the right wheel
will lead to a very different position than turning the right wheel first and
then the left wheel. This is not the case in a robotic arm with two links,
which will arrive at the same position no matter which joint will be moved
first.

In order to include a notion of temporal evolution of the robot configu-
ration, it is convenient to shift toward a slightly more complex abstraction,
that is the space of generalized velocities. This modeling is called differen-
tial kinematics, as velocities are the time derivative (i.e. the differential) of
positions. Similarly to before, with “generalized velocities” we mean “any
velocity-equivalent quantity needed to describe the element”, as we will de-
tail below.

3.3.1. Forward Differential Kinematics

Forward differential kinematics deals with the problem of computing an ex-
pression that relates the generalized velocities at the joints (i.e. the “speed”
of our motors) to the generalized velocity of the robot’s end-effector. In
all, it is the corresponding differential version of Equation (3.1). Let the
translational speed of a robot be given by:

x

v=|y|. (3.17)

z
As the robot can potentially not only translate, but also rotate, we also need
to specify its angular velocity. Let these velocities be given as a vector w:

Wy
w= |wy|. (3.18)

Wy

66

3.3. Differential Kinematics

We can now write translational and rotational velocities in a 6 x 1 generalized
velocity vector as v = [v w]”. This notation is also called velocity twist. Let
the generalized configuration in joint space (i.e. joint angles/positions) be
q = lq1,...,qn)"; therefore, we can define the set of joint speeds as ¢ =
[41,.-.,Gn]T. We now want to compute the differential kinematics version
of Equation (3.1), and in this case relate joint velocities ¢ with end-effector
velocities [v w]”. A simple derivation of Equation (3.1) with respect to time
gives:

v=[" =J()-[d,-- " = T(a) 4, (3.19)

which is our forward differential kinematics equation. J(q) is known as the
Jacobian matrix; it is a function of the joint configuration ¢, and contains
all of the partial derivatives of f, relating every joint angle to every velocity.
In practice, J looks like the following;:

t dr O dx
! dq1 Oq2 " Oqn .
" oy oy 9y | | @
v < 0q1 O0g2 " Oqn . .
V= = = |l =J(q) - 3.20
LJ o Cos o || (9) -4 (3.20)
Wy Ow, Ow, Ow 4n
Oq1 Oq2 """ Oqn
LWz

This notation is important as it tells us how small changes in joint space
will affect the end-effector’s position in Cartesian space. It may be helpful
to think of each column of this matrix as telling us something about how
each component of velocity changes when the configuration (i.e., angle) of
a particular joint changes, or each row of the matrix as showing how move-
ment in each joint affects a particular component of velocity. The forward
kinematics of a mechanism and its analytical derivative can always be calcu-
lated, which allows us to calculate numerical values for the entries of matrix
J for every possible joint angle/position.

3.3.2. Forward Kinematics of a Differential Wheeled Robot

After abstractly considering differential kinematics in the previous section,
we will now study a mechanism for which general non-differential kinematic
models do not exist. We recall that the pose of a robotic manipulator is
uniquely defined by its joint angles, which can be estimated using encoders.
However, this is not the case for a mobile robot. Here, the encoder values
simply refer to wheel orientations, which need to be integrated over time

67

3. Kinematics

left wheel [rad] y [m]
A A
right wheel [rad]; &3 x; [m]
a [rad] y [m]
A A
; ™5 foad] *)

Figure 3.4. Configuration or joint space (left) and workspace or operational space
(right) for a non-holonomic mobile robot (top) and a holonomic manipulator
(bottom). Closed trajectories in configuration space result in closed trajectories
in the workspace if the robot’s kinematics is holonomic.

in order to assess the robot’s position with respect to the world’s frame of
reference. As we will later see, this is a source of great uncertainty. What
complicates matters is that for so-called non-holonomic systems, it is not
sufficient to simply measure the distance that each wheel traveled, we must
also measure when each movement was executed.

A system is non-holonomic when closed trajectories in its configuration
space may not return it to its original state. A robot arm is holonomic
because each joint position corresponds to a unique position in space (Fig-
ure 3.4, bottom): a generic joint-space trajectory that comes back to the
starting point will position the robot’s end-effector at the exact same po-
sition in operational space. A train on a track is holonomic too: moving
its wheels backwards by the same amount they have been moving forward
brings the train to the exact same position in space. Conversely, a car and

68

3.3. Differential Kinematics

a differential-wheel robot are non-holonomic vehicles (Figure 3.4, top): per-
forming a straight line and then a right-turn leads to the same amount of
wheel rotation as doing a right turn first and then going in a straight line;
however, getting the robot to its initial position requires not only rewind-
ing both wheels by the same amount, but also getting their relative speeds
right. The configuration and corresponding workspace trajectories for a non-
holonomic and a holonomic robot are shown in Figure 3.4. Here, a robot first
moves on a straight line, meaning both wheels turn an equal amount. Then,
the left wheel remains fixed and only the right wheel turns forward. Then,
the right wheel remain fixed and the left wheel turns backward. Finally, the
right wheel turns backwards, arriving at the initial encoder values (zero).
Yet, the robot does not return to its origin. Performing a similar trajectory
in the configuration space of a two-link manipulator makes the robot return
to its initial position.

It should be clear by now that for a mobile robot, not only does traveled
distance per wheel matter, but also the speed of each wheel as a function of
time. Interestingly, this information was not required to uniquely determine
the pose of a manipulating arm. We will establish a world coordinate system
{I}—which is known as the inertial frame by convention (see Figure 3.5).
We establish a coordinate system {R} on the robot and express the robot’s
speed B¢ as a vector B¢ = R TR G]T Here R4 and %y correspond to
the speed along the z and y directions in {R}, whereas R§ corresponds to
the rotation velocity around the z—axis, that you can imagine to be sticking
out of the ground. We denote speeds with dots over the variable name, as
speed is simply the derivative of distance. Now, let’s think about the robot’s
position in {R}. It is always zero, as the coordinate system is fixed on the
robot itself. Therefore, velocities are the only interesting quantities in this
coordinate system and we need to understand how velocities in { R} map to
positions in {I}, which we denote by ‘¢ = [‘x,7 5,7 0]T. These coordinate
systems are shown in Figure 3.5.

Notice that the positioning of the coordinate frames and their orientations
are arbitrary, meaning it is a choice that we can make. Here, we choose to
place the coordinate system in the center of the robot’s axle and align Fx
with its default driving direction. In order to calculate the robot’s position in
the inertial frame, we need to first find out how speed in the robot coordinate
frame maps to speed in the inertial frame. This can be done again by
employing trigonometry. There is only one complication: a movement into

69

3. Kinematics

Yr A

>
I X7

Figure 3.5. Mobile robot with local coordinate system {R} and world frame {I}.
The arrows indicate the positive direction of position and orientation vectors.

the robot’s x—axis might lead to movement along both the x—axis and the
y—axis of the world coordinate frame I. By looking at Figure 3.5, we can
derive the following components to ;. First,

&1y = cos(0)Ip. (3.21)

There is also a component of motion coming from §r (ignoring the kine-
matic constraints for now, see below). For negative 6, as in Figure 3.5, a
move along yr would let the robot move into positive X; direction. The
projection from gg is therefore given by

x1y = —sin(0)yr. (3.22)
We can now write
Zr = cos(0)rr — sin(0)yr. (3.23)
Similar reasoning leads to:
yr = sin(0)xr + cos(0)yr (3.24)
and . _
0y =0r , (3.25)

70

3.3. Differential Kinematics

which is the case because both the robot’s and the world coordinate system
share the same z—axis in this example. We can now conveniently write:

& =p T(0)¢r (3.26)
with L7(6) being a rotation around the z—axis:

cos(0) —sin(6) 0
LT(6) = | sin() cos(f) 0 . (3.27)
0 0 1

Maybe unsurprisingly, this is simply the well-known equation for a generic
rotation of # around the z—axis, which applies to both velocity vectors as
well as poses.

We are now left with the problem of how to calculate the speed {R in
robot coordinates. For this, we make use of the kinematic constraints of the
robotic wheels. For a standard wheel in an ideal case scenario, the kinematic
constraints are that every rotation of the wheel leads to strictly forward or
backward motion and does not allow sideways motion or sliding. We can
therefore calculate the forward speed of a wheel & using its rotational speed
qB (assuming the encoder value/angle is expressed as ¢) and radius r by

i = ¢r. (3.28)

This becomes apparent when considering that the circumference of a wheel
with radius r is 27r. The distance a wheel rolls when turned by the angle
¢ (in radians) is therefore x = ¢r, see also Figure 3.6, right. Taking the
derivative of this expression on both sides leads to the above expression.

How each of the two wheels in our example contributes to the speed of
the robot’s center—where its coordinate system is anchored—requires the
following trick: we calculate the contribution of each individual wheel while
assuming all other wheels remaining un-actuated (see Figure 3.6, left). In
this example, the left wheel will move of r¢;, and the right wheel will move
of r¢,., which in the space of velocities will become rd)l and rqu respectively.
Then, the distance traveled by the center point is exactly half of that traveled
by each individual wheel (Figure 3.6). We can therefore write:

rRp = % (qugl + Tér) = 7“@ + Tfr

(3.29)

given the speeds Qél and <;5,~ of the left and the right wheel, respectively.

71

3. Kinematics

Figure 3.6. Left: Differential wheel robot pivoting around its left wheel first and
its right wheel next. For infinitesimal motion, it is possible to decouple left and
right wheel to simplify computation of the forward kinematics. Right: A wheel
with radius r moves by ¢r when rotated by ¢ degrees.

Think about how the robot’s speed along its y-axis is affected by the
wheel speed given the coordinate system in the drawing above. Think
about the kinematic constraints that the standard wheels impose.

It may be unintuitive at first, but the speed of the robot along its y-axis
is always zero. This is because the constraints of the standard wheel tell us
that the robot can never slide. We are now left with calculating the rotation
of the robot around its z-axis. This rotation can be seen when imagining the
robot’s wheels spinning in opposite directions. In this case, the robot does
not move forward but rather spins in place. We will again consider each
wheel independently. Assuming the left wheel to be non-actuated, spinning
the right wheel forwards will lead to counter-clockwise rotation. Given an
axle diameter (distance between the robot’s wheels) d, we can now write

wrd = ¢pr (3.30)

with w, the angle of rotation around the left wheel (Figure 3.6, left). Taking
the derivative on both sides yields speeds and we can write

_ qb.r"”

g (3.31)

W

Adding the rotation speeds up (with the one around the right wheel being

72

3.3. Differential Kinematics

negative based on the right-hand grip rule), leads to:

] (lgrr ¢‘17‘
0= - — 3.32
7 d (3.32)
Putting it all together, we can finally write:
Xy cos(0) —sin(6) 0 %’ﬁl + %
yr | = | sin(#) cos(9) 0 0 (3.33)
0 0 0 1 % _ %

The interested reader might want to compare this form with Equation (3.20),
the general Jacobian form of differential kinematics. For this, we ignore the
rotation matrix in Equation (3.33) and rewrite its second term in matrix
notation:

. - 9zp Jrp
TR 5 9 H Op; Oy ;
vn| = 0 0 [@] _ | 2un oun [‘?l] (3.34)
o] La-glted e
0¢1 O¢y
with Xp = ’"éﬂ + %)) t and similar expressions for #, we observe the

validity of the Jacobian approach.
From Forward Kinematics to Odometry

Equation (3.33) only provides us with the relationship between the robot’s
wheel speed and its speed in the inertial frame. Calculating its actual pose in
the inertial frame is known as odometry. Technically, it requires integrating
Equation (3.33) from 0 to the current time 7". As this is not possible but
for very special cases, one can approximate the robot’s pose by summing up
speeds over discrete time intervals, or more precisely:

$[<T) T ﬂf[(t) k=T A.%‘](k‘)
(@ | = [i a= Y |dum|ac @)
o(T) 0| dt) =0 | AG(k)

which can be calculated incrementally as

xr(k+1) =z1(k) + Ax(k)At (3.36)

73

3. Kinematics

using Ax (k) ~ 2;(t) and similar expressions for y; and 6. Note that Equa-
tion (3.36) is just an approximation. The larger At becomes, the more
inaccurate this approximation becomes as the robot’s speed might change
during the interval.

Don’t let the notion of an integral worry you! As robots’ computers
are fundamentally discrete, integrals usually turn into sums, which are
nothing more complex than for-loops.

3.3.3. Forward kinematics of Car-like steering

Differential wheel drives are very popular in mobile robotics as they are very
easy to build, maintain, and control. Although not holonomic, a differential
drive can approximate the function of a fully holonomic robot by first ro-
tating in place to achieve a desired heading and then driving straight. The
primary drawbacks of a differential drive are its reliance on a caster wheel,
which performs poorly at high speeds, and difficulties in driving straight
lines as it requires both motors to drive at the exact same speed.

These drawbacks are mitigated by car-like mechanisms, which are driven
by a single motor and can steer their front wheels. This mechanism is known
as “Ackermann steering”. Ackermann steering should not be confused with
“turntable” steering where the front wheels are fixed on an axis with central
pivot point. Instead, in Ackermann steering each wheel has its own pivot
point and the system is constrained in such a way that all wheels of the
car drive on circles with a common center point, avoiding skid. As the
Ackermann mechanism lets all wheels drive on circles with a common center
point, its kinematics can be approximated by those of a tricycle with rear-
wheel drive, or even simpler by a bicycle. This is shown in Figure 3.7.

Consider a car with the shape of a box with length L between its front and
rear axis. Let the center point of the common circle described by all wheels
be distance R from the car’s longitudinal center line. Then, the steering
angle ¢ is given by

tan ¢ = % (3.37)

The angles of the left and the right wheel, ¢; and ¢, can be calculated
using the fact that all wheels of the car rotate around circles with a common

74

3.4. Inverse Differential Kinematics

......
",
.,
.,
™
i
.
0
.
.
.
.
0

- RH i H A E _____ :]

Figure 3.7. Left: Kinematics of car-like steering and the equivalent bicycle model.
Right: Mechanism of an Ackermann vehicle.

center point. With the distance between the two front wheels [, we can write:

L
R—12" tan (¢r)

m = tan (¢) (3.38)
This is important, as it allows us to calculate the resulting wheel angles
resulting from a specific angle ¢ and test whether they are within the con-
straints of the actual vehicle.

Assuming the wheel speed to be w and the wheel radius r, we can calculate
the speeds in the robot’s coordinate frame as:

Ty =wr
yr =0 (3.39)
. wrtan ¢
0, =—
L

using (3.37) to calculate the circle radius R.

3.4. Inverse Differential Kinematics

It would now be desirable to just invert J in Equation (3.20) in order to
calculate the necessary joint speeds for every desired end-effector speeds—a

75

3. Kinematics

problem known as Inverse Differential Kinematics. Unfortunately, J is only
invertible if the matrix is quadratic (i.e. the number of degrees of freedom
in joint space n equals the number of degrees of freedom in task space m)
and full rank. In the example detailed in Section 3.2.2, the velocity wrench
[v w]T is 6—dimensional, which means that n should be equal to 6: therefore,
inversion of J is only possible if the robot under consideration is equipped
with exactly 6 actuators/joints. If this is not the case, we can use the
pseudo-inverse computation:

Jt = S JE(JJTt (3.40)

- JJT ’

As you can see, J cancels from the equation leaving 1/.J, while being ap-
plicable to non-quadratic matrices. We can now write a simple feedback
controller that drives our error e, defined as the difference between desired
and actual position, to zero:

Ag=—J"e (3.41)

That is, we will move each joint a tiny bit in the direction that minimizes
our error e. It can be easily seen that the joint speeds will only be zero if e
has become zero.

This solution might or might not be numerically stable, depending on the
current joint values. If the inverse of J is mathematically not feasible, we
speak of a singularity of the mechanism. One case where this can happen
is when two joint axes line up, therefore effectively removing a degree of
freedom from the mechanism, or when the robot is at the boundary of its
workspace. As it happens very often in robotics, the concept of singularity
has both a strong mathematical justification (the joint configuration is such
that the Jacobian is not full rank any more), and a direct physical conse-
quence: singularity configurations are to be avoided as no solution for the
inverse differential kinematics problem exists and the robot might become
unsafe to operate. In a singularity, the solution to J* “explodes” and joint
speeds go to infinity. In order to work around this, we can introduce damping
to the controller.

In this case, we do not only minimize the error, but also the joint velocities.
The minimization problem then becomes:

17AG — el + X*|| Ag|? (3.42)

76

3.4. Inverse Differential Kinematics

where X is a constant. One can show that the resulting controller that
achieves this has the form:

Ag=(JTT+ X)) 1gte (3.43)

This is known as the Damped Least-Squares method. Problems that can
arise when taking this approach include the existence of local minima and
singularities of the mechanism, which might render solutions suboptimal or
infeasible.

3.4.1. Inverse Kinematics of Mobile Robots

There is no unique relationship between the amount of rotation of a robot’s
individual wheels and its position in space; however, for simple holonomic
platforms such as a robot on a track, we can treat the inverse kinematics
problem as solving for the velocities within the local robot coordinate frame.
Let’s first establish how to calculate the necessary speed of the robot’s cen-
ter given a desired speed f 7 in world coordinates. We can transform the
expression & = T(Q)fﬁ by multiplying both sides with the inverse of T'(6):

T 0)6 =T O)T(O)r (3.44)
which leads to £ = T~ 1(6)¢;. Here

cosf sinf0
Tt = | —sinf cosf 0 (3.45)
0 01

which can be computed by performing the matrix inversion or by deriving
the trigonometric relationships from the drawing. Similarly to Section 3.2.2,
we can now solve Equation (3.33) for ¢y, ¢,:

d= (205 — 0d)/2r (3.46)
¢r = (2i + 0d)/2r

allowing us to calculate the robot’s wheel speed as a function of a desired
i and 6, which can be calculated using (3.44).

Note that this approach does not allow us to deal with yr # 0, which
might result from a desired speed in the inertial frame. Non-zero values
for translation in y-direction are simply ignored by the inverse kinematic
solution, and driving toward a specific point either requires feedback control
(Section 3.4.2) or path planning (Chapter 13).

7

3. Kinematics

Y ZEE 4 W)
N N N Z
T S
N N Y Y 7 i
Z N U N A N
_
$/ 1 VX 2
7 N h 7 $/ Z
N 7 N . N N
O -
g N Y NEZ Y
L /ﬁg 44 (\ /& 3 é\ N

Figure 3.8. Omni-directional robot using “swedish wheels” in different configu-
rations. Each wheel has two velocity components, speed perpendicular to the
wheel’s main axis and speed of the rollers. Arrows on the robot body indicate
the resulting direction of motion and rotation.

Inverse kinematics of an omnidirectional robot

Omnidirectional robots using “Swedish wheels” or “Meccano wheels” are
common in factories and educational settings. A drawing of a swedish wheel
is shown in Table 2.1. It consists of an actuated wheel with non-actuated
rollers around its circumference that are attached in a 45 degree angle. We
recall that, similarly to the caster wheel, the Swedish wheel has full three
degrees of freedom in the plane, but can enable omnidirectional motion of a
robotic platform without the need to rotate. A typical four-wheel configu-
ration is shown in Figure 3.8. Notice the arrangment of the wheels, and in
particular the orientation of the rollers, which is critical for the operation as
shown.

When actuated by itself, the wheel will perform a sideways motion that is
perpendicular to the main axis of its rollers. When used in pairs, opposite
directions of motions cancel out, resulting for example into forward motion
as shown in Figure 3.8, top, center, or sideways motion, bottom, right.

Similar to a differential wheel platform, each wheel also imparts a rotation

78

3.4. Inverse Differential Kinematics

on the robot body. As the wheels are mounted off the center axle, each wheel
contributes to two angular moments. One is around the horizontal axis with
distance h; to the robot’s center, and the other is around the vertical axis
with distance 7; to the robot’s center (Figure 3.8, bottom, center). All
combined, the rotation of each wheel will add up to the robot moving with
velocities vz, vy and w..

The velocity at each wheel has two components, the velocity of the i-th
wheel perpendicular to its main axis v;,,, and the velocity of the rollers
v;, that is either +45deg or —45deg to the wheel axis. Note that for the
system to work, diagonally opposite wheels need to have the same angle.
Let the angle of the roller of wheel 7 be ;. We can now derive the following
equations following (Maulana, Muslim & Hendrayawan 2015):

Viym, + Vi c08(7;) = vz — hy ¥ w, (3.47)

That is, the velocity components perpendicular to the wheel axis are equiv-
alent to the forward velocity of the robot plus the velocity component at the
wheel resulting from the robot’s angular velocity. Positive angular veloc-
ity would result in backward motion, by definition of the robot coordinate
system. Similarly, we can write

Vi Sin(y;) = vy + 1k w, (3.48)

Note that there is no lateral component to the main wheel’s motion, as
lateral motion can only be achieved via the rollers.
Dividing (3.48) by (3.47) and solving for v; results into

Vy + Tiwy

A4
tany; (3.49)

v; = Uy — hjw, —

With h; € h = {h,—h,h,—h}, , € r = {r,r,—r,—r} and v; € v =
{—45deg, +45 deg, +45 deg, —45 deg} to reflect the different configuration of
each wheel, we can derive an expression for the controllable wheel velocities

Vim
Vim = Vg + Uy + 1w, — hw, (3.50)

Vom = Vg — Uy — TW, + hw,

V3n = Vg — Uy + 1w, — hw,

79

3. Kinematics
V4m = Vg + Uy — 7w, + hw,

With v; ,, = Rw; and R the radius of each Swedish wheel, we can now
compute the required wheel velocity for any desired robot velocity v, vy,
and w,.

3.4.2. Feedback Control for Mobile Robots

Assume the robot’s position to be given by z,,y,. and 6, and the desired
pose as 4, y, and 0,—with the subscript g indicating “goal”. We can now
calculate the error in the desired pose by:

a = tan™! % — 0, (3.51)
g r
n= 99 07“ y

which is illustrated in Figure 3.9. These errors can be converted directly
into robot speeds, for example using a simple proportional controller with
gains pi, p2 and ps:

&=pi1p (3.52)
0 = paa + p3n (3.53)

which will let the robot drive in a curve until it reaches the desired pose.
3.4.3. Under-actuation and Over-actuation

As detailed at the beginning of this Chapter, kinematics is concerned with
analyzing the mapping between our control variables (i.e. the robot’s motors
represented by the n DoFs in joint space) and their effect on the motion of
the robot (our m DoF's in task/configuration space). These two spaces might
have different dimensionality, and the relation between these two dimensions
greatly affects how we can solve the kinematic problem. It is convenient to
analyze these differences by looking at the Jacobian J, since the size of the
matrix is m X n; in all, we have three different conditions:

e n = m — The robot is fully actuated. The Jacobian J is square and
full rank, and the forward kinematics equation is directly invertible;

80

3.4. Inverse Differential Kinematics

>

x

Figure 3.9. Difference in desired and actual pose as a function of distance p, bearing
« and heading 7.

e n < m — The robot is under actuated, and the kinematics problem is
kinematically deficient. The Jacobian J is “wide”, because there are
more columns m than rows n, and not invertible any more; the only
way to solve the inverse kinematics problem is through the pseudo-
inverse J* (and similar/more advanced approaches).

e n > m — The robot is over actuated, and the kinematics problem is
kinematically redundant. The Jacobian J is “tall”, because there are
more rows n than columns m, and not invertible any more; the only
way to solve the inverse kinematics problem is through the pseudo-
inverse J* (and similar/more advanced approaches). In this scenario,
it is useful to determine the redundancy coefficient n —m which affects
the space of solutions of the inverse kinematics problem.

Over- and under-actuation are important design considerations to keep in
mind when choosing a robot for a particular task. In a kinematically defi-
cient scenario, the robot is not capable of full motion in task space, as it does
not have sufficient degrees of freedom in joint space to “cover” every possible

81

3. Kinematics

configuration in task space. This does not mean that the robot is useless! It
can still perform tasks—just not every possible task you might ask it to per-
form. Conversely, if the problem is kinematically redundant, the robot has
more joint DoFs available than it needs, and there exist an infinite number
of inverse kinematics solutions in non-singular configurations. Contrary to
what one may think, redundancy is actually a great feature to have in a robot
system, in that it enables flexibility and versatility in solving the kinematic
problem: that is, it is possible to choose the best solution among many, and
one that satisfies additional constraints and requirements. A human arm
(without considering the hand) is a good example of a kinematically redun-
dant manipulator, as it is equipped with seven DoFs in joint space (three
at the shoulder, one at the elbow and three at the wrist), whereas the task
space is of dimension six (i.e. the three positions and three orientations of
the wrist). This additional degree of mobility allows humans to reach for
objects in multiple configurations, choose motions that are energy efficient,
avoid obstacles, and more!

Take-home lessons

e Forward kinematics deals with finding a coordinate transform from a
world coordinate system into a coordinate system on the robot. Such a
transform is a combination of a (3 x 1) translation vector and a (3 x 3)
rotation matrix that consists of the unit vectors of the robot coordinate
system. Both translation and rotation can be combined into a 4 x 4
homogeneous transform matrix.

e Forward and Inverse Kinematics of a mobile robot are performed with
respect to the speed of the robot and not its position.

e To calculate the effect of each wheel on the speed of the robot, you
need to consider the contribution of each wheel independently.

e The inverse kinematics of a robot involves solving the forward kinemat-
ics equations for the joint angles. Calculating the inverse kinematics
analytically becomes quickly infeasible, and is impossible for compli-
cated mechanisms.

e A simple numerical solution is provided by taking all partial derivatives
of the forward kinematics in order to get an easily invertible expression
that relates joint speeds to end-effector speeds.

82

3.4. Inverse Differential Kinematics

e The inverse kinematics problem can then be formulated as feedback
control problem, which will move the end-effector towards its desired
pose using small steps. Problems with this approach are local minima
and singularities of the mechanism, which might render this solution
infeasible.

e Redundancy allows a robot to solve a kinematic problem in multiple
different ways, thus providing better dexterity and versatility in its
motion.

Exercises

Coordinate systems

1. a) Write out the entries of a rotation matrix 4R assuming basis vectors
XA7 YA7 ZA7 and XB> Y37 ZB~

b) Write out the entries of rotation matrix §R.

2. Assume two coordinate systems that are co-located in the same origin, but
rotated around the z—axis by the angle «. Derive the rotation matrix from
one coordinate system into the other and verify that each entry of this matrix
is indeed the scalar product of each basis vector of one coordinate system with
every other basis vector in the second coordinate system.

3. Consider two coordinate systems {B} and {C}, whose orientation is given
by the rotation matrix gR and have distance ZP. Provide the homogenous
transform §7 and its inverse 27

4. Consider the frame {B} that is defined with respect to frame {A} as {B} =
{4R,* P}. Provide a homogeneous transform from {A} to {B}.

5. Program a simple application that displays a 2D (or 3D) coordinate system
and add the ability to move and turn the coordinate system using your key-
board.

Forward and inverse kinematics

1. Consider a differential wheel robot with a broken motor, i.e., one of the wheels
cannot be actuated anymore. Derive the forward kinematics of this platform.
Assume the right motor is broken.

2. Consider a tri-cycle with two independent standard wheels in the rear and
the steerable, driven front-wheel. Choose a suitable coordinate system and
use ¢ as the steering wheel angle and wheel-speed w. Provide forward and
inverse kinematics.

83

3. Kinematics

10.

84

Program an application that displays a differential wheel platform and allows
you to control forward and rotational speed with your keyboard. Output the
robot’s pose after every step.

. Program an application that displays a two-link robotic arm moving in the

plane and lets you change both joint angles using your keyboard.

. Derive the forward kinematics of a two-link robotic arm as well as its Jacobian.

Implement its inverse kinematic using the inverse Jacobian technique.

Program an application that displays a two-link robotic arm moving in the
plane and lets you change the position of its end-effector using your keyboard.

Explore the internet for toolkits that allow you to manage forward and inverse
kinematics for a robotic arm. What kind of tools do you find and what kind
of input do they require to model the robot’s geometry?

Download the manual of a commercially available robot arm of your choice.
What kind of input does it take from its user? Does it allow you to control
its position directly?

Use a robot simulator of your choice to access a simulated vehicle. What
kind of actuator input can you provide and what are the sensors that are
available? Drive the car using your keyboard and try to estimate its pose by
implementing odometry.

Can you provide an example of a kinematically deficient and a kinematically
redundant robot manipulator?

Chapter 4

Forces

So far, we have only been concerned with how robots move and the geometry
of motion. However, moving a robot not only requires a kinematic model of
the platform under consideration, but also an understanding of the (gener-
alized) forces needed to actuate the robot’s motors and those needed for the
robot to interact with the environment. While this aspect can be ignored
in basic applications of mobile robots and simple manipulation, it becomes
critical as soon as robots interact more closely with people or need to en-
gage in more complex manipulation: in these scenarios, safety and model
accuracy are of paramount importance.

In this Chapter, we will introduce the reader to these concepts through
statics, which introduces a third abstraction to the problem of analyzing how
robots move in space and interact with their surroundings. More specifically,
in Sections 3.1 and 3.2 we have investigated the kinematic problem and op-
erated in the space of positions, that is, how to map joint angles with end
effector poses. In Section 3.3, we introduced the differential kinematics prob-
lem and operated in the space of velocities, i.e. how to map joint velocities
with end-effector velocity twists (remember: velocity is derivative of posi-
tion, hence the name “differential”). In the following, we will operate in
the space of forces; however, we will simplify the more general dynamical
problem by looking at the robot in static equilibrium—otherwise known as
a static configuration. As we will see, a lot can be done by simply looking at
the robot in an equilibrium configuration! The fourth and last abstraction,
which goes beyond the scope of this book, is called dynamics and operates
in the space of forces from a non-static perspective; it involves the second

87

4. Forces

derivative of position (i.e. the acceleration), and it can be thought as a gen-
eralization of the second law of Newton (F' = ma). The goals of this chapter
are to:

e Introduce the concept of statics,
e understand the so called “kineto-statics duality”,
e become familiar with the notion of “manipulability”.

Most of the concepts below are typically considered in the context of ma-
nipulation, as mobile robots generally do not exchange forces with their
environment. Therefore, for simplicity we will hereinafter refer to robot
manipulators equipped with revolute joints unless otherwise specified.

The analysis of motion of a robot can be thought as a layered sys-
tem with multiple levels of abstraction of increasing complexity. The
more complex it becomes, the more comprehensive your analysis will
be, and the more capability you will be able to squeeze out of the robot!
However, it is good practice to start with the simplest layer first (i.e.
kinematics), and gradually progress toward a dynamic analysis only if
needed.

4.1. Statics

Statics deals with relating (generalized) forces at the robot’s joints and gen-
eralized forces at the end-effector when the robot is in static (or mechanical)
equilibrium, i.e. the acceleration of the robot and all of its components is
zero. If such a condition is met, a robot with n degrees of freedom and an
end-effector characterized by m degrees of freedom can be fully described by
the following quantities:

e an (n x 1) vector of generalized forces 7 at the joints;

e an (m x 1) vector of generalized forces F' exerted by the robot end-
effector on the environment—or, more generally, by any part of the
robot that may be in direct physical contact with the environment;

e an (m x 1) vector of forces exerted by the environment on the robot
end-effector F.—which, per the principle of action and reaction, are
equal and opposite to F: F, = —F.

88

4.1. Statics

In this case, generalized force means “any force-equivalent quantity needed
to describe the element”. In the case of joints, it depends on the actuation:
generalized forces at the joints are either forces for prismatic joints (as they
impart a translational motion on the joint) or torques for revolute joints
(as they impart a rotational motion on the joint); the size of this vector
depends on the number of mechanical degrees-of-freedom n. In the case of
the end-effector, it depends on the number of DoF's in task space m; if we
are operating with a 6—DoF problem, the m x 1 vector of generalized forces
will be composed of a linear force component given by the forces on the three

fm
f: fy) (41)
Lz

and an angular force component (or moment) p around the three axes:

axes:

Ha
=ty |- (4.2)
Mz |

We can now combine the above elements in a 6 x 1 vector as F' = [f u]T.
This vector of generalized forces is also called a spatial force or wrench. We
now want to compute the statics version of Equations (3.19) and (3.20), and
relate our n x 1 vector of torques 7 with the 6 x 1 wrench vector F. To find
this relationship, let’s recall the definition of power from physics. Mechan-
ical power W is defined as force times velocity, which can be generalized
as generalized forces times generalized velocities: W = FT . v. Now, we
know that the forces exchanged at the end-effector come from our source of
actuation, i.e. our motors, whose generated power is defined by W = 77 - ¢.
We therefore have that:

W=7 4=FT.v (4.3)

We also know the relation between v and ¢ from Equation (3.19): v = J(q)-4.
Equation (4.3) then becomes:

T g=F"-J(q)q, (4.4)
which, with minor rearrangements, turns into the following:

r=J(" F (4.5)

89

4. Forces

This is the final statics equation we were looking for! It can be interpreted
as the following: to counteract an external wrench F, = —F applied on the
end effector by the environment in a static configuration g, the robot needs
to apply torques T at its joints as specified by Equation (4.5). Interestingly,
this equation clearly shows how statics acts as a middle ground between the
“geometry-only” kinematics approach and the more general dynamics prob-
lem: even though we are dealing with forces and torques, their relationship is
defined via a geometric relation—i.e. the same Jacobian used in Section 3.4.
In this case, we are using its n x m transpose:
or oy pw | e
n] |EA R |
=11 = 31.12 31?2 3?2 Iz _ J(q)T-F (4.6)
S - Ha
Oz Oy Jw, Hy
Oqn Ogn """ Ogn
LHz]

Equation (4.5) is useful on a variety of different problems. The most
typical application is force control, i.e. the robot’s motors are actuated so
as to apply a specified wrench on the environment. For example, one may
want to use a robot for a polishing task in which it needs exert a vertical
force of 5N on a table. In this case, the desired wrench (assuming our z—
axis in Cartesian space is the vertical one and it is pointing upwards) would
be:

4.2. Kineto-Statics Duality

The analogy between Equations (3.20) and (4.5) by means of the Jacobian
makes it interesting to analyze Equation (4.5) similarly to what we did Sec-
tions 3.3 and 3.4.3. This analogy is defined as kineto-statics duality, and
helps the novice roboticist to more intuitively correlate these two levels of
abstraction. More specifically, singular configurations are as relevant to the

90

4.3. Manipulability

statics problem as they are to the differential kinematics one, but they have
different physical interpretation. In a singular configuration, both the Jaco-
bian and its transpose lose rank—as transposing a matrix does not affect its
rank. However, while loss of full rank affects the inverse kinematics problem
(i.e. its solution “explodes” and joint speeds go to infinity), in this case it is
the direct statics mapping that is affected by it: in a singular configuration,
forces exerted by the robot on the environment go to infinity. This is an
additional (and arguably more compelling) reason to avoid singularities at
all costs: the robot would move very fast and exert strong forces on anything
on its path.

4.3. Manipulability

The duality property that exists between differential kinematics (Section 3.3)
and statics (Section 4.1) allows us to further inspect manipulator perfor-
mance for a given joint configuration.

4.3.1. Manipulability Ellipsoid in Velocity space

As a first step, we may inspect the capacity of the manipulator to arbitrarily
change its end-effector’s position and orientation from the current configu-
ration. More specifically, we may ask the following question: what effect
does a small increment in joint positions (i.e. a small joint velocity) have on
the end-effector pose? Let’s consider the set of joint velocities of unit norm
defined by the following equation:

it g=1 . (4.8)

This equation represents a multi-dimensional “sphere” in joint space R"™. We

know from Section 3.3 that this corresponds to a similarly multidimensional

shape in operational space R™, and we know that this correspondence is me-

diated by Equation (3.19) and its inverse. In the generic case of a redundant
manipulator, Equation (4.8) becomes:

T T
viI(@ I v =1, (4.9)

which, combined with Equation (3.40), becomes:

VI LI - J(@)T] v =1, (4.10)

91

4. Forces

which corresponds to a multidimensional ellipsoid in operatinal space m—
otherwise known as velocity manipulability ellipsoid. This ellipsoid provides
the following physical interpretations:

e Along the direction of its major axis, the robot can move at large
velocities;

e Along the direction of its minor axis, the robot can move at small
velocities;

e The volume of the ellipsoid is called manipulability measure and is
defined as w(q) = +/det [J(q)J(q)T]. Tt is always positive and it reaches
a maximum when the ellipsoid is close to a sphere and the robot can
move isotropically in any direction.

e In a singularity, the ellipsoid “loses a dimension” and one of its axis
becomes 0. Concurrently, the manipulability measure w(q) = 0—
which is why w(q) is used to understand how far a robot is from a
singular configuration.

The properties above can easily be verified in Figure 4.1, top. The closer
the robot is to a singular configuration (for example, the arm fully stretched),
the more the 2-dimensional ellipsoid converges to a vertical line. At the
singularity itself, the minor axis has zero length, signifying that the robot
can only move on a vertical direction and not right or left.

4.3.2. Manipulability Ellipsoid in Force space

By virtue of the kineto-statics duality, similar considerations can be done in
force space. In this case, we may want to consider a sphere in the space of
joint torques:

Tor=1, (4.11)

which, thanks to Equation (4.5), is mapped into a force manipulability el-
lipsoid:
FU I - J@ F=1, (4.12)

This ellipsoid characterizes the forces at the end-effector that can be exerted
by the robot on the environment in the given joint configuration q. It be-
haves similarly to the velocity manipulability ellipsoid, with one important

92

4.3. Manipulability

Figure 4.1. Velocity (top) and force (bottom) manipulability ellipsoids for a 2 DoF
planar arm (n = m = 2). In this simple 2 x 2 case, the ellipsoids collapse to
simple ellipses (whose major and minor axes are drawn in a dotted line).

difference: while the principal axes of both ellipsoids are in the same orien-
tation, their magnitude is in inverse proportions. As depicted in Figure 4.1
(bottom), the major axis in force space becomes the minor axis in velocity
space and vice versa. Therefore, a direction of high velocity manipulability
corresponds to a direction of low force manipulability.

93

4. Forces

4.3.3. Manipulability Considerations

The velocity and force manipulability ellipsoids are useful for a variety of
tasks, from identifying a suitable joint configuration to perform a specific
task, to understand what it is possible for the robot to do in a specific con-
figuration. Remember that, for a kinematically redundant manipulator (see
Section 3.4.3), it is possible to be in the same task space configuration (e.g.
end-effector pose) with multiple joint postures: therefore, a manipulability
analysis may allow the robot designer to choose the configuration that better
conforms to additional specifications (e.g. lower exerted force, lower energy
consumption, better legibility of robot motion by humans, and more).

Take-home lessons

1.

Looking at forces in mechanical equilibrium, that is when end-effector
forces and joint torques cancel each other, allows us to extend control
of the robot from poses and velocities to the force domain.

. The torques required by a robotic arm are related to end-effector

forces using the same Jacobian that also defines the robot’s differential
kinematics—a concept known as the Kineto-Statics Duality.

. Although a robotic arm might reach a desired pose using multiple dif-

ferent configurations, some configurations are better suited than oth-
ers; a manipulability analysis helps in characterizing this problem.

Exercises

94

1.

Think about the four layers of abstraction we have just investigated (kine-
matics, differential kinematics, statics, dynamics).

a) Can you think of an application for which you would need a dynamic
analysis? (Hint: this is generally something really hard)

b) What can be done by just looking at the static problem instead? (Hint:
you are still considering an exchange of forces here)

¢) What can you do with a robot from a purely kinematic perspective?
(Hint: this is typically easy)

Why are singular configuration dangerous for the robot and its surroundings?
Think about the relationship between forces and velocities.

How can you ensure the robot “stays away” from singularities?

4.3. Manipulability

4. Program an application that displays the manipulability ellipsoids in force
and velocity for a two-link planar arm (similar to Figure 4.1)—feel free to
integrate this program with the kinematics exercise in Chapter 3. How does
the manipulability ellipsoid relate to positional increments of the end-effector?
What happens in a singularity? (Hint: the easiest singularity to find for robot
manipulators is the “stretched out” configuration)

5. Use a robot simulator of your choice to access a robot manipulator with at
least three DoF's in joint space that moves in 3D. How does the manipulability
ellipsoid change in this case? (Hint: it is not an ellipse any more)

6. A manipulability analysis is purely geometrical and depends on joint config-
uration of a given kinematics. Therefore, it is possible to use this analysis
to characterize other (non-traditional) robot “arms” as well. Think about a
biomechanical analysis of the human arm: in which configurations you have
maximum manipulability? Which configurations correspond to high exertion
(i.e. high “torques”) resulting in small exerted forces on the environment?

95

Chapter 5

Grasping

Grasping is the activity for which a robot moves or manipulates an object,
i.e. change its shape or pose. This is typically done by attaching an end-
effector (or gripper) that is suitable to perform the task at hand. Grasping
has the interesting, and very confusing, property that it is relatively easy in
practice but very complicated in theory. Consequently, this chapter describes
a variety of strategies that will lead to successful grasps for a wide range of
objects, but has difficulties to answer questions such as What makes a good
grasp? or How does one find good grasps? in any more depth than by
providing simple heuristics. In this chapter, you will learn:

e how to mathematically describe grasping and where simple models
reach their limitations;

e what the properties of a gripper are that make for a good grasp in
practice;

e how to understand the trade-offs in a variety of grasping mechanisms.

5.1. The theory of grasping

Due to the importance of grasping in robotics, the theory behind grasping is
widely investigated, with the state of the art comprehensively described in
(Rimon & Burdick 2019). However, robotics researchers still have difficul-
ties in mathematically capturing the mechanics of grasps that are effective
in practice. Therefore, rather than describing these recent developments—
which are well beyond the scope of this book—we will briefly describe dif-
ferent approaches to model grasping and their limitations. Our goal is to

97

5. Grasping

Figure 5.1. Cross-section from above showing an idealized two-finger (left) and
three finger (right) gripper holding a cylinder.

provide the reader with a better understanding of the reasons for which some
grasps work better than others, and what matters when designing a gripper.

In its most simple form, grasping requires immobilizing an object, at least
against the forces of gravity, by providing appropriate forces in the oppo-
site direction, also known as constraints. Specifically, contact points on a
robotic finger, gripper or hand are assumed to exert localized forces, thereby
constraining the object sufficiently. By this, fingers essentially act as minia-
ture robotic arms, allowing us to apply the methods and tools described in
Chapters 2—4.

5.1.1. Friction

In any real application, contacts between a gripper and hand are not friction-
less. This is the reason grasps such as those shown in Figure 5.1 practically
work. If there were really no friction between the fingers and the object, the
object would be ejected from the hand for every grasp that is not exactly
aligned with a principal axis of the cylinder in Figure 5.1, left. Furthermore,
even the three-finger grasp shown in Figure 5.1, right, would always fail
as there is no force constraining the object from below. Interestingly, the
existence of friction makes grasping much easier in practice, yet much harder
to describe mathematically.

The reason that the grasps shown in Figure 5.1 do work in practice is
that the normal forces shown have a tangential component that is due to
friction and covered by the Coloumb’s Friction law, which states that the
higher the friction coefficient of a material, the more normal force translates
into tangential forces that can resist two surfaces from moving against each

98

5.1. The theory of grasping

Fn o
| a
Fy
< E—

/ Ve

Figure 5.2. Left: Coloumb friction relates normal to tangential reaction forces
that are required to overcome friction, here shown for rightwards motion. Right:
Friction cone for point forces. As long as the force is within the cone cone, the
finger will not slip.

other. It is governed by the equation:

Here, F; is the force of friction exerted by each surface on the other and
F, is the normal force; the force Fi acts in tangential direction to the normal
force applied by, e.g., a fingertip; p is a coefficient of friction that can be
measured empirically—intuitively, u is low for glass on glass and high for
rubber on wood. We are therefore interested in designing grippers with high
friction coefficients to avoid objects from slipping.

When do objects slip? Let’s analyze the problem using Figure 5.2. Say
we have a fingertip pressing down on a surface in any orientation. There
will be a force normal to the surface F},, which defines the tangential force
Fi in any direction. Sweeping the tangential force around the normal force
creates a cone with an opening angle of:

o =2tan"p, (5.2)

see (Rimon & Burdick 2019, p. 57) for a derivation. If the net force on the
object is not within this cone, the object slips. This becomes more intuitive
when thinking about how different values of p affect the shape of this cone.
If v is high, the cone will be relatively wide, letting the object “accept”
forces from many different directions without slipping. If p is low, the cone
will be relatively narrow, requiring the force to be normal to the object’s
surface to prevent slippage.

99

5. Grasping

Importantly, as detailed in Chapter 4, a force applied to a rigid body will
exert both a 3D force as well as a 3D moment to the body’s center of gravity;
this quantity is called a wrench—see Equations (4.1) and (4.2). If we consider
all the possible wrenches that we can apply to a rigid body without having
the end-effector slip to form a space (namely the cone described earlier for
a single finger), we can talk about the grasping wrench space, which is the
corresponding space of all suitable wrenches. Knowing the relation between
normal and tangential reaction forces can help in designing grippers that
are more likely to successfully grasp an object than others, as well as when
planning suitable grasp for objects with known friction.

5.1.2. Multiple contacts and deformation

In practice, no force will ever be applied at a single point only; rather, a
force will be distributed over an area, either due to the size of the finger
pad itself or due to the contact area deforming under pressure. Even the
smallest contact area that is not a point in the mathematical sense will
add constraints on torque, which will translate to constraints in additional
dimensions and therefore further stabilization of the grasp. This is illustrated
in Figure 5.3. A single point of contact (Figure 5.3, left) allows the object to
easily pivot around it; however, by increasing the contact area we are able to
constrain the rotational degree of freedom, thus reducing the available DoF's
for the object to only its translational component. It is therefore desirable to
grasp an object with a contact area that is as large as possible. Importantly,
since as surfaces are not perfectly flat, this extension of contact area is only
possible in practice if the contact area is deformable—see Figure 5.3, right.
Lastly, a large contact area will also increase friction, which as detailed in
Section 5.1.1 is a desirable property for grasping.

Consequently, using metal jaws or rigid fingers is seldom successful in prac-
tice. Instead, rubber pads are used to increase force closure by conforming
around the object. As the rubber is flexible, however, the grasp is not com-
pletely stabilizing the object and it may still be able to move within the
grasp; this might not be desirable for precise manipulation tasks such as
picking up a nut and trying to mount it on a screw. Mathematically, this
introduces additional complications into the grasp model in the form of elas-
ticity introduced in the object-robot dynamics; in simple terms, soft/flexible
pads are the equivalent of a spring, increasing uncertainty in its dynamics.

100

5.1. The theory of grasping

.,_E\

Y Y

Figure 5.3. From left to right: ideal force exerted via a single point of contact,
forces exerted via an area of contact, contact area increasing due to pressure
and conforming with the surface. Remaining degrees of freedom are indicated by
arrows.

5.1.3. Suction

A highly effective method for grasping is using suction. Here, a suction cup
is pressed against an object, using a vacuum applied by a pump to suck
the object against the cup. Instead of exerting forces against the object,
which always requires at least one antipodal force (or multiple forces that
are distributed such that the object remains in equilibrium) to create a con-
straint, suction only requires one point of contact. The rim of the suction
cup provides both friction and multiple contact points to prevent the object
from slipping and further constraining the object beyond the normal force
applied by the vacuum. Requiring only a single area of contact is a tremen-
dous advantage from a planning perspective as only one area on an object
needs to be identified, whereas other grasping approaches need to always
identify two areas and coordinate motion to reach them. It is worth noting
that suction using multiple suction cups on custom-made rigs to grasp large
parts such as car doors is very popular in the car industry, but it generally
relies on pre-programmed trajectories and little to no autonomy—which is
not a focus of this book.

The soft nature of the suction cup provides the ability for the rim to
conform to the object, but makes suction impractical for objects that do not
have any flat surfaces or and that expose holes to the gripper—for example,
objects stored in a net. The elasticity of the rim also makes it difficult to
further manipulate the object as all forces applied by the robot will need
to be transferred via a spring-like elastic material. Finally, suction requires
a vacuum pump that is able to generate sufficient force to lift an object,

101

5. Grasping

limiting the maximum weight of objects suitable for suction by a single
suction cup in practice.

5.2. Simple grasping mechanisms

Understanding why grasping actually works—namely, via friction (Section 5.1.1)
and increasing contact area due to deformation (Section 5.1.2), allows us to
select grasping mechanism that are characterized by the following proper-
ties: 1) they are able to successfully grasp a wide range of objects, 2) they
are simple to construct, and 3) they are easy to control. Here, properties of
interest are the range of possible object sizes, the maximum weight of an ob-
ject, and how fragile objects can possibly be. Object dimensions are directly
dependent on the gripper kinematics such as minimum and maximum aper-
ture, whereas the maximum weight is given by the torque the mechanism
can exert as well as the number of contacts and their friction parameters.
Whether a gripper can handle fragile objects is a function of how well this
torque can be measured and controlled.

5.2.1. 1-DoF scissor-like gripper

One of the simplest grippers is a simple one degree-of-freedom claw, which
is a popular design in the prosthetic community, and has been refined for
centuries. Actuated by a string mounted to a person’s shoulder, or more re-
cently by electric motors controlled via muscle activity in the lower arm, this
simple mechanism enables the wearer to perform a wide range of everyday
activities. Indeed, an off-the-shelf prosthetic hand has been shown to per-
form a large variety of grasping and manipulation tasks when compared with
other robotic hands in a tele-operation scenario, only limited by its ability to
conform to specific kinematic constraints such as operating scissors (Patel,
Segil & Correll 2016).

A simple design is shown in Figure 5.4 and consists of an active finger that
presses an object against a passive finger, with both fingers often shaped as
a hook. As should be clear by now, such a design can only work by relying
on friction, which makes it not very common in traditional robotics.

The key advantage of this mechanism is that it allows for very simple
control strategies to operate it: use the passive finger to make contact with
the object, then use the active finger to close the grasp. The event “make
contact” can either be detected by measuring the force acting at the wrist
and looking for abrupt changes in such force or using a tactile sensor on

102

5.2. Simple grasping mechanisms

-\

- G -

Figure 5.4. Simple 1-DoF grasping mechanism that relies on friction to grasp objects
with a wide variety of sizes (center, right). The mechanism has only one moving
part that presses the object against a passive finger.

the finger with which contact is made. This approach can therefore lead to
robust grasps with a minimum of sensing required. A disadvantage of this
mechanism is that its function relies exclusively on friction, possibly ejecting
away objects from its grasp if friction is not sufficient or the object is in
an otherwise sub-optimal conformation. Unlike most other mechanisms, it
is also impossible to use the finger position to infer the width of an object,
which is illustrated by the illustrations in Figure 5.4, center.

The mechanism shown in Figure 5.4 can be actuated in many different
ways, for example by attaching a servo motor directly to the active finger,
using a shape-memory alloy wire via a suitable lever arm, or a pneumatic
piston or balloon.

5.2.2. Parallel jaw

The most common industrial gripper mechanism is the two-finger parallel
jaw gripper. It operates by squeezing an object between its two parallel jaws,
which are usually driven by a single actuator and therefore move in concert.
Parallel jaw grippers usually yield more contact area than a scissor-like 1-
DoF gripper, but suffer from a smaller range of motion.

Figure 5.5, left, shows a minimalist implementation of a parallel jaw grip-
per that can be actuated by a single servo motor, driving two rack gears to
which the gripper jaws are mounted. While using gears on racks is unusual
in an industrial design—the gripper jaws typically travel on threads actuated
by worm gears or are attached to a pneumatic piston—this drawing illus-

103

5. Grasping

Figure 5.5. Left: Parallel jaw gripper driven by a single actuator via a system of
coupled gears. Right: 4-bar linkage parallel jaw gripper.

trates the relationship between the range of motion of the gripper jaws, the
length of the mechanism it is sliding on (here a rack gear), and the resulting
body size. In order for this design to fully close, the two rack gears must be
mounted at an offset in order to slide against each other. Constraints like
this often make the gripper body twice as wide as the maximum aperture,
making it difficult for the robot to enter tight areas. The mechanical design
also affects the speed at which a gripper can operate. Pneumatic grippers,
where air pressure coming in on either end of the piston can drive the gripper
into an “open” or “close” position very quickly (2-3 times per second), can-
not be controlled accurately. Electric mechanisms instead trade-off accuracy
and torque with speed (i.e. more accuracy but at lower speed).

The control strategy for parallel jaw grippers requires an accurate pose es-
timation of the object of interest and a precise positioning the gripper so that
the object is right in the center of the two jaws. Note that force-closure with
a static object, such as a screw mounted to a structure, requires both jaws
to make contact with the object at the same time, thereby imposing high
accuracy requirements on both object detection and robot motion. Here,
compliance can help, allowing the gripper to adjust its pose to the object.
This can be accomplished by either measuring forces in the wrist and moving
the gripper to minimize lateral forces or a compliant mounting mechanism or
structure, such as a robot equipped with series-elastic or pneumatic actua-
tors. An alternative approach is to actuate both gripper jaws independently,

104

5.2. Simple grasping mechanisms

as seen below.
5.2.3. 4-bar linkage parallel gripper

A parallel jaw mechanism with a larger range of motion can be accomplished
using two 4-bar linkages—see Figure 5.5, right. In a 4-bar linkage, rotation
of the motor is translated into straight translation of the fingers. This is ac-
complished by two pairs of parallel bars of equal lengths. Albeit one might
think that the mechanism is only made out of three bars when inspecting
Figure 5.5, the gripper body itself takes the role of the fourth bar. Interest-
ingly, both pairs remain parallel as one of the bars is rotating, resulting in
the two gripper jaws remaining parallel to each other. This is best under-
stood by inspecting Figure 5.5 and comparing the two positions the left jaw
can be in.

The drawback of this design is that closing the gripper also results in a for-
ward motion. This requires approaching an object from different distances,
depending on its width. Other than this, the control strategy is the same as
for the parallel jaw gripper, requiring an accurate estimate of the object’s
pose. Also here, adding compliance or independent actuation of each jaw
can help resolving accuracy problems.

5.2.4. Multi-fingered hands

Grippers with more than two fingers/jaws are rarely used in industrial prac-
tice. One common use case is grasping cylindrical objects from above, for
which three-fingered hands, such as the one shown in Figure 5.1, right, are
best suited. However, in most other cases three fingers are not an advantage,
and might even be a hindrance! For example, it is difficult to perform simple
pinching grasps with three fingers. This has led to designs in which two of
the fingers are reconfigurable from performing an inwards motion to behave
identical to a parallel jaw gripper, while the third finger is stored in a safe
position. In addition to mechanical complexity, such an approach requires
also additional planning steps.

How many grasps are possible and how many possible grasps are needed
to grasp every possible object remains a difficult theoretical problem (which
is further complicated by the fact that successful grasping often happens
at the boundary of what is mathematically tractable). Generally, we can
say however that additional fingers—such as in the human hand—provide
additional redundancy, which allows grasping and manipulating (see Section

105

5. Grasping

14) the same object in many different ways, including manipulating the
object within the hand, that is without intermittent placement or handing
it over to another gripper.

Take-home lessons

e Making a good gripper requires to take advantage of compliance and

friction in a way that still eludes mathematical analysis, making grip-
per design an experimental process.

Successfully grasping an item does not necessarily mean that the robot
will also be able to successfully manipulate that item. Designing a
grasping mechanism therefore requires to understand the entire task,
from grasping to placing or otherwise manipulating the item.

Simple mechanisms such as suction or two finger grippers are sufficient
for most grasping and manipulation tasks, but are not suitable for
in-hand manipulation, which—for the large part—remains an open
research challenge.

Exercises

1.

106

Think about at least three mechanisms to realize a parallel jaw gripper. How
does the minimum and maximum aperture of the gripper relate to the gripper
width for each of these designs?

. Think about at least three mechanisms to actuate a four-bar linkage. Which

of these will keep the payload inside the gripper during power failure?

Derive an equation for the distance of the fingertip from the gripper base
in a 4-bar linkage gripper as a function of the gripper opening width. Use
appropriate parameters for all unknown parameters.

A powerful mechanism to grasp is to evacuate the air from a bag of coffee
beans after conforming around an object. Describe what happens here using
language from this chapter.

. Design a grasping system to pick up the bare metal of a car door for assembly

in an automated manufacturing line. Which design ensures maximal accuracy
in placing the part?

Part II.

Sensing and actuation

109

Chapter 6

Actuators

The first part of this book has been concerned with different mechanisms,
helping us understand how robots look like and how they move. We will now
introduce the devices that allow to turn energy into rotation and translation.
We generally call such devices actuators. The goals of this chapter are to:

e provide a general overview over the different types of actuators and
what their advantages and drawbacks are;

e provide an appreciation of the systems challenges that come with any
chosen actuator technology;

e provide the basis and reference for further study.

6.1. Electric motors

Due to the dominance of rolling robots, the electric motor (Hughes & Drury
2019) is among the most popular actuators. Electric motors come in differ-
ent variations, starting with stepper and DC motors to servo and so-called
“brushless” DC motors. Except for the stepper motor, which uses large elec-
tromagnets to rotate an internal spindle by a few degrees every time, the
physics of the electrical motor requires it to revolve at very high speeds (mul-
tiple thousand rotations per minute). Therefore, electric motors are almost
always used in conjunction with so-called reduction gears tasked with re-
ducing their rotational speed and increasing their torque, i.e. the rotational
force that the motor exerts to rotate about its axis. Torques are indeed one
of the most basic control commands that may be issued to control a motor

113

6. Actuators

(i.e., the lowest-level): a notion of joint torque was introduced in Section 4.1
and is generally employed when controlling a robot at the static or dynamic
levels of abstraction. In order to be able to measure the number of revo-
lutions and the axis’ position, motors are also often combined with rotary
encoders (Section 7.2). Motors that combine an electric motor with a gear-
box, encoder, and controller to move toward desired position are known as
servo motors, and are popular among hobbyists.

6.1.1. AC and DC motors

Electric motors turn electric energy into kinetic energy via electromagnetism.
More specifically, an electric current running through a wire creates a cir-
cular magnetic field around the wire due to Ampere’s law. This effect can
be amplified by winding the wire into a coil. Due to the coil shape, the
magnetic fields of all wires superimpose and create a strong magnetic field
in the center of the coil. This field can be used to magnetize a ferromagnetic
material such as iron, which in turn amplifies the magnetic field. The re-
sulting magnetomotive force (MMF) is directly proportional to the number
of windings of the coil and the current running through it.

AC motors

In an AC motor, an electromagnetic coil is usually paired with a permanent
magnet. As magnets of opposite polarity repel each other, this effect can be
used to create motion. In its simplest form, an electric motor consists of a
simple coil that can spin between two permanent magnets, one oriented with
its south pole to the center, the other with its north pole (Figure 6.1, a).
Attaching a shaft to the central coil would then allow to turn a wheel, for
example. The turning part with the shaft is known as the rotor, whereas the
static part is known as the stator. When running an electric current in the
coil, the iron core will get magnetized: its north pole will then be attracted
by the south pole of one magnet in the stator and repelled by the north pole
of the other permanent magnet in the stator, while the opposite will happen
to its south pole.

In order for this simple motor to not get stuck in its new configuration,
we will need to swap the direction of the rotor’s magnetic field. This can
be achieved by swapping the direction of the current running through the
coil. This happens by itself when using so-called alternating current, or
AC. AC is commonly used in the power-grid, where the direction of current
changes with a frequency of 50 or 60 Hz. In this case, the speed of the motor

114

6.1. Electric motors

Figure 6.1. Left: A simple motor consisting of a coil and two permanent magnets.
In it’s current configuration, the electromagnetic force will result in the coil to
turn 180 degrees. Right: A simple commutator, which will switch the direction
of the current and therefore of the magnetic field as the coil rotates.

depends on the frequency of the AC, whereas its maximum torque is given
by its current.

AC motors exist in different forms, often using multiple coils in parallel
pairs to create smoother motions. Some motor designs also place the per-
manent magnets onto the rotor and coils on the outside. However, whatever
the design is, the basic principles remain the same.

DC motors

As the speed of an AC motor is constant, it is mostly used in heavy indus-
trial applications. An alternative design is to generate the desired switch
in directionality by a so-called commutator (Figure 6.1, b). This allows
running the motor with what is known as direct current, or DC, in which
the direction of current does not change. DC is what is commonly available
from batteries or from a “wall wart”, that turns AC into DC by means of a
transformer and a rectifier.

The commutator now provides positive and negative voltage at a series of
interleaving pads. These can be placed along the circumference of the stator
and provide power to the rotor coil via metal brushes attached to the shaft.
By this, the central coil will receive power at the right polarity no matter
where it is. As with the AC motor, there exist multiple designs using pairs of
parallel coils, various number of brushes, and commutators mounted either
in the stator or the rotor.

Such a motor can now turn at arbitrary speeds and will become faster and

115

6. Actuators

faster, only limited by friction and torque applied to its shaft. Its speed is
therefore proportional to the voltage that is applied, whereas its torque is
limited by the maximum current that is provided.

Electric DC motors are widely used in robotics, but suffer from low effi-
ciency due to the friction of the brushes and their wear-and-tear.

6.1.2. Stepper motor

Even when using more than one coil and multiple pairs of permanent mag-
nets, it is difficult to precisely control the angular position of a DC motor
shaft. Although the rotation can be geared down by factors of hundreds or
even thousands, the motor itself usually spins in the order of thousands of
times per minute—also known as “rotations per minute” or RPM. A solu-
tion to this problem is the stepper motor that—in its simplest form—uses a
ferromagnetic rotary wheel with a fixed number of teeth as its stator. Coils
in its stator can attract these teeth, creating a small rotation of a few de-
grees when the teeth in the rotor and stator-coil align. To precisely control
this effect, the ferromagnetic material in the coil also has a teeth pattern.
Selectively turning pairs of coils on and off will allow the motor shaft to
turn at a fixed number of degrees (in the order of one degree or less). For
example, a stepper motor that turns 3.6 degrees per step will require 100
steps for a complete revolution.

The required voltage pattern is usually generated by a microcontroller.
A stepper motor with four phases, that is four sets of coils in the inside,
requires four electrical signals that are carefully interleaved. That is, the
first wire is on for a set amount of time while the other three are off, then the
second, the third, and the fourth. Here, the period (i.e. the length) of this
signal determines the stepper motor’s speed, whereas the maximum current
determines its holding torque. There exists a variety of low-cost integrated
circuits (ICs) that generate this pattern, reducing the microcontroller’s task
to simply sending a single bit for every step and another for the desired
direction.

The advantage of this approach is that stepper motors usually do not
require gears or encoders (as one can simply count the steps being sent),
making them attractive as drivers for small differential wheel robots or grip-
pers. Stepper motors are usually much more expensive and bulky than their
DC counterparts.

116

6.1. Electric motors

6.1.3. Brushless DC motor

As the alternating current patterns are generated by electronics, the stepper
motor does not require brushes to commutate and is therefore much more
efficient. The advent of microelectronics in the Seventies has enabled to
generate driving patterns at the speeds required by conventional DC mo-
tors (thousands of RPMs), which has led to the brushless DC motor. The
brushless DC motor indeed resembles a stepper motor, but can operate with
much smaller coils as its torque results from the kinetic energy of rotating at
high speeds. In order to improve control, brushless DC motors either use en-
coders, a Hall effect sensor, or small changes in current that result from the
dynamo effect in the currently unused coils, to measure the current position
of the rotor within the stator. Sensing and control of a brushless DC motor
is involved and usually provided by purposely designed solid-state electronic
devices.

Unlike a brushed DC motor, whose brushes induce friction, the maximum
speed of a brushless DC motor is mostly limited by heat, which is a byproduct
of running electric current through its coils. Due to the absence of friction,
brushless DC motors are far more efficient than their brushed counterparts
and can provide equivalent speed and torque at a smaller form factor and
lower weight.

The performance of electric motors has been further boosted by the dis-
covery of rare earth magnets such as neodymium in the Eighties, allowing
motors to exert even more torque at smaller weight and using lesser cur-
rent. Together, these advances have led to a renaissance of electric cars and,
together with solid-state IMUs (Section 7.3.2), enabled small-scale drones.

6.1.4. Servo motor

To be useful in a robotic system, electric motors usually require gears, an
encoder, and control electronics. Modules that package these components
into a convenient form-factor are known as servo motors.

Servo motors have been classically used in remote controlled (RC) cars to
provide a simple actuator to steer a car or move the flaps of an airplane. A
simple digital signal was used to set the servo angle, usually in the range of
360 degrees or less, which was then held by the integrated electronics. More
recently, a new class of digital servo motors have emerged that allows to not
only control the angle, but set the speed at which the servo moves as well
as the maximum current (and thereby torque), as well as read information

117

6. Actuators

such as actual angle, temperature and other operational parameters.

Due to their built-in gear reduction, servo motors are usually not suitable
in the drivetrain of mobile platforms, but have become increasingly promi-
nent to drive the joints of simple manipulating arms, articulated hands and
grippers. A special kind of servo motor is the linear actuator. Here, a
(brush-less) DC motor is driving a spindle that turns rotation into transla-
tion. Linear servo motors are available with a wide range of protocols and
with or without built-in encoders that provide position feedback.

6.1.5. Motor controllers

Designing the power electronics that turn digital information into precisely
controlled voltage and currents is particularly challenging. Transistors are
used to turn low-power control signals from a micro-controller into high
powered ones, while regulating the voltage is achieved by switching DC power
on and off at very high frequency (tens of kHz) and smoothing the signal
using a combination of capacitors and coils. Diodes are used to ground the
reverse voltage that arises from demagnetizing coils. As peak-loads of tens
of Amperes will already arise in smaller systems such as remote controlled
cars, designing a motor controller is very involved and usually limited to a
specific operational range.

The biggest challenge in selecting appropriate circuits for motor drivers
is selecting a circuit that can not only accommodate the voltage (U) and
current (/) requirements, but can actually handle the overall energy (P =
UI). Here, the first hurdle is to provide the desired supply voltage. As it
is difficult to convert supply voltages without loss (in particular when the
required current is large), voltage requirements of the main driving motors
often determine the operating voltage of the overall power system.

A second hurdle is that there is nothing like loss-less energy switching.
In particular, all power transistors have an internal resistance (R). Given
P = I’R, already small resistances generate substantial heat. Dissipating
the resulting heat can quickly become a major problem; typically, this is not
part of an off-the-shelf motor control solution, but it represents a mechanical
design problem in and of itself. A standard approach is to use the (metal)
robot chassis to dissipate heat, but sometimes active cooling using a fan is
necessary. For more details on designing power electronics for a variety of
electric motors, the reader may refer to (Hughes & Drury 2019).

118

6.2. Hydraulic and pneumatic actuators

6.2. Hydraulic and pneumatic actuators

Another popular class of actuators, in particular for legged robots, are linear
actuators, that might exist in electric, pneumatic or hydraulic form.

6.2.1. Hydraulic actuators

Hydraulic actuators, mostly in the form of pistons, are well known from con-
struction machines and other heavy equipment. Hydraulics usually exceed
the forces electric motors can generate and are in a different ballpark as
far as size is concerned. That is, the smallest available hydraulic actuators
are orders of magnitude larger (in the order of tens of centimeters) than the
smallest DC motors (in the order of millimeters). However, they are relevant
for larger bipedal and quadrupedal platforms, where they are often used in
conjunction with electric motors.

Hydraulic actuators require a tank with pressurized liquid and a compres-
sor pump (which is again driven by a DC motor). The liquid is pressurized
using a gas, and released into the actuators via solenoid valves. A second
solenoid valve is used to let the liquid escape the actuator. The compressor
is then pumping the liquid back into the tank. Here, the gas in the tank
acts as a buffer allowing the system to release a burst of energy, which then
needs to be slowly restored by the compressor. As the performance of a
hydraulic system is strongly related to its mechanical properties such as size
and pressure of the tank, diameter of the tubes connecting the components,
and dimensions of the valve, hydraulic systems have a narrower operational
range than electric motors, which allow a higher variation of forces and
speeds. However, they are costly to maintain, difficult to control, and they
are usually characterized by a low bandwidth: that is, they will never be as
reactive as electric motors, and they might be infeasible in human-populated
environments where speed of reaction is paramount for safety considerations
(Section 6.3).

6.2.2. Pneumatic actuators and soft robotics

The principles of fluid-based (hydraulic) actuators also extend to opera-
tion by air. Pneumatic systems also require a compressor, a tank, and
a set of valves to direct the flow of air. As air is orders of magnitudes
more compressible than a liquid, pneumatic systems are not well suited to
translate large forces, but are lightweight and available in much smaller
form factors than hydraulic systems. For example, solenoid valves can be

119

6. Actuators

as small as a few millimeters, allowing to construct intricate mechanisms
such as realistically-sized robotic fish (Katzschmann, DelPreto, MacCurdy
& Rus 2018) or robotic hands (Deimel & Brock 2016).

In addition to pistons and other actuators available for hydraulic systems,
pneumatic actuators can be designed in arbitrary form factors, allowing the
designer to turn air pressure into almost any desired bending or torsional
movement. These actuators usually consist of a flexible rubber material
with an internal cavity that can be filled with air. Materials such as fabrics
that are stiff in one dimension (when pulling), but flexible in another (when
bending), are used to direct the force of the incoming air into a desired
direction, resulting into the actuator bending or twisting in a desired way
(Polygerinos, Correll, Morin, Mosadegh, Onal, Petersen, Cianchetti, Tolley
& Shepherd 2017). Please note that soft actuators are not balloons. While
balloons change their volume as they are inflated, a change of volume is
considered a failure mode in a soft robotic actuator and, ideally, all energy
should directly convert into motion.

As soft actuators are flexible, they break with the tradition of kinematics
for rigid robots introduced in Chapter 3. From a kinematic perspective,
an ideal, fully soft robot can be modeled as a platform with an infinite
number of mechanical degrees of freedom! However, although their complex
mechanics makes modeling and control more difficult, soft robotics opens up
an entirely new spectrum of robot capabilities; for example, it is possible to
design non-traditional kinematics that more resemble the motion of animals
than those of machines. This also allows to employ control strategies that
rely on the mechanism to give in, also known as compliance, a concept briefly
introduced in Section 5.2 on robotic grasping, and enabled by force control
(Chapter 4).

6.3. Safety considerations

Which actuator system is the best choice is also driven by safety considera-
tions. We distinguish active and passive safety. Active safety is the ability to
control the actuator sufficiently to avoid it to do harm—e.g. by squeezing a
person’s finger or limb, or damaging infrastructure in the environment. The
class of collaborative robots achieves that by limiting the torque a robot can
achieve through control. Controlling torque can be accomplished by mea-
suring and regulating the current that is used at any given actuators, and
employing a suitable low-level dynamical model of the motor that relates op-

120

6.3. Safety considerations

erating current with motor torque. By comparing the joint torques needed
to perform a task (see Chapter 4) with the currents actually flowing through
the motors, a robot can detect whether it is about to exert a (potentially
harmful) force or torque on the external world. This usually requires esti-
mating the approximate weight of the robot’s payload. A better (but more
expensive) way to control torque is to measure it at each joint by means
of load cells (see Chapter 7). Using actual sensors to measure forces and
torques actually allows to extend this method to other actuation systems,
not limited to electrical motors.

Passive safety is the ability to maintain a robot’s safety even in the absence
of control. This can be achieved by cushioning a robot, using actuators that
“give in” at a lower force than can do harm, such as pneumatic actuators,
or by coupling the motor with an elastic element. In such series elastic
actuators, power is not directly transmitted via a motor shaft, but indirectly
through a spring. In addition to doubling as a force/torque sensor (see also
Chapter 7), this limits the maximum force such an actuator can exert and
reduces the precision of any high-level controller.

An important failure mode that can only be addressed by a passive safety
mechanism is power failure. In the absence of power, a mobile robot might
keep driving (based on inertia) and hit an object, a humanoid robot might
collapse onto itself, and a gripper might let a heavy (or sharp) payload fall.
These problems can be addressed by always-on breaking mechanisms that
engage in the absence of power or by using gear ratios that are so high that
the overall mechanism is not back-driveable.

Take-home lessons

e There exist an almost limit-less repertoire of techniques to turn en-
ergy into motion, many of which have been explored to create robots,
with the electric motor remaining the dominant actuator in small-scale
robotic systems.

e What makes a good actuator is not only determined by its efficiency
with respect to the available energy source, but also in how far its
position, velocity, and torque can be measured to enable accurate and
precise control.

e A robot’s safety is determined not only by the choice of actuator, but
also by the control system around it.

121

6. Actuators

Exercises

1.

122

You are designing a robotic arm. Your goal is to maximize strength, while
minimizing weight. Which kind of electric motor do you chose and why?

. You are designing a gantry system for a 3D printer that can move the print

head left, right, up and down.
a) What kind of electric motor is your preferred choice and why?

b) The motor you selected requires 5V and up to 1A. Select an appropriate
driver board from an online vendor.

¢) What additional components would you need to realize the gantry with
a brushless DC motor?

A motor you selected for the shoulder joint of a robotic arm is too weak
and stalls under load. Assuming power is provided uninterrupted, what will
eventually lead to permanent damage?

The key component in a motor controller has a so-called ON-resistance of
0.292. Your motor requires 10A at average load.
a) What is the power dissipated at heat?

b) Search the internet for thermal heat sinks. What are the key quantities
to look out for here?

. Compare the parallel jaw gripper with a 2-bar linkage gripper. Discuss their

safety properties in case of power failure.

The end-effector of a “soft” robotic arm is hitting an object with 3 m/s.
Discuss its safety when compared with a conventional robotic arm and state
the assumptions you are making.

Chapter 7

Sensors

Robots are systems that sense, actuate, and compute. So far, we have stud-
ied the basic physical principles of motion, i.e., locomotion and manipulation.
We now need to understand the basic principles of robotic sensors that pro-
vide the necessary data for a robot to make decisions and control itself. The
goals of this chapter are to:

e provide an overview of sensors commonly used on robotic systems,
e outline the physical principles behind the functioning of sensors, and

e clarify the mechanisms responsible for uncertainty in sensor-based rea-
soning.

Historically, the development of robotic sensors is driven by industries
other than robotics. These include transportation (automotive, naval, air-
planes), safety devices for industry, servos for remote-controlled toys, and
more recently cellphones, virtual reality, and gaming consoles. These indus-
tries are mostly responsible for making “exotic” sensors available at low cost
by identifying mass-market applications. For example, accelerometers and
gyroscopes are now widely used in smartphones and cost less than a dol-
lar; the XBox gaming console made 3D depth sensing (through the Kinect)
accessible for a greatly lower cost than before; and sensors in modern pas-
senger vehicles provide an array of capability without appreciably increasing
the cost of the vehicle itself.

125

7. Sensors

Think about the sensors that you are interacting with daily. What
sensors do you have in your phone, in your kitchen, or in your car?

As we will see later on, sensors are hard to classify by their application
domain and target use case. In fact, most problems benefit from every pos-
sible source of information they can obtain. For example, localization can be
achieved by measuring how many degrees a wheel has turned with a sensor
known as an “encoder” (7.2), a sensor that can be implemented relying on a
wide variety of physical principles. However, estimation becomes more pre-
cise with the addition of accelerometers (Section 7.3) or even vision sensors
(Chapter 8). All of these approaches differ drastically in their precision—a
term that will be more formally introduced below—and the kind of data
they provide, but none of them is able to completely solve the localization
problem on its own.

Think about the kind of data that you can obtain from an encoder, an
accelerometer, or a vision sensor on a non-holonomic robot. What are
the fundamental differences? What physical principles do they leverage?

Although an encoder is able to measure position, it is used in this func-
tion only on robotic arms. If the robot is non-holonomic, closed paths in
its configuration space (i.e., robot motions that return the encoder values to
their initial position), do not necessarily drive the robot back to its starting
point (as exemplified in Figure 3.4). In those robots, encoders are therefore
mainly utilized to measure speed. An accelerometer instead, by definition,
measures the derivative of speed. Vision, finally, allows for the calculation of
the absolute position (or the integral of speed) if the environment is equipped
with unique features. An additional fundamental difference between those
three sensors is the amount and kind of data they provide. An accelerom-
eter samples real-valued quantities that are digitized with some precision.
An odometer instead delivers discrete values that correspond to encoder in-
crements. Finally, a vision sensor delivers an array of digitized real-valued
quantities (namely colors). Although the information content of this sensor
exceeds that of the other sensors by far, cherry-picking the information that
is the most useful to complete a task remains a hard, and generally unsolved,
problem.

126

7.1. Terminology

7.1. Terminology

When dealing with sensors, it is important to provide precise definitions
of terms such as “speed” and “resolution”, as well as additional taxonomy
that is specific to robotics. Roboticists differentiate between active and
passive sensors. Active sensors emit energy of some sort and measure the
reaction of the environment. Passive sensors instead measure energy from
the environment. For example, most distance sensors (not including stereo
vision) are active sensors, because they sense the reflection of a signal they
emit; conversely, an accelerometer, a compass, or a push-button are passive
sensors. Frequently the addition of an active element to a passive sensor can
increase the signal-to-noise ratio of the passive sensor, so these distinctions
may be blurred in some cases.

Another important term to characterize sensors is its range, i.e. the dif-
ference between the upper and the lower limit of the quantity a sensor can
measure. This differs from its dynamic range, which is the ratio between the
highest and lowest value a sensor can measure. It is usually expressed on a
logarithmic scale (to the basis 10), also known as “decibel”. The minimal
distance between two values a sensor can measure is known as its resolution.
The resolution of a sensor is primarily limited by the physical principle it
leverages (e.g., a light detector can only count multiples of a quant), however
it is usually limited by the analog-digital conversion process. The resolution
of a sensor should not be confused with its accuracy or its precision (which
are two different concepts). For example, even though an infrared distance
sensor might produce 4096 different values to encode distances from 0 to
10em (which suggests a resolution of around 24 micrometers), its precision
is much lower than its resolution (usually in the order of millimeters) due to
noise in the acquisition process.

A sensor’s accuracy is the difference between its (average) output m and
the true value v to be measured:

[m — v

accuracy =1 — (7.1)

v

This measure provides a quantity that approaches 1 for very accurate values
and 0 if the measurements group far away from the actual value. In practice,
however, this measure is rarely used and accuracy is provided with absolute
values or a percentage at which a value might exceed the true measurement.

127

7. Sensors

X1

L. - > -
T > T > T > T >

Figure 7.1. The cross corresponds to the true value of the signal. From left to right:
neither precise nor accurate, precise but not accurate, accurate but not precise,
accurate and precise.

A sensor’s precision instead is given by the ratio of range and statistical
variance of the signal. As detailed in Figure 7.1, precision is therefore a
measure of repeatability of a signal, whereas accuracy describes a systematic
error that is introduced by the sensor’s physics. For example, a GPS sensor
is usually precise within a few meters, but only accurate to tens of meters.
This becomes most obvious when satellite configurations change, resulting
in the precise region jumping by a couple of meters. In practice, this can be
avoided by fusing this data with other sensors, e.g. from an IMU.

The speed at which a sensor can provide measurements is known as its
bandwidth. For example, if a sensor has a bandwidth of 10 Hz, it will provide
a signal ten times a second. This is important to know, as querying the sensor
more often is a waste of computational time and potentially misleading.

7.1.1. Proprioception vs. Exteroception

Another important taxonomy is the difference between proprioception and
exteroception. Proprioception refers to the perception of the internal state
of a robot. Proprioception includes estimation of the robot’s joint angles,
its speeds, as well as internal torques and forces. Conversely, exteroception
refers to sensing anything outside of the physical embodiment the robot.
Exteroception is important because it is crucial for the robot to correctly
perceive the state of the world, estimate the uncertainties related to it, and
properly act based upon these uncertainties. Importantly, while the majority
of sensor development focuses on distal sensors capable of measuring quan-
tities in the far space (e.g. cameras, see Chapter 8, or sound-based sensors,
see Section 7.5.3), in recent years more attention has been given to proximal
sensors, that are concerned with measuring the environment that is immedi-
ately surrounding the body or even directly on the robot body. Applications

128

7.2. Sensors that measure the robot’s joint configuration

Channel &
Channg B
Code track on disk

I_I_’_J_rl_fm Channel &
! L1 7] Channg B

Figure 7.2. From left to right: encoder pattern used in a quadrature encoder,
resulting sensor signal (forward motion), absolute encoder pattern (gray coding).

of this technology are varied, from tasks that require measuring and control-
ling the interaction of the end-effector with the environment (e.g. sanding a
table with a fixed vertical force), to manipulating in clutter—where contact
with obstacles is inevitable.

In robotics, it often helps to make comparisons with human perfor-
mance. How many daily tasks do not require physical interaction with
the environment? If they do, would you be able to successfully complete
them without contact, and how would your performance decrease if you
were to “avoid collisions at all costs”?

7.2. Sensors that measure the robot's joint configuration

The most important proprioceptive sensor is the encoder. Encoders can be
used for sensing joint position and speed, as well as force—if used in conjunc-
tion with a spring. Encoders can be divided in incremental (relative, used
primarily in mobile robotics) and absolute encoders (mainly used in robot
manipulators). In general, they rely on either a magnetic or optical beacon
turning together with the motor and being sensed by an appropriate sensor
that counts every pass-through. The most common encoder in robotics is
the quadrature encoder, which is an optical encoder. It relies on a pattern
rotating with the motor and an optical sensor that can register black/white
transitions, as shown in Figure 7.2.

While a single sensor would be sufficient to detect rotational position and
speed, it does not allow to determine the direction of motion. Quadrature
encoders therefore have two sensors, A and B, that register an interleaving

129

7. Sensors

pattern with distance of a quarter phase. If A leads B, the disk is rotat-
ing in a clockwise direction. If B leads A, then the disk is rotating in a
counter-clockwise direction. It is also possible to create absolute encoders—
an example of which is shown in Figure 7.2, right. This pattern is a 3-bit
pattern that encodes 8 different segments on a disc. Notice that the pat-
tern is arranged in such a way that there is only one bit changing from one
segment to the other. This is known as “Gray code”.

7.3. Sensors that measure ego-motion

Measuring the robot’s joint configuration is limited to static observations.
It does not allow the robot to detect whether it is currently moving or
even accelerating (such as falling), which is particularly important for robots
that are only dynamically stable such as walking humanoids or quadrotors.
Motion can be estimated by relying on the principle of inertia. A moving
mass does not lose its kinetic energy—if there is no friction. Likewise, a
resting mass will resist acceleration. Both effects are due to inertia and can
be exploited to measure acceleration and speed.

7.3.1. Accelerometers

An accelerometer can be thought of as a mass on a dampened spring. Con-
sidering a vertical spring with a mass attached to it, we can measure the
acting force F' = kx (Hooke’s law) by measuring the displacement z that
the mass has exerted on the spring. Using the relationship F' = ma, we can
now calculate the acceleration a on the mass m. On earth, this accelera-
tion is roughly 9.817. In practice, these spring/mass systems are realized
using microelectromechanical devices (MEMS), such as a cantilevered beam
whose displacement can be measured using a capacitive sensor. Accelerom-
eters measure up to three axes of translational accelerations. Inferring an
absolute position from it requires a double integration, which introduces
significant noise in the estimation and makes position estimates using ac-
celerometers infeasible in practice. However, as gravity provides a constant
acceleration vector, accelerometers are very good at estimating the pose of
an object with respect to gravity (i.e. roll and pitch).

7.3.2. Gyroscopes

A gyroscope is an electro-mechanical device that can measure rotational
speed, and in some configurations orientation. It is complementary to the

130

7.3. Sensors that measure ego-motion

accelerometer that measures translational acceleration. Classically, a gyro-
scope consists of a rotating disc that can freely rotate in a system of pivots
and gimbals. When moving the system, the inertial momentum maintains
the original orientation of the disc, allowing to measure the orientation of
the system relative to where the system was originally. While disc-based gy-
roscopes are still used, for example to stabilize the cannon of a tank during
motion, the mechanism remains difficult to minimize.

A variation of the gyroscope is the rate gyro, which measures rotational /angular
velocities. A rate gyro can intuitively be illustrated by considering its opti-
cal implementation. In an optical gyro, a laser beam is split in two and sent
around a circular path in two opposite directions. If the device is rotated
against the direction of one of these laser beams, one laser will have to travel
slightly longer than the other, leading to a measurable phase shift at the re-
ceiver. This phase shift is proportional to the rotational speed of the setup.
As light with the same frequency and phase will add to each other and lights
with the same frequency but opposite phases will cancel each other, light at
the detector will be darker for high rotational velocities. Importantly, small-
scale optical rate gyros are not practical, but MEMS rate gyros are widely
available and use a different technology, as they rely on a mass suspended by
springs. The mass is actively vibrating, making it subject to Coriolis forces
when the sensor is rotated. Coriolis forces can be best understood by moving
orthogonally to the direction of rotation on a vinyl disk player. In order to
move in a straight line, you will not only need to move forwards, but also
sideways. The necessary acceleration to change the speed of this sideways
motion is counteracting the Coriolis force, which is both proportional to the
lateral speed (the vibration of the mass in a MEMS sensor) and the rota-
tional velocity, which the device wishes to measure. Note that the MEMS
gyro would only be able to measure acceleration if it were not vibrating.

Rate gyroscopes can measure the rotational speed around three axes,
which can be integrated to obtain absolute orientation. As an accelerometer
measures along three axes of translation, the combination of both sensors
can provide information on motion in all six degrees of freedom. Together
with a magnetometer (compass), which provides absolute orientation, this
combination is also known as Inertial Measurement Unit (or IMU). Note that
this combination of sensors is particularly powerful, as an accelerometer and
gyroscope can provide complementary information on roll and pitch, while
a magnetometer and gyroscope can provide complementary information on

131

7. Sensors

yvaw. This innovation has powered attitude and heading reference systems
(AHRS) through sensor fusion, a technique that is explored in Section Sec-
tion 7.6.

7.4. Measuring force

The measurement of physical interaction forces is of paramount importance
for robotics. It enables a variety of capabilities that humans take from
granted, from gently picking a strawberry to safely engaging in touch-based
interactions with humans.

When combining a motor and an encoder with a spring, a mechanism
known as a Series Elastic Actuator (Pratt & Williamson 1995) , rotary and
linear encoders can be used as simple force or torque sensors using Hooke’s
law (F' = kx, where k is a spring constant) and x the displacement in the
spring due to extension or compression. This can be used when operating a
robot under a static (Section 4.1) or dynamic level of abstraction. Another
method to estimate the actual force or torque acting on a joint is to measure
the current consumed at each joint. Knowing a mechanism’s pose allows
to calculate the resulting forces and torques across the mechanism as well
as the currents required for empty loading conditions. Derivations of these
then correspond to additional forces that can hence be calculated.

The most accurate and most widespread device to date is the Force/Torque
(or F/T) sensor. It is a mechanical device that is capable of detecting
one or more components of a six-dimensional wrench applied to it (i.e. a
3D force and a 3D torque, see Section 4.1). Most commercially available
F/T sensors use strain gauges. Simply put, a strain gauge is a metal (i.e.
conductive) foil that changes its shape when a wrench is applied to it, and
while doing so changes its electrical resistance. In a typical configuration
(Figure 7.3), a F/T sensor consists of an inner hub of solid metal that is
suspended in an outer ring via three symmetrical, rectangular solid metal
rods. Each metal rod is equipped with a strain gauge on each side (four per
rod). Typically, sensors are operated in pairs, one mounted orthogonal to the
other, resulting in a total of six sensor signals, from which we can compute
forces and torques in three dimensions. Such F/T sensors are available as
stand-alone components that can be mounted between an end-effector and
a robot arm or are integrated within the robot’s joints.

While accurate and precise, F/T sensors are plagued by a number of lim-
itations: 1) high costs due to the high precision that is required during

132

7.4. Measuring force

Top/Bottom view Cross section (side)

%

outer ring

inner hub

[|

Figure 7.3. A force/torque sensor translates force and torque between two links of
a robot via three metal rods that connect an inner hub to an outer ring. Here,
one link of the robot connects to the outer ring, the other to the inner hub. Each
metal rod is equipped with a strain gauge on each side, resulting in 12 sensors in
total.

manufacturing; 2) size (a standard F/T sensor is usually the size of a human
wrist); 3) low signal-to-noise ratio; 4) low bandwidth/responsivity; and 5) a
single data point that is sparse in space and time. This last point becomes
particularly clear when considering a robotic arm having multiple points
of contact with an object. Here, a single sensor that measures forces and
torques at the joint provides only very little information.

7.4.1. Measuring pressure or touch

In order to partially mitigate these limitations, roboticists have worked on
a complementary capability, that is measuring the pressure applied on the
robot’s surface.

The human sense of touch is the oldest, the largest, and the most important
of our senses. To humans, contact and physical interaction are a resource
rather than an impediment, and we are surprisingly proficient at leveraging
touch in a variety of situations. Therefore, it is natural for roboticists to
equip robots with similar capabilities in order to achieve performance levels
comparable to humans’.

A pressure sensor is a device that is capable of detecting either a con-
tact/collision as a binary data (in which case is generally referred to as
touch sensor), or a gradient of pressure applied to it. In general, the vertical

133

7. Sensors

pressure applied to the sensor is proportional to the 1D vertical force that
is applied to the direction normal to the sensor, and this makes a pressure
sensor a good substitute to F/T sensors in specific applications (e.g. grasp-
ing). Additionally, pressure sensors are mostly based on measuring pressure
through a change in capacitance rather than resistance (no different from
the functioning of a touchscreen on a modern smartphone): when pressure
is applied to a capacitor-like device (i.e. two conductive plates separated
by an insulating material), the distance between the two plates reduces and
this causes a change in capacitance which can be readily measured.

As introduced in the context of series-elastic actuators, distance and force
sensing are tightly related via Hooke’s law. There exists a large variety of
touch and force sensors that rely on light-based distance measurement (see
the following section) in conjunction with a flexible material with known
spring constant, such as using distance sensors to measure the deformation
of an elastic dome from the inside (Youssefian, Rahbar & Torres-Jara 2013)
or measuring distance to objects through transparent rubber before touch
and contact force after touch (Patel, Cox & Correll 2018).

If compared to F/T sensors, pressure sensors provide limited amount of
information (1-dimensional vs 6-dimensional), but they allow for: 1) high
responsiveness; 2) high density of sensing (up to tens of sensors per cm?); 3)
low cost; 4) ease of miniaturization.

Human touch is not limited to pressure alone, but also high-frequency
information such as vibrations. These are important when discerning differ-
ent surfaces. Robots can replicate this capability by measuring vibrations
in the order of hundreds of Hertz by integrating accelerometers or micro-
phones into a soft transducer and classifying spectral information (Hughes
& Correll 2015).

In an extreme, it might be desirable to equip robots with an artificial skin
that combines different sensing modalities for pressure, texture, tempera-
ture or light, possibly also including cameras or actuators to change their
appearance. While there exist a variety of commercial solutions, including
pressurized double-layer skin that measure pressure differentials at select lo-
cations to detect contact, as well as capacitive solutions, robotic skins have
not found wide-spread applications as of yet.

134

7.5. Sensors to measure distance

7.5. Sensors to measure distance

We have seen that there is a fluent transition from proprioceptive to extero-
ceptive sensors as measuring the robot’s internal state is tightly related to its
environment as soon as contact is made. In order to explore its environment
from afar, measuring distance to individual objects has shown to be critical
for the robot to navigate and identify obstacles and objects of interest.

The small form factor and low price of light-sensitive semi-conductors have
led to a proliferation of light-based sensors relying on a multitude of physical
effects. These include reflection, phase shift, and time of flight. Other
physical principles that are commonly used in distance sensors are radio
(more commonly known as “Radar”) and sound.

7.5.1. Reflection

Reflection is one of the easiest and most immediate principles to take ad-
vantage of: the closer an object is, the more it reflects light, radio or sound
directed at it. This allows to easily measure distance to objects that reflect
the signal well and that are not too far away. In order to make these sensors
as independent from an object’s color as possible (but unfortunately not
totally independent), infrared is most commonly chosen wavelength when
using light. In contrast, sound will not be effected by a surface’s color, but
by its surface properties and absorption characteristics.

A reflection-based distance sensor is made from two components: an emit-
ter (that emits a signal, for example infrared light) and a receiver (tasked
with measuring the strength of the reflected signal). A typical response for
an infrared distance sensor is shown in Figure 7.4. The values obtained at
an analog-digital converter correspond to the voltage at the infrared receiver
and are saturated for low distances (flat line), and quadratically decrease
afterwards.

7.5.2. Phase shift

As shown in Figure 7.4, reflection can only be precise if distances are short.
Instead of measuring the strength (amplitude) of the reflected signal, laser
distance sensors measure the phase difference of the reflected wave. In order
to do this, the emitted light is modulated with a wave-length that exceeds
the maximum distance the scanner can measure. If you were to use visible
light and to do so at much slower speeds, you would see a light that keeps
getting brighter, then getting darker, briefly turns off and then starts getting

135

7. Sensors

>

ADC values

distance

Figure 7.4. Real-world response of an infrared distance sensor as a function of
distance. Units are left dimensionless intentionally.

brighter again.

Thus, if you were to plot the amplitude of the emitted signal over time
(i.e., its brightness), you would see a wave that crosses zero when the light is
dark. As light travels, this wave propagates through space with a constant
distance (the wavelength) between its zero crossings. When it gets reflected,
the same wave travels back (or at least parts of it that get scattered right
back). For example, modern laser scanners emit signals with a frequency of
5 MHz (turning off 5 million times in one second). Together with the speed
of light of approximately 300,000km/s, this leads to a wavelength of 60m
and makes such a laser scanner useful up to 30m.

When the laser is now at a distance that corresponds exactly to one half
the wave-length, the reflected signal it measures will be dark at the exact
same time its emitted wave goes through a zero-crossing. Going closer to the
obstacle results in an offset that can be measured. As the emitter knows the
shape of the wave it emitted, it can calculate the phase difference between
emitted and received signal. Knowing the wave-length it can now calculate
the distance. As this process is mostly independent from ambient light, the
estimates can be very precise.

As the laser distance measurement process is fast, such lasers can be com-
bined with rotating mirrors to sweep larger areas, known as Laser Range

136

7.5. Sensors to measure distance

Scanners or Lidars. Such systems have been combined into packages con-
sisting of up to 64 scanning lasers and are nowadays vastly used in the au-
tonomous driving space as they are capable of providing voluminous depth
data of the enviornment around a car while driving. It is also possible to
modulate projected images with a phase-changing signal, which is the oper-
ational principle of early “time-of-flight” cameras, which however is not an
accurate description of their operation.

7.5.3. Time-of-flight

The most precise distance measurements light can provide is by measuring
its time of flight. This can be done by counting the time a signal from an
emitter becomes visible in a receiver. As light travels very fast (3-10%m/s),
this requires high-speed electronics that can measure time periods smaller
than nanoseconds in order to achieve centimeter accuracy. In practice, this
is done by combining the receiver with a very fast electronic shutter that
operates at the same frequency of the emitted light. As this timing is known,
one can infer the time light has traveled by measuring the quantity of photons
that made it back from the reflective surface within one shutter period. As
an example, light travels 15m in 50ns. Therefore, it will take a pulse of 50n.s
to return from an object at a distance of 7.5m. If the emitter transmits a
pulse of 50ns length and then closes the receiver with a shutter, the receiver
will receive more photons the closer the object is, but no photons if the
object is farther than 7.5m. Given a fast enough and precise circuit that
acts as a shutter, it is sufficient to measure the actual amount of light that
returns from the emitter.

Ultrasound distance sensors

Measuring the time of flight is considerably simpler when using sound waves
to measure distance (sound travels at around 344m/s in air). An ultrasound
distance sensor operates by emitting an ultrasound pulse and measures its
reflection. Unlike a light-based sensor that measures the amplitude of the
reflected signal, a sound-based sensor measures the time it took for the pulse
to travel back and forth. This is possible because sound travels at much lower
speed (3-10%m/s) than light (3-10%m/s). The fact that the sensor actually
has to wait for the signal to return leads to a trade-off between range and
bandwidth (see Section 7.1: allowing a longer range requires waiting longer
for the signal to come back, which in turn limits how often the sensor can
provide a measurement. Although ultrasound distance sensors have become

137

7. Sensors

progressively less common in robotics, they have an advantage over light-
based sensors: instead of sending out a ray, the ultrasound pulse results in a
cone with an opening angle of 20 to 40 degrees. Because of this, such sensors
are able to detect small obstacles without the requirement of directly hitting
them with a ray. This property makes them the sensor of choice in specific
applications, such as the automated parking assist technologies in modern
cars.

7.6. Sensors to sense global pose

So far, we have discussed sensors that allow the robot to measure the position
of its own joints, its rotational velocity, its translational acceleration, forces
from interaction with the environment, and distance to objects relative to
its own pose. In order to reliably navigate in the environment, robots also
need some notion of a world coordinate frame.

Localizing an object by triangulation goes back to ancient civilizations,
where sailors oriented themselves using the stars. As stars are only visible
during unclouded nights, seafarers have invented systems of artificial beacons
emitting light, sound, and eventually radio waves. The most sophisticated
of such systems is the Global Positioning System (GPS). GPS consists of a
number of satellites in orbit that are equipped with knowledge about their
precise location and have synchronized clocks. These satellites broadcast a
radio signal that travels at the speed of light and is coded with its time of
emission. GPS receivers can therefore calculate the distance to each satellite
by comparing time of emission and time of arrival. As not only the posi-
tion (z,vy, z), but also the time difference between the GPS receiver’s clock
and the synchronized clocks of the satellites is unknown, four satellites are
needed to obtain a “fix”. Due to the way information from the satellites is
coded, getting an initial fix can take on the order of minutes, but afterwards
it becomes available multiple times per second. GPS measurements are nei-
ther precise nor accurate enough for robotics applications, and require to be
combined with other sensors, such as IMUs. (Note that the bearing shown
on some GPS receivers you may have access to is calculated from subsequent
positions and is therefore meaningless if the robot is not moving.)

There exist also a variety of indoor GPS solutions, which consists of either
active or passive beacons that are mounted in the environment at known
locations. Passive beacons, for example infrared reflecting stickers arranged
in a certain pattern or 2D barcodes, can be detected using cameras and their

138

7.6. Sensors to sense global pose

pose can be calculated from their known dimensions. Active beacons instead
usually emit radio, ultrasound or a combination thereof, which can then be
used to estimate the robot’s range to this beacon. In this domain, ultra-
wideband radio in particular is common for relative localization indoors.

Take-home lessons

e Most of a robot’s sensors either address the problem of determining
the robot’s pose or localizing and recognizing objects in its vicinity.

e Each sensor has advantages and drawbacks that are quantified in its
range, precision, accuracy, and bandwidth. Therefore, robust solutions
to a problem can only be achieved by combining multiple sensors with
differing operation principles.

e Solid-state sensors (i.e. without mechanical parts) can be miniaturized
and cheaply manufactured in quantity. This has enabled a series of
affordable IMUs and 3D depth sensors that will provide the data basis
for localization and object recognition on mass-market robotic systems.

Exercises

1. Given a laser scanner with an angular resolution of 0.01 rad and a maximum
range of 5.6 meters, what is the minimum range d a robot needs to have from
an object of lcm width to definitely sense it, i.e., hit it with at least one of
its rays? You can approximate the distance between two rays with the arc
length.

2. Why does the bandwidth of a ultrasound based distance sensor decrease sig-
nificantly when increasing its dynamic range, but that of a laser range scanner
does not for typical operation?

3. You are designing an autonomous electric car to transport goods on campus.
As you are worried about cost, you are thinking about whether to use a laser
scanner or an ultrasound sensor for detecting obstacles. As you drive rather
slow, you are required to sense up to 15 meters. The laser scanner you are
considering can sense up to this range and has a bandwidth of 10Hz. Assume
300m/s for the speed of sound in the following.

a) Calculate the time it takes until you hear back from the US sensor when
detecting an obstacle 15m away. Assume that the robot is not moving
at this point.

139

7. Sensors

b) Calculate the time it takes until you hear back from the laser scanner.
Hint: you don’t need the speed of light for this, the answer is in the
specs above.

c) Assume now that you are moving toward the obstacle. Which sensor
will give you a measurement that is closer to your real distance at the
time of reading and why?

. Pick an educational robot platform of your choice and make a list of its

Sensors.

. Construct a simple range scanner by mounting an ultrasound sensor onto a

servo motor. Implement a scanning routine that allows you to collect the raw
data and display it on the screen. Can you see simple features such as corners
and openings?

Explore the internet for do-it-yourself robotics shops. What kind of sensors
do they offer?” What are the interfaces these sensors provide?

Pick a physical sensor that you have access to. Can you design an experiment
to characterize its precision and accuracy?

Your task is to design a sensor that can detect the remaining void in a parcel
for an e-commerce application.

a) What sensors could you think off that would allow you to measure the
volume of the content in the box?

b) What additional sensors could you use assuming the box is moving on
a conveyor belt.

¢) What additional information would you need to know in order to differ-
entiate between box content, the box itself, and the environment around
the box? What sensors could you use to get this information?

d) Additional sensors are not within your budget. What kind of measures
could you take to reduce the amount of information required?

9. Your task is to design an autonomous cart that can automatically dock with

140

shelves in the environment.

a) What kind of sensors could you use to locate the shelf in the environ-
ment? Assume that the shelf is the only object in a certain target area.

b) What kind of physical measures could you take to simplify detection of
the shelf?

¢) What kind of sensors could you use to detect whether the shelf is in a
suitable position for docking?

d) What kind of physical measures could you take to simplify the sensing
process?

7.6. Sensors to sense global pose

10. You are designing a competitive controller for the “Ratslife” game. What
kind of information does the environment provide and what kind of sensor
would you need to exploit it?

141

Part 1Il.

Computation

143

Chapter 8
Vision

Vision is one of the most information-rich sensor systems both humans and
robots have available. However, efficiently and accurately processing the
wealth of information that is generated by vision sensors is still a key chal-
lenge in the field. The goals of this chapter are to:

e introduce the concept of images as two-dimensional signals;

e provide an intuition of the wealth of information hidden in low-level
information;

e introduce basic convolution and threshold-based image processing al-
gorithms.

8.1. Images as two-dimensional signals

Images are captured by cameras containing matrices of charge-coupled de-
vices (CCD) or similar semi-conductors (e.g. complementary metal-oxide
semiconductor, CMOS) that can turn photons into electrical signals. These
matrices can be read out pixel by pixel and turned into digital values, for
example an array of 640 by 480 three-byte tuples corresponding to the red,
green, and blue (RGB) components the camera has seen. An example of
such data is shown in Figure 8.1; for simplicity, we show only one color
channel. Looking at the data in the matrix clearly reveals the white tile
within the black tiles at the lower-right corner of the chessboard. Higher
values correspond to brighter colors (white) and lower values to darker col-
ors. We also observe that although the tiles have to have the same color,

147

8. Vision

50) (50) (S1) (S4) (S4) (59) (€0) (59)
(59) (58) (S8) (Se) (Se) (60) (&) (68)
€) (61) (61) (&) (€) (78) (g8) (107
) (77) (€3) (96) (114) (133) (145) (187)
) (112) (125) (137) (147))) (175)
) (157) (165) (170) () (175)
) (166) (171) (172)) (1)
) (48] (167) (171)) (173)
(112) (156) (170) (170} (171) (173) (173) (172
(77) (122) (161) (169] (172) (173] (173} (173}
61) (81) (132) (165)) (174) (17€)

64) (61 85) (146
(59) (59 €3) (95) |
S6) (59) (€1) (&4)
(se) (60 €1) (62) 8]
(60) (62 62) (63) (60) {

176) (177
] (172) (173)
) (1M (173
] (163) (172)
135) (166)
89) (147
(60) (62 €3) (68) (7] (91) (131)
) (72) (79 86) (99) (111) (122 137) (147

)
1ISS017E011574

Figure 8.1. A chessboard floating inside the ISS with astronaut Gregory Chamitoff.
The inset shows a sample of the actual data recorded by the image sensor. One
can clearly recognize the contours of the white tile.

the actual values differ quite a bit. It might make sense to think about
these values much like we would do if the data would be 1D signal: taking
the “derivative”, e.g., along the horizontal rows, would indicate areas of big
changes, whereas a “frequency” histogram of an image would indicate how
quickly values change. Areas with smooth gradients, e.g., black and white
tiles, would then have low frequencies, whereas areas with strong gradients,
would contain high frequency information.

This language opens the door to a series of signal processing concepts,
such as low-pass filters (suppressing high frequency information), high-pass
filters (suppressing low frequency information), or band-pass filters (letting
only a range of frequencies pass), analysis of the frequency spectrum of the
image (the distribution of content at different frequencies), or “convolving”
the image with another two-dimensional function. The next sections will
provide both an intuition of what kind of meaningful information is hidden
in such abstract data and provide concrete examples of signal processing
techniques that make this information appear.

148

8.2. From signals to information

8.2. From signals to information

Unfortunately, many phenomena that often have very different or even op-
posite meaning look very similar when looking at the low-level signal. For
example, drastic changes in color values do not necessarily mean that the
color of a surface indeed has changed. Similar patterns are generated by
depth discontinuities, specular highlights, changing lighting conditions, or
surface orientation changes. These phenomena—some of which are illus-
trated in Figure 8.2—make computer vision a hard problem.

1SSO1TE0TT574

Figure 8.2. Inside of the international space station (left), circled areas in which
pixel values change drastically (right). Underlying effects that produce similar
responses: change in surface properties (1), depth discontinuities (2), specular
highlights (3), changing lighting conditions such as shadows (4), or surface ori-
entation changes (5).

This example illustrates that signals and data alone are not sufficient to
understand a phenomenon, but require context. Here, the context does not
only refer to surrounding signals, but also high-level conceptional knowledge
such as the fact that light sources create shadows and specular highlights,
that objects in the front appear larger, and so on. The importance of such
conceptional knowledge is illustrated in Figure 8.3: both images show an
identical landscape that once appears to be speckled with craters, once with
bubble-like hills. At first glance, both scenes are illuminated from the left,
suggesting a change in the landscape. However, once information that the
sun is illuminating one picture from the left and the other from the right is
available, the paradox becomes clear: the variable illumination makes the
craters look like bumps under come conditions.

More surprisingly, conceptual knowledge is often sufficient to make up for

149

8. Vision

Figure 8.3. Picture of the Apollo 15 landing site during different times of the day.
The landscape is identical, but appears to be either speckled with craters (left)
or hills (right). Knowing that the sun is illuminating the scene from the left and
right, respectively, does explain this effect. Image credit: NASA/GSFC/Arizona
State University.

the lack of low-level cues in an image. An example is shown in Figure 8.4.
Here, a Dalmatian dog can be clearly recognized despite the absence of cues
for its outline, i.e. by simply extrapolating its appearance and pose from
conceptual knowledge.

These examples illustrate both the advantages and drawbacks of a sig-
nal processing approach to computer vision. While an algorithm will detect
interesting signals even there where we don’t see or expect them (due to con-
ceptional bias), image understanding not only requires low-level processing,
but also intelligent combination of the spatial relationship between low-level
cues and conceptual knowledge about the world. As we will later see (Chap-
ter 10), this can be accomplished through convolutional neural networks that
provide a single pipeline to process information at different scales—ranging
from extracting local features to examining their spatial relationships with
each other.

150

8.2. From signals to information

Figure 8.4. The image of a Dalmatian dog can be clearly recognized by most
spectators even though low-level cues such as edges are only present for ears,
chin and parts of the legs. The contours of the animals are highlighted in a
flipped version of the image in the inset.

151

8. Vision

8.3. Basic image operations

Basic image operations can be thought of as a filter that operates in the
frequency or in the space (intensity/color) domain. Although most filters
directly operate in the intensity domain, knowing how they affect the fre-
quency domain is helpful in understanding the filter’s function. For example,
a filter that is supposed to highlight edges such as the one shown in Figure 8.2
should suppress low frequencies—i.e., areas in which the color values do not
change much, and amplify high-frequency information—i.e., areas in which
the color values change quickly. The goal of this section is to provide a basic
understanding of how basic image processing operation works. It is impor-
tant to note that the methods presented here, while still valid, have been
superseded by more sophisticated implementations that are widely available
as software packages or within desktop graphic software.

8.3.1. Threshold-based operations

In order to find objects with a certain color or edge amplitude, thresholding
an image will lead to a binary image that contains “true-false” regions that
fit the desired criteria. Thresholds make use of operators like >, <, <, > and
combinations thereof. There also exist adaptive versions that adapt/update
the thresholds locally, e.g., to make up for changing lighting conditions.
Albeit thresholding is simple if compared to other techniques shown below,
finding correct threshold values is a hard problem. In particular, actual pixel
values change drastically with change in the lighting conditions and there is
no such thing as “red” or “green” when inspecting the actual values under
different conditions.

8.3.2. Convolution-based filters

A filter can be implemented using the convolution operator *x that convolves

f(2) % g(x) = / T fngle —rydr (8.1)

where ¢() is defined as filter. The convolution essentially “shifts” the func-
tion g() across the function f() while multiplying the two (see also in the
video to the left). As images are discrete signals, the convolution is conse-

152

https://commons.wikimedia.org/wiki/File:Convolution_of_box_signal_with_itself2.gif

8.3. Basic image operations

quently discrete:

Zf [z —1] . (8.2)

1=—00

Additionally, given that images are two-dimensional signals, the convolution
is two-dimensional as well:

fle,y] > glz,y) = Z wa v —i,y— 4] - (83)

1=—00 j=—00

Although we have defined the convolution from negative infinity to infinity,
both images and filters are usually finite. Images are constrained by their
resolution, and filters are usually much smaller than the images themselves.
Also, the convolution is commutative, therefore Equation (8.3) is equivalent
to:

e, y) * gla,y) = Z fo—zy—ﬂ [i, 5. (8:4)
1=—00 j=—00
Gaussian smoothing
One of the most basic (and important) filters is the Gaussian filter. The
Gaussian filter is shaped like the Gaussian bell function and can be eas-
ily stored in a two-dimensional matrix. Implementing a Gaussian filter is
surprisingly simple, e.g.:
111

glx,y)=— .[121 (8.5)
10
111

Using this filter in Equation 8.4 on an infinitely large image f() leads to

o,y * glw, y) = Zfofzny] (i 4] (8.6)

i=—1j=—1

assuming that ¢(0,0) is the center of the matrix. What now happens is
that each pixel f(z,y) becomes the average of that of its neighbors, with its
previous value weighted twice than that of its neighbors (because g(0,0) =
0.2). More concretely:

llf(2+1,y+1)g(*1,71) +f(2+1,y)g(*1,0) +f($+17y 1)9(7171)
f(z,y) = +f(@y+1)g(0,~1) +f(z)9(0,0) +f(zy-1)g(0,1) (8.7)
+He—1y+D)g(1,—1) +f(z—1y)g(1,0) +fla—1y—1)g(1,1)

153

8. Vision

Figure 8.5. A noisy image before (top left) and after filtering with a Gaussian kernel
(top right). Corresponding edge images are shown underneath.

Doing this for all x and all y is equivalent to physically “sliding” the filter
g() along the image.

An example of the Gaussian filter in action is shown in Figure 8.5. The
filter acts as a low-pass filter, suppressing high frequency components. In-
deed, noise in the image is suppressed, leading also to a smoother edge image,
which is shown to the right.

Edge detection

Edge detection can be achieved using another convolution-based filter, the
Sobel kernel:

—-101 1 21
sz(x,y) = | —202 sy(z,y) = 0 0 0O (8.8)
—-101 —-1-2-1

154

8.3. Basic image operations

Here, s;(x,y) can be used to detect vertical edges, whereas s, (x,y) highlights
horizontal edges. Edge detectors such as the Canny edge detector therefore
run at least two of such filters over an image to detect both horizontal and
vertical edges.

Difference of Gaussians

An alternative method for detecting edges is the Difference of Gaussians
(DoG) method. The idea is to subtract two images that have each been
filtered using a Gaussian kernel with different width. Both filters supress
high-frequency information and their difference therefore leads to a band-
pass filtered signal, from which both low and high frequencies have been
removed. As such, a DoG filter acts as a capable edge detection algorithm.
Here, one kernel is usually four to five times wider than the other, therefore
acting as a much stronger filter.

Differences of Gaussians can also be used to approximate the Laplacian
of Gaussian, i.e., the sum of the second derivatives of a Gaussian kernel.
Here, one kernel is roughly 1.6 times wider than the other. The band-
pass characteristic of DoG and LoGs are important as they highlight high-
frequency information such as edges, yet suppress high-frequency noise in
the image.

8.3.3. Morphological Operations

Another class of filters are morphological operators which consist of a kernel
describing the structure of the operation (this can be as simple as an identity
matrix) and a rule on how to change a pixel value based on the values in the
neighborhood defined by the kernel. Important morphological operators are
erosion and dilation. The erosion operator assigns a pixel a value with the
minimum value that it can find in the neighborhood defined by the kernel.
The dilation operator assigns a pixel a value with the maximum value it
can find in the neighborhood defined by the kernel. This is useful, e.g.,
to fill holes in a line or remove noise. A dilation followed by an erosion is
known as a “Closing” and an erosion followed by a dilation as an “Opening”.
Subtracting erosed and dilated images from each other can also serve as an
edge detector. Examples of such operators are shown in Figure 8.6.

155

8. Vision

Tmage I Erosion IOB Dilatation IEB Opening IoB= (IOB)ZB

Closing I-B= (I€B)@B Grad(I)= (1€B)-(168) TopHat(T)=I- (I8B) BlackHat(T)= (I€B) -1

Figure 8.6. Examples of morphological operators erosion and dilation and combi-
nations thereof (image credit: OpenCV documentation, BSD).

8.4. Extracting Structure from Vision

A remarkable property of vision is the ability to provide both semantic (qual-
ities of the scene, such as what is in it) and metric (quantities of the scene,
such as sizes and distances) information. Extracting semantic information is
nowadays heavily reliant on machine learning, which is explained at a high
level in Section 8.5. The extraction of metric information however can be
accomplished by leveraging geometric relationships, which we will describe
here.

Figure 8.7 shows a high-level schematic of the relationships between an
image frame and another—both observing the same point. In here, we do
not draw a distinction between these two frames being either spatially or
temporally correlated, which are two distinct problems in robotics: in stereo
vision, two cameras are rigidly attached to one another (spatial correlation)
and are acquiring images of the same scene; in structure from motion, a
single camera is moved through a scene and a pair of images from the single
camera are related to one another via a transform matrix (temporal corre-
lation). In either case, it is possible to identify the “projection center” of
the camera frames as Cr, and Cg; they related to one another through Tp g,
which is defined as the transform matrix from the left to the right frame. In

156

8.4. Extracting Structure from Vision

Pc
Epipolar plane

N

Epipolar line of pp,

Figure 8.7. Schematic of correlating features across images in order to extract three-
dimensional information from two-dimensional views.

stereo vision, this transform is known as the sensor extrinsics, a 6-dof quan-
tity that must be estimated through calibration. In structure from motion,
this transform quantifies the motion applied to the camera, which can be
estimated through localization (see Chapter 16).

Note that since the camera pair takes two images of the same scene, two
projections into the corresponding image planes of the same point in the
world can be correlated with one another to determine the point’s 3D posi-
tion. This may be accomplished naively through identifying the point pp, in
C'r, and searching for that point pp, in Cr. Crucially, the nature of projec-
tions of 3D points into the camera frame is a known operation, and in fact
a very simple one. In particular, a 3D point in the world can be projected
into the camera frame using:

(8.9)

4
Il
=
N
— N e 8

where K is known as the camera intrinsic matrix and 7T is the matrix form
of the transform between the camera and some global coordinates in which
the point (x,y,z) is expressed. Note that the camera intrinsic matrix is
another calibrated quantity, instantiated by two optical center parameters
and two scaling parameters. Importantly, it is possible for two projected

157

https://youtu.be/ND2fa08vxkY

8. Vision

points (representing a single point in 3D space) to be calculated directly
through triangulation on these 2D point pairs in images alone. Using the
same math as in Eq. (8.9) but expressing C, as the global coordinate system,
we can relate the 3D coordinate of the point to the two 2D measurements,
camera intrinsic matrix, and 17, g:

UR “ ur,
VR = KTLR Z = KTLRK_l vL (810)
1 1 1

Note that this expression is frequently given in terms of what is known as
the “essential matrix,” which is nominally a technique to solve this problem
for uncalibrated cameras. This expression, clearly induced by the geometry
expressed in Figure 8.7, allows for alternatively solving of the values making
up the entries of the essential matrix and not those of the camera intrinsic
and extrinsic parameters.

Looking back at the geometry in Figure 8.7, it may be noted that pp, lies
on a line that extends from the center of camera C', to the point p. However,
there is ambiguity of the depth along ray that is cast from Cf, to p. Crpe.
In order to disambiguate this depth, the line between pp, and the center of
projection of Pr, which is known as the “epipolar line,” may be projected
into Pgr, which creates the so-called “epipolar line of pr, in C'r.” It is along
this line that the point p. projected into Pr may be found. Most notably
from this is that therefore the search for the point pp, may be reduced to a
line search along the projected epipolar line. This line search is much more
efficient than finding the projection of point p. in the whole image plane of
Ppr, and therefore allows for rapidly sped-up geometry calculations across
image pairs.

Extracting metric information from images requires to uniquely identifying
identical points in each image. A simple solution to this problem is what
is known as structured light and is illustrated in Figure 8.8. Thanks to the
continuously increasing efficiency of computational systems, a light-weight
version of such an approach has become feasible to be implemented at small
scale and low cost around 2010, and emerged as a novel standard in robotic
sensing.

Instead of using line patterns, infrared-based depth image sensors use a
speckle pattern (a collection of randomly distributed dots with varying dis-

158

8.5. Computer Vision and Machine Learning

Figure 8.8. From left to right: two complex physical objects, a pattern of colored
straight lines and their deformation when hitting the surfaces, reconstructed 3D
shape. From (Zhang et al. 2002).

tances). Identifying identical points in two images simply requires to search
for blobs with similar size that are close to each other.

8.5. Computer Vision and Machine Learning

The algorithms described here still form the basis of most image understand-
ing pipelines and make feature detection (Chapter 9) tractable. With the
advent of so-called “convolutional neural networks” (Chapter 10), basic sig-
nal processing such as described here is now often wrapped into the image
understanding problem. While this makes it less important to implement
such algorithms oneself, understanding what convolution, morphological op-
erations and thresholds do to visual information remains still relevant to
meaningfully compose neural networks and make them less of a black box.

Take-home lessons

1. Unlike the sensors from Chapter 7, our brains can directly process
the 2D information that is captured by a vision sensor. It is difficult
to unthink the amount of processing that we perform automatically,
augmenting the signal with knowledge and other information that the
computer does not necessarily have.

2. Algorithms described in this chapter aim at reducing information to
a lower-dimensional space by removing noise and other spurious infor-
mation, making the related challenge of understanding the data more
tractable.

3. There is a trade-off between making the data stream more tractable
and preserving actual information. As computers and algorithms, in

159

8. Vision

particular machine learning, become more powerful, modern vision sys-
tems often blend pre-processing and actual image understanding into
a single pipeline.

Exercises

1. Below are shown multiple “Kernels” that can be used for convolution-based

160

image filtering.

111} |0|—=1j0] |1| 1 |1
112]1 —1(0] |1]—4]1
111} |0|—=1j0] |1| 1 |1

o

a) Identify the Kernel, which can blur an image.

b) What kind of features can be detected by the other two kernels?

. How many for-loops are needed to implement a 2D convolution? Explain

your reasoning.

Use an appropriate robot simulation environment that allows you access to
a simulated camera in a world with simple features such as geometric shapes
of different color etc.

a) Implement a thresholding algorithm that allows you to black out any-
thing but an object of a specific color. Is a simple threshold enough?
Why not? Can you black out an object using a low and and a high
threshold?

b) Implement a smoothening algorithm by performing both a convolu-
tion with a Gaussian kernel as well as a series of morphological oper-
ations. Experiment with kernels of different width and different steep-
ness. What are the advantages and drawbacks of using morphological
operations over a simple Gaussian filter?

¢) Implement an edge detection algorithm, e.g. by performing a convolu-
tion with a Sobel kernel. Experiment with different kernels. What else
do you need to do to create an image that only contains edges?

Can you think about a smoothening algorithm that will only smoothen small
amounts of noise, but maintains edges? What kind of filtering algorithms
could you combine to achieve this goal?

. Explore the internet for a computer vision toolbox that supports your lan-

guage of choice. What do you find? Does the toolbox implement all of the
algorithms in this chapter? Solve the above assignments using the toolbox’s
built-in functions.

8.5. Computer Vision and Machine Learning

6. Use an appropriate robot simulation environment that allows you to simulate
two cameras that are at a known distance in the same plane. Use simple
geometric objects such as a red ball and compute their distance using stereo
disparity.

161

Chapter 9

Feature extraction

A robot can obtain information about its environment by both active (e.g.,
ultrasound, light, and laser) or passive sensing (e.g., acceleration, magnetic
field, or cameras). There exist only limited cases where this information is
directly useful to a robot and does not require significant preprocessing over
it. For example, before being able to arrive at semantic information such as
“I’m in the kitchen”, “this is a cup” or “this is a horse”, one must first iden-
tify higher-level features and correlate these features with the information
of interest.

The goal of this chapter is to introduce the notion of features, and under-
stand standard feature detectors such as:

e the Hough-transform to detect lines, circles and other shapes,

e numerical methods such as least-squares, split-and-merge and RANSAC
to find high-level features in noisy data,

e scale-invariant features (SIFT).

9.1. Feature detection as an information-reduction problem

The information generated by sensors can be quite voluminous. For example,
a simple webcam generates 640x480 color pixels (red, green and blue) or
921600 bytes around 30 times per second. A single-ray laser scanner provides
around 600 distance measurements 10 times per second in the form of a
point cloud. Consider for a moment the information that a robot requires
in order to solve its problems, however. The volume of data resulting from

163

9. Feature extraction

most sensors seems much greater than the amount of information required
to answer the query “what are the dimensions of this room?” Consider for
example the maze-solving competition “Ratslife” (Section 1.3) in which the
robot’s camera can be used to recognize one of 48 different color patterns
(Figure 1.3) that are distributed in the environment, or the presence or
absence of a charger, essentially reducing hundreds of bytes of camera data
to 6 bits of content (25 = 64 different values). The goal of most image
processing algorithms is therefore to first reduce information content in a
meaningful way and then extract relevant information. In Chapter 8, we were
introduced to convolution-based filters such as blurring, detecting edges, or
binary operations such as thresholding. We are now interested in methods
to extract higher-level features such as lines and techniques to extract them
using these types of processing algorithms.

9.2. Features

Lines are particularly useful features for localization and can correspond to
walls in 2D laser scans, edges in 3D laser scans, markers on the floor, or
corners detected in a camera image. Whereas a Sobel filter (Section 8.3.2)
can help us to highlight lines and edges in images, additional algorithms
are needed to identify the line and extract structured information such as
it’s position and orientation. This structured information can then aid in
identifying these lines and edges through multiple observations, which admits
reasoning over persistent structures and our motion against them.

A desirable property of a feature is that its extraction is repeatable and
robust to rotation, scale, and noise in the data. We need feature detectors
that can extract the same feature from sensor data, even if the robot has
slightly turned or moved farther or closer to the feature. Ideally the same
feature could also be extracted if there is some noise affecting the sensor.
There are many feature detectors available that accomplish this. Prominent
examples are the Harris corner detector, which detects points in the im-
age where vertical and horizontal lines cross, and the scale-invariant feature
transform (SIFT) detector, which identifies features through maxima in the
difference-of-Gaussian image (Section 8.3.2) at various spatial scales. Fea-
ture detection is important far beyond robotics and is for example used in
hand-held cameras that can automatically stitch images together and image
indexing on the Internet. In image stitching, feature detectors will “fire”
(identify a feature) on the same features in two images taken from slightly

164

9.3. Line recognition

different perspectives; these matched features provide a geometric template
between the images where information is shared, thereby allowing for the
two images to be concatenated.

This chapter focuses on two important classes of features: line features
and scale-invariant features in images (SIFT). Both classes of features pro-
vide tangible examples for the least-squares and RANSAC algorithms, which
may be used to harness feature information to solve problems, and are also
introduced in this chapter. Together, these classes of features are fairly rep-
resentative of all features used in robotics, and have been chosen for their
simplicity, providing a basis for understanding the function of more complex
feature detectors.

These hand-coded feature detectors are in contrast to entirely self-learned
feature detectors based on deep neural networks, which are treated in Chap-
ter Chapter 10. Although neural network-based methods often outperform
hand-coded features, hand-coded features remain relevant for environments
in which learning is unfeasible, to preprocess data before subjecting it to
a learning-based method, or to understand what kind of architecture is re-
quired to solve a specific goal.

9.3. Line recognition

Why are lines a useful feature? As you will see in the “uncertainty” part of
the book, the key challenge in estimating a robot’s pose is unreliable odom-
etry, in particular when it comes to turning. Here, a simple infrared sensor
measuring the distance to a wall can provide the robot with a much better
sense for what actually happened during the turn. Similarly, if a robot has
the ability to track markers in the environment using vision, it gets another
measurement on how much the robot is actually moving. How information
from odometry and other sensors can be fused not only to localize the robot,
but also to create maps of its environment, will be a significant focus in the
remainder of this book.

A laser scanner or similar device pointed at a wall will return a mea-
surement of N points at position (x;,y;) in the robot’s coordinate system.
These points can also be represented in polar coordinates (p;, ;). We can
now imagine a line running through these points that is parametrized with
a distance r and an angle «. Here, r is the distance of the robot to the wall
and « its angle. As all sensors are noisy, each point will have distance d;
from the “optimal” line running through the points. These relationships are

165

9. Feature extraction

(mrm}
[]

Figure 9.1. A 2D point cloud recorded by a laser scanner or similar device. A line
(dashed) is fitted through the points in a least-square sense.

illustrated in Figure 9.1.
9.3.1. Line fitting using least squares

Using simple trigonometry we can now write:
picos(0; —a) —r = d;. (9.1)

Different line candidates—parametrized by r and a—will have different
values for d;. We can now write an expression for the total error S, as:

N
Sra = de = z:(pz cos(f; — o) —)2 (9.2)
i=1

7

Here, we square each individual error to account for the fact that a negative
error, i.e. a point left of the line, is as bad as a positive error, i.e. a point
right of the optimal line. In order to optimize S, ., we need to take the
partial derivatives with respect to r and o and set them zero, indicating the
functions are at their minimum or maximum:

o5 _, 95 _

7o = 5 =0 (9.3)

166

9.3. Line recognition

and then solve the resulting system of Equations (9.3) for » and «. Here,
the symbol 9 indicates that we are taking a partial derivative. Solving for r
and « is algebraically, but possible (Siegwart et al. 2011):

1 ¢ %Zp?sin%i—%szpjcoseismoj o4
= Jatan | 5 - L s), (9.4)
N 2 P; cos20; — 53 > > pip; cos(0; + 0;)

and

p o 2epicoslli—a) (9.5)
N
Therefore, using our proximity sensors, we can calculate the distance and
orientation of a wall relative to the robot’s positions, or the height and
orientation of a line in an image, based on a collection of points that we
believe might belong to a line.

This approach is known as the least-squares method and can be used to fit
data to any parametric model (i.e. a model that has numbers to be sought
to make it fit our data best). The general approach is to describe the fit
between the data and the model in terms of a difference, known as an “error”.
The best fit will minimize this error, i.e. the error will have a zero derivative
for the best parameters. If the result cannot be obtained analytically as in
this example, numerical methods have to be used to find the best fit that
minimizes the error.

9.3.2. Split-and-merge algorithm

It is often unclear how many lines there are and where a line starts and ends.
This creates a challenge for the matching-and-estimation strategy discussed
above. Looking through the camera, for example, we will see vertical lines
corresponding to wall corners and horizontal ones that correspond to wall-
floor intersections and the horizon; using a distance sensor, the robot might
detect a corner. We therefore need an algorithm that can separate point
clouds into multiple lines. One possible approach is to find the outlier with
the strongest deviation from a fitted line and split the line at this point.
This is illustrated in Figure 9.2. This can be done iteratively until each line
has no outliers above a certain threshold.

167

9. Feature extraction

Figure 9.2. Split-and-merge algorithm. Initial least-square fit of a line (left). Split-
ting the data-set at the point with the highest error (after picking a direction)
allows fitting two lines with overall lesser error.

9.3.3. RANSAC: Random Sample and Consensus

If the number of outliers is large, a least squares fit will generate poor results
as it will generate the “best” fit that accomodates both inliers and outliers.
= Note that this generally results in a very poor fit, since the least squares fit
mathematically assigns a significant weight to outliers—not treating them as
: a single measurement to be discarded, but a cumulative error to be reduced
in balance with those of the inliers. In this way, split-and-merge algorithms
will fail as they are extremely sensitive to outliers: depending on the actual
parameters every outlier will split a potential line into two.

A powerful solution to this problem is to randomly sample possible lines
and keep those that satisfy a certain desired quality given by the number of
points being somewhat close to the best fit. This is illustrated in Figure 9.3,
with darker lines corresponding to better fits. RANSAC usually requires
two parameters, namely the number of points required to consider a line to
be a valid fit, and the maximum d; from a line to consider a point an inlier
and not an outlier. The algorithm proceeds as follows: select two random
points from the set and connect them with a line. Grow this line by d; in
both directions and count the number of inliers. Repeat this until one or
more lines that have sufficient number of inliers are found, or a maximum
number of iterations is reached. RANSAC is applied frequently when it
comes to feature detection and matching as it provides a systematic routine
for separating inliers from outliers in even very noisy data.

The RANSAC algorithm is fairly easy to understand in the line fitting
application, but can be used to fit arbitrary parametric models to any-

168

https://youtu.be/9D5rrtCC_E0

9.3. Line recognition

/
)(\“
A Ne

/./' N

Figure 9.3. Random Sample and Consensus (RANSAC). Random lines are evalu-
ated by counting the number of points close by (“inliers”), darker lines are better
fits.

dimensional data. Here, its main strength is to cope with noisy data.

Given that RANSAC is random, finding a really good fit can be computa-
tionally intensive and time-consuming. Therefore, RANSAC is usually used
only as a first step to get an initial estimate, which can then be improved
by some kind of local optimization, such as least-squares.

9.3.4. The Hough transform

The Hough transform can best be understood as a voting scheme to guess
the parametrization of a feature such as a line, circle or other curve (Duda &
Hart 1972). For example, a line might be represented by y = ma + ¢, where
m and c are the gradient and offset. A point in this parameter space (or
“Hough-space”) then corresponds to a specific line in z-y-space (or “image-
space”). The Hough transform now proceeds as follows: for every pixel in
the image that could be part of a line, e.g., white pixels in a thresholded
image after Sobel filtering, construct all possible lines that intersect this
point. (Drawing an image of this would look like a star). Each of these lines
has a specifc m and c¢ associated with it, for which we can add a white dot in
Hough-space. Continuing to do this for every pixel of a line in an image will
yield many m—c pairs, but only one that is common among all those pixels of
the line in the image: the actual m—c parameters of this line. Thinking about
the number of times a point was highlighted in Hough-space as brightness,
will turn a line in image space into a bright spot in Hough-space (and the
other way around). In practice, a polar representation is chosen for lines,

169

9. Feature extraction

1000

1200

1400

20 40 60 80 100 120 140 160 180

0

A -
V
X

Figure 9.4. Lines in an image (left) transposed into Hough-space p (distance from
origin) and 6 (angle of normal with respect to origin). Bright spots in the Hough
image (right) correspond to parameters that have received the most “votes” and
clearly show the two lines at around 90° and 180°.

as shown in Figure 9.4. The Hough transform also generalizes to other
parametrization such as circles.

9.4. Scale-invariant feature transforms

Scale-invariant feature transforms (SIFT) are a class of algorithms that al-
low to extract features that are easily detectable across different scales (or
distances to an object), independent of their rotation, and to some extent
robust to perspective transformations and illumination changes. An early al-
gorithm in this class is the SIFT algorithm (Lowe 1999), which has lost some
popularity due to its licensing, and has been replaced in the past with SURF
(Speeded-Up Robust Feature) (Bay, Tuytelaars & Van Gool 2006) and ORB
(Rublee, Rabaud, Konolige & Bradski 2011), which are freely available. As
the arithmetic behind SURF is slightly more involved, we focus on the in-
tuition behind SIFT and encourage the reader to download and play with
the various open-source implementations of other feature detectors that are
freely available.

9.4.1. Overview

SIFT proceeds in multiple steps. Descriptions of the algorithm often include
its application to object recognition, but these algorithms are independent
of the feature generation step.

170

9.4. Scale-invariant feature transforms

Figure 9.5. After scale space extrema are detected (left), the SIFT algorithm dis-
cards low contrast keypoints (center) and then filters out those located on edges
(right). (©Lukas Mach CC-BY 3.0

1. Differences of Gaussians (DoG) at different scales:

a) Generate multiple scaled versions of the same image by re-sampling
every 2nd, 4th, and so on (up to the desired scale), pixel.

b) Filter each scaled picture with various Gaussian filters of different
variance.

c¢) Calculate the difference between pairs of filtered images. This is
equivalent to a DoG filter.

2. Detecting local minima and maxima in the DoG images across different
scales (Figure 9.5, left) and reject those with low contrast (Figure 9.5,
right).

3. Reject extrema that are along edges by looking at the second partial
derivatives in image space around each extremum (Figure 9.5, right).
Edges have a much larger principal curvature across them than along
them.

4. Assign a “magnitude” and “orientation” to each remaining extremum,
now called a “keypoint”. The magnitude is the squared difference be-
tween the DoG filter response at the present pixel and the neighboring
pixels. The orientation is the arctangent between the DoG differences
in the y direction and the x direction. These calculations are made for
all pixels in a fixed neighborhood around the initial keypoint, e.g., in
a 16x16 pixel neighborhood.

171

9. Feature extraction

5. Collect orientations of neighboring pixels in a histogram, e.g., 36 bins
each covering 10 degrees. Maintain the orientation corresponding to
the strongest peak and associate it with the keypoint.

6. Repeat step 4, but for four 4 x 4 pixel areas around the keypoint in the
image scale that has the most extreme minima/maxima. Here, only 8
bins are used for the orientation histogram. As there are 16 histograms
in a 16x16 pixel area, the feature descriptor has 128 dimensions.

7. The feature descriptor vector is normalized, tresholded, and again nor-
malized to make it more robust against illumination changes.

8. Local gradient magnitude and orientation are grouped into bins and
create a 128-dimensional feature descriptor.

The resulting 128 dimensional feature vectors are now scale-invariant (due
to step 2), rotation-invariant (due to step 5), and robust to illumination
changes (due to step 7).

9.4.2. Object Recognition using scale-invariant features

Scale-invariant features of training images can be stored in a database and
can be used to identify these objects in the future. One approach to this
is to find all features in an image and comparing them with those in the
database. This comparison is done by using the Euclidian distance as met-
ric and searching a k-d tree (with d = 128). In order to make this approach
robust, each object needs to be identified by at least 3 independent features.
For this, each descriptor stores the location, scale and orientation of it rela-
tive to some common point on the object. This allows each detected feature
to “vote” for the position of the object that it is most closely associated with
in the database. This is done using a Hough-transform. For example, po-
sition (2 dimensions) and orientation (1 dimension) can be discretized into
bins (30 degree width for orientation); bright spots in Hough-space then
correspond to an object pose that has been identified by multiple features.
Another popular approach uses the Bag of Words (BoW) technique, in which
features are collected into groups that compose a “word.” The words are
then matched against query features to determine the similarity between the
collected features and the query features, and thus a measure of likelihood
that the object in the image is that of the query.

172

9.5. Feature detection and machine learning

9.5. Feature detection and machine learning

This chapter has introduced a variety of algorithms that turn high-dimensional
input data into low-dimensional features, which can then be used to fur-
ther reason about a problem. Recent advances in artificial neural networks
(Chapter 10) have not only allowed us to automatically train such feature
detectors from data, but also often outperform hand-coded feature detectors
such as SIFT. Whereas the last decades have been dominated by hand-coding
image understanding pipelines consisting of filtering, feature detection and
thresholding (see also Chapter 8), modern neural network-based pipelines
perform all these steps in the different layers of their network architecture.
Like with low-level pre-processing (Chapter 8), understanding basic feature
detection algorithms remains important to understand what the different
components of a neural network actually do as well as how to deal with data
for which no training information are available.

Take-home lessons

1. Features are “interesting” information in sensor data that are robust
to variations in rotation and scale as well as noise.

2. Which features are most useful depends on the characteristics of the
sensor generating the data, the structure of the environment, and the
actual application.

3. There are many feature detectors available some of which operating as
simple filters, others relying on machine learning techniques.

4. Lines are among the most important features in mobile robotics as they
are easy to extract from many different sensors and provide strong clues
for localization.

Exercises

1. Think about what information would make good features in different operat-
ing scenarios: a supermarket, a warehouse, a cave.

2. What other features could you detect using a Hough transform? Can you
find parameterizations for a circle, a square or a triangle?

3. Do an online search for SIFT. What other similar feature detectors can you
find? Which provide source code that you can use online?

173

9. Feature extraction

4. A line can be represented by the function y = mxz+c¢. Then, the Hough-space

174

is given by a 2D coordinate system spanned by m and c.
a) Think about a line representation in polar coordinates. What compo-
nents does the Hough-space consist of in this case?

b) Derive a parameterization for a circle and describe the resulting Hough
space.

Implement a detector for the various targets in Ratslife. Start with basic 2D
images, then think about what you need to change in order to find targets in
any possible orientation.

Simulate, build or get access to a range finder. Can you write an algorithm
that reliably detects corners and openings?

Chapter 10

Artificial Neural Networks

Artificial neural networks (ANNs) are part of a class of machine learning
techniques that are loosely inspired by neural operation in the human brain;
in robotics, they are generally used to classify or regress data for the dual
purposes of perception (e.g., Chapters 8 and 9) and control (as will be shown
in Chapter 11). While ANNs for the longest time have been just one of the
many methods available to roboticists from the neighboring field of machine
learning, recent advances in computing—in particular, graphical processing
units (GPU)—and the availability of large datasets have enabled the training
of neural networks with many layers, commonly referred to as deep learn-
ing. These (often massive) networks have led to revolutionary results in
many fields including computer vision, natural language processing, video
and speech processing, and robotics. Not too long ago, neural networks
were considered “deep” if the had just more than two layers. Today, “deep”
neural networks can have hundreds of layers and thousands of inputs and
outputs—or more! This is still shy of the human brain, which contains
~ 100! neurons, each with thousands of synapses connecting a single neu-
ron to thousands of others.

Remember: a classification problem requires that input data be classi-
fied between two or more classes; a regression problem requires a pre-
diction of a (possibly continuous or high-dimensional) quantity. While
a regression problem can be converted into a classification one (and vice
versa), the machine learning community generally considers them two
separate applications, and different techniques are developed to perform

177

10. Artificial Neural Networks

in each of these domains.

Machine learning is a large field that shares many of its foundations with
robotics, in particular for what concerns probability theory and statistics.
Deep learning may be used as a drop-in replacement for sensor pre-processing
and conditioning, computer vision and feature extraction, localization, and
even replace controllers for locomotion and grasping. For each of these ap-
plications, it is important to understand when deep learning may perform
better than traditional approaches, and when it does not. In a nutshell, deep
learning models become first choice when not enough information exists to
model a system using first principles. While a “deep enough” model with
the right architecture might approximate any existing function in robotics,
deep learning models lack “explainability” beyond statistical accuracy, that
is, we may not easily be able to know how the approach actually works (in
terms of which criteria it uses for its decisions) and when it might fail, usu-
ally making it a second choice behind an approach based on first principles
with clear decision-making rationale.

The goals of this chapter are to introduce:

e basic neural networks from the simple perceptron to multi-layer neural
networks,

o different network architectures and encodings to tackle a variety of
regression and classification tasks,

e convolutional neural networks—including padding, striding, pooling
and flattening, and how they can be used to process spatial and tem-
poral data,

e recurrent neural networks that introduce memory for classifying tem-
poral data and perform control tasks.

10.1. The simple Perceptron

Artificial neural networks are inspired by neurons and synapses in the human
brain and have been studied since the Fifties. One of the earliest models is
the Perceptron, which can classify an input vector x of dimension m into
two classes. Such a problem is shown in Figure 10.1. Variations of the
simple perceptron remain the basic elements of deep neural networks until

178

10.1. The simple Perceptron

today. As detailed in Figure 10.2, a perceptron has m inputs x1 to x,,)—
each modulated by a weight w; to w,,, as well as a threshold b; it outputs
either zero or one.

The perceptron classifies whether z lies above or below a hyperplane de-
fined by the weights w = {ws, ..., wy,} using the following equation:

1 wzr+b>0
T) = 10.1
/(@) {O otherwise ()
Here, wx = 2111 w;x; is the dot product and the non-linear activation

function f(z) is also known as Heaviside step function. In practice, we are
appending the value of ’1’ to the vector = so that xg = 1, which simplifies
wz + b (with w = {wy,...,wy}) to wr with w = {wg, w1, ..., w,} where
wq takes the role of b. This is illustrated in Figure 10.2, where the bias b is
alternatively labeled by wg and input x¢ = 1.

10.1.1. Geometric interpretation of the simple perceptron

If w really defines an hyperplane, we should be able to easily visualize it
when m = 2. When m = 2, i.e. every data point x has only two dimensions,
the separating hyperplane is a line such as the one shown in Figure 10.1.

ng

>

x

Figure 10.1. A 2-dimensional dataset, where every element has two values (z; and
x9) and belongs to one of two classes (red and blue). In the simplest case of
linear separation, it is possible to separate the two classes with just a straight
line.

179

10. Artificial Neural Networks

Figure 10.2. The simple perceptron passes the dot product between the inputs =
and weights w through a Heaviside function, returning 1 when wz +b > 0 and 0
otherwise.

Indeed, we can easily demonstrate this. Writing the dot product out yields:
wi1r] + wexry +b=0 (10.2)

As we plot x; along the x-axis and x2 along the y-axis, we can write:

w1x + wey +b=0 (10.3)
This can be rewritten into:
b
Y= Sy 2 , (10.4)
w9 w9

and displayed within a scatter plot.
10.1.2. Training the simple perceptron

Training the perceptron, equates to finding appropriate values for w and
b that separate the data into two classes. This process can be performed
iteratively:

1. initialize all the weights with zeros or a small random number;

2. compute the prediction y; = f(wx; + b) for each data point z;. A
suitable choice for f() is the Heaviside step function , e.g. (Equa-
tion (10.1));

180

10.2. Activation Functions

3. calculate the mismatch between prediction y; and the true class d; to
update the weights:

w(t+1) =w(t)+r(d; —y;) *z; (10.5)

4. repeat steps 2 and 3 until a termination criteria, e.g. a decreasing error
or maximum number of iterations, is reached.

Albeit very simple, this learning algorithm has still a lot in common with
state-of-the-art algorithms. First, weights are updated in an iterative process
using small increments governed by the parameter r, which is referred to
as the learning rate. By changing w in small increments, the algorithm
is literally rotating and translating the separating line in a direction that
minimizes the loss, given by d; — y;. One can easily see that if the learning
rate is too low, the algorithm will never find a good solution. One can also
see that if the learning rate is too large, the line might move too much,
“skipping” the configuration that achieves optimal separation.

It is worth noting that this simple implementation is a de facto imple-
mentation of gradient descent—in this case with a loss function of the form
(d; —y;)?, that can be minimized by moving against the direction of its gra-
dient, here 2(d; — y;). Other examples of gradient descent can be found in
Section 3.4.2.

Second, the learning algorithm requires multiple presentations of the data-
set, as the error is computed for every point in the data set. The more the
amount of data, the longer the training! In this case the increase in time is
linear—which is also generally true for more complex and modern learning
algorithms.

Third, the error between the prediction and the true class is only calculated
based on the given training data. Even if we were to train with unlimited
amounts of data points, it would still be difficult to generalizes for new data,
and whether these new measurements will be distributed in a way that is
representative of the training data.

10.2. Activation Functions

Using a on-off Heaviside step function makes training a neural network us-
ing gradient descent rather difficult, as a function that switches from “not
working at all” to “working completely” provides very little information in

181

10. Artificial Neural Networks

which direction to move. It is therefore more desirable to have a smoother
activation function. One such function is the sigmoid function:

1

- 10.6
14+e® ()

o(x)

Its main characteristics are that it asymptotically stays between 0 and 1,
and crosses the y-axis at 0.5. It is shown in Figure 10.3, left.

> ~—
> T >

Figure 10.3. Typical activation functions used in neural networks: the sigmoid
activation function, left, and the rectified linear unit (ReLU), right.

The sigmoid function is attractive for learning as the direction in which the
weights should move to improve the error is very clear in the vicinity of wz =
0, and computing its derivative is rather simple. While attractive in many
cases, the sigmoid function has some drawbacks. For instance, when wz is
very large or very small, the neuron either saturates or never activates—a
phenomenon known as the vanishing gradient problem. Another drawback
is that computing the sigmoid function is computationally expensive. An
alternative is the hyperbolic tangent tanh() which remains in the range of
-1 to 1 and crosses the y-axis at 0.

A popular solution to decrease computation time is the Rectified Linear
Unit (ReLU), which is given by:

R(x) = max(0,) (10.7)

and is shown in Figure 10.3, right. The dashed line indicates a refinement
of the ReLLU known as leaky ReLU with a typical slope of 0.1; it improves
learning for negative wx by providing a directional gradient.

Please note that we only talk about “perceptrons” when the Heaviside
step function is used as activation function.

182

10.3. From the simple perceptron to Multi-layer neural networks

10.3. From the simple perceptron to Multi-layer neural net-
works

We have seen that the single perceptron is able to linearly separate a dataset,
returning “0” or “1” as a function of the data being below or above the
separating hyperplane defined by the weight vector w. However, it is easy to
see that some problems cannot be linearly separated. In the example shown

A T2)\ o o T T2 out
0 0 [)
0 1 o
1 0 ®
[] 1 1 o

>

I

Figure 10.4. Data that cannot be separated using a single line (left) in canonical
form (center). This problem is known as the “XOR” problem due to the truth
table of the associated classification problem (right).

in Figure 10.4, the red and the blue data points are not separable by a single
line, but require at least two lines. This problem is known as the “XOR”
problem, which can be seen by looking at just four data points at (0,0),
(0,1), (1,0), and (1,1). Tabulating this data together with its color, reveals
a truth table with the characteristics of logical exclusive or (XOR), i.e. x;
and x9 have to be different for the output to be true (here “blue”), whereas
the output is false (here “red”) when the inputs are the same.

We already know that a single perceptron can create a single separating
hyperplane; we will therefore need at least two perceptrons to solve the XOR
problem. Using two perceptrons in parallel will yield us with tuples of the
kind (0,0), (0,1) and so on; hence, we then need another perceptron to
recombine these tuples into a single output. Figure 10.5 shows the simplest
multi-layer perceptron that can be trained for the XOR problem, with one
input layer, a so-called hidden layer, and an output layer.

183

10. Artificial Neural Networks

z1

Tm,

Input layer Hidden layer Output layer

Figure 10.5. A simple multi-layer perceptron with one input layer, one hidden layer,
and one output layer.

10.3.1. Formal description of Artificial Neural Networks

As with the simple perceptron, we will use node i’s bias as the 0—th weight
vector, that is:

wh ;= b (10.8)

Here, we use the following notation: we denote the layer with a superscript,
and the index of the incoming node and the outgoing node with a subscript
tuple. That is, wﬁj is connecting the ¢—th incoming weight to the j—th
node of the k—th layer (the i—th incoming weight is the j—th node in layer
k —1). This, as well as the simple example network above, is illustrated in

Figure 10.6. Each layer, denoted by the index k, has exactly r* nodes.
Inputs and outputs

The output o; of node i is given by:
0i =g(af) (10.9)
where ¢() is a non-linear activation function such as—but not limited to—

the ones described in Section 10.2 or the Heaviside step function. Here, af is
known as the activation, i.e. the weighted sum computed by node ¢ in layer

184

10.3. From the simple perceptron to Multi-layer neural networks

k—th layer

1—th layer

0
g ©

-
O

Figure 10.6. Notation used to index weights (left) with respect to layer k and the
multi-layer network from Figure 10.5 (right).

ab = " wk ot (10.10)
j=0

with 0;‘?_1 the j—th output of the previous layer. This is illustrated in Fig-
ure 10.7.

In case of k being the output layer, of should be equivalent to yf. Likewise,
in case of £ — 1 being the input layer of‘fl = x;.

10.3.2. Training a multi-layer neural network

Finding a set of weights and bias values, that is few parameters for a simple
two-dimensional problem but potentially billions for a “deep network”, is
an NP-complete problem (Blum & Rivest 1992). We therefore need an effi-
cient approximation. To this end, we consider a training datasets consisting
of input-output pairs z; and y; with ¢ = 1..N, and a feed-forward neural
network with parameters w.

185

10. Artificial Neural Networks

k —
wk k—th layer

Opy_, ® i

Th—1,0

Figure 10.7. Inputs and outputs of neuron ¢ in the k-th layer showing activation a;
and output o;.

Loss function

The goal of training is to minimize an error function such as the mean
squared error:

E(z,y,w) = 1Z(y} — i) (10.11)

between the output y; that the neural network with parameters w computes
and the known value y; from the training set is minimized. Similar to the
perceptron, we can reduce E(z,y,w) by iteratively descending along its gra-
dient, i.e.:

OE(z,y, w(t))

w(t+1) =w(t) — « 5w

(10.12)
This process is non-trivial, as calculating the partial derivatives across

the computation graph of the neural network requires the chain rule. An
algorithm known as Backpropagation is described in Appendix D.

10.4. From single outputs to higher dimensional data

Extending a neural network from one single output to multiple binary clas-
sifiers is straightforward, requiring only to increase the dimensionality of the
output vector. Much less straightforward is encoding more complex data
which leads to the following question: how can we represent numerical val-
ues, such as digits from 0 to 9 or characters from A to Z?

186

10.4. From single outputs to higher dimensional data

One-Hot Encoding

A very common approach is known as One-Hot Encoding (OHE). In OHE, n
discrete labels such as numbers or characters are encoded as a binary vector
of length n. To encode the i—th element of a set of labels, this vector is zero
except at position ¢. For example, to encode the characters 0...9, OHE
would represent them as:

0=(1,0,0,0,0,0,0,0,0,0)
1=(0,1,0,0,0,0,0,0,0,0)
2=1(0,0,1,0,0,0,0,0,0,0)
3=(0,0,0,1,0,0,0,0,0,0)
4=(0,0,0,0,1,0,0,0,0,0)
5=1(0,0,0,0,0,1,0,0,0,0)
6=(0,0,0,0,0,0,1,0,0,0)
7=1(0,0,0,0,0,0,0,1,0,0)
8=1(0,0,0,0,0,0,0,0,1,0)
9=(0,0,0,0,0,0,0,0,0,1)

Softmax output

Whereas OHE transforms the training input into a discrete probability dis-
tribution, nothing in the neural network will ensure that the data will also
come out like that. A sigmoidal activation function would ensure that each
value remains between 0 and 1, but a ReLU does not. We therefore need a
final layer that ensures each output to be limited to the range 0 to 1 and
that the sum of all elements to be adding up to one. This is usually achieved
using a so-called Softmax layer. The softmax function is given by:

e%

N Yy €%
That is, a vector z € RX will be converted into a K —dimensional vector
whose j—th element is given by the above formula.
So, why not just normalize with the actual values, i.e. using z; instead

of €%, or, even easier, using argmax; to set the highest value of z to 1
and leave the rest to zero? The reason is that each layer needs to remain

o(z); for j=1,...)K (10.13)

187

10. Artificial Neural Networks

differentiable for backpropagation to work. Yet, the “brutal” cut-off intro-
duced by the arg max function is exactly what we want for the network to
optimally match the training input. This is why the exponential function
is used. It—literally—exponentially emphasizes larger values over smaller
values, making the class with the highest probability stand out.

10.5. Objective functions and optimization

The key idea to train neural networks is to change the network’s parameters
so that a certain objective function (called loss function), is minimized. This
is usually done by evaluating the gradient of the objective function with
respect to the network’s parameters. Being differentiable is therefore a key
requirement for a useful objective function. However, the magnitude of the
weights can dramatically impact neural network performance and finding
this magnitude is entirely dependent on the type of learning problem.

10.5.1. Loss functions for regression tasks

So far, we have considered the so-called Mean-squared Error (MSE):

1 X
T oN Z - yz) (10.14)

which is the average error over a set of N pairs of predictions g that
are dependent on the network parameters w and known values y—see also
Section 15.2.1. This function is particularly convenient, as the square makes
it convex, allowing to find its minimum by following its gradient (“gradient
descent”).

MSE is most suited for regression tasks in which data points are fitted
to a model such as a line. Using a sigmoid or other continuous activation
function, the error for each class can also be interpreted as a distance from
the separating hyperplane, which makes MSE also suitable (but not optimal)
for these kind of tasks. An example is illustrated below:

From Figure 10.8 it is clear that MSE poorly deals with outliers. If one
value deviates largely from the prediction, the quadratic term in MSE will

heavily “punish” this value. An alternative to MSE is the Mean Absolute
Error (MAE):

188

10.5. Objective functions and optimization

>

Figure 10.8. A regression problem with an outlier.

N

> gi(w) — il (10.15)

=1

1

E=—
2N

Here, the absolute value ensures that the error is always positive no matter
the direction, but large errors are weighted on the same order of magnitude
as smaller ones. MAE is therefore better suited if your training set contains
outliers.

In practice, a large variety of loss functions have been developed to combine
features of both MSE and MAE; in the simplest form of the Huber loss
function, this is achieved via a simple piecewise combination.

10.5.2. Loss functions for classification tasks

Although a classification task can be cast into a regression problem, clas-
sifying is more akin to throwing a dice. Indeed, the output of the Soft-
max layer is a discrete probability distribution in which each element y; =
(Poy - -yDecy---,pN) is the probability of an instance x; to be of class ¢ in N
classes total.

We speak of the entropy of a probability distribution as the amount of
“variety” that we expect. To make an example, a uniform distribution has
the highest entropy because there exist a high number of possible outcomes,
whereas the one-hot encoded vectors are probability distributions with very
low entropy. The entropy of the distribution of y; (the training vector that
stores the true class ¢ for each instance x;) is given by:

189

10. Artificial Neural Networks

H(y;) =Y Npclogpe - (10.16)
c=1

Here, the logarithm can be of basis ten or two. In any case, the entropy
function has a couple of interesting properties: first, the logarithm from 0
(negative infinity) to 1 is negative (this is why probabilities yield positive
values). Second, the logarithm of 1 is zero, i.e., a distribution with only
one element (p. = 1) has the lowest possible entropy. Third, the lower the
individual entries for p. are—for example, in a uniform distribution where
Pe = %, the higher the entropy.

In every dataset, there will always exist a true distribution P(C' = i)
that the data is distributed according to. By classifying every element in
the training set, the neural network also generates its own distribution or
“interpretation” of the data. Ideally, in the case of a 100% fit, the neural
network will generate (or “learn”) the exact same distribution as the one
that describes the training set. In the worst case, the network will generate
a distribution that is completely different. Evaluating a neural network’s
performance is therefore a matter of comparing two probability distributions.

One way to compare two distributions is via their entropy—a process
known as cross entropy:

H(j,y) = —) _ Nylogyi , (10.17)
i=1
with y; = p; being the known probability for instance x to be class ¢ and
7; being the prediction. As the neural network will never perfectly represent
the data, the cross entropy will always be larger than the entropy of the true
distribution, that is:
H(y) — H(g,y) <0 (10.18)

This difference between the entropy of the true distribution and the cross-
entropy between the true and the estimated distribution is known as Kullback-
Leibler Divergence. It is a measure of dissimilarity between two distribu-
tions.

10.5.3. Binary and Categorical cross-entropy

In the case where there are only two classes, the binary cross-entropy is
calculated as follows:

N
H(j,y) == yilog(i) = —yr log(h) — (1 —y1)log(1 — 1) (10.19)
=1

190

10.6. Convolutional Neural Networks

As there are only two classes (either true or false), 72 directly follows
from 1 — y;. The more general case for N > 2 is known as categorical
cross-entropy. When using one-hot encoding, only class ¢ has probability 1
(y. = 1), reducing the cross-entropy to:

H(Z:/, y) = - IOg(yAc) (1020)

with ¢ the true class (the other terms are zero). Combined with the soft-
max activation function the categorical cross entropy therefore computes
as

H(j,y) = —log (ZZV;Z’?) (10.21)

10.6. Convolutional Neural Networks

A drawback of the ANN architectures that we have covered so far is that
they do not consider the spatial information that might be hidden in a
dataset. For example, as detailed in Chapter 8, in the context of vision
it is important to interpret the value of a certain pixel depending on what
can be seen nearby: a blue pixel surrounded by white ones might be an eye,
whereas a blue pixel surround by blue ones might be an ocean. In addition to
color, neighboring pixels also encode structure. When looking at the MNIST
dataset (a collection of hand-drawn numbers from zero to nine), we might
for example be looking for crosses (such as the center of an eight), T-shaped
junctions (such as in the letter four) or half-circles (like in the letter three),
whose number might then serve as features for our neural network. The
SIFT features in Chapter 9 were a good example of a hand-coded approach
to encode such spatial information. We will now see how ANNs can find
such features automatically.

If you recall, one way to extract features in image processing is by con-
volving an image with a kernel—see e.g. a convolution with a 3 x 3 and a
7 x 7 kernel in Figure 10.9. During a convolution, the kernel is swept across
the input image, summing over a piece-wise multiplication of each element
of the kernel with the underlying image pixels (see also Chapter 8). As all
multiplications are summed, such an operation yields only one pixel. As the
kernel has to start somewhat inside the image (unless its borders are padded
with appropriate values), we are loosing half the width of the kernel on each
side. In the example above, a 3 x 3 kernel turns a 28 x 28 input image into a

191

10. Artificial Neural Networks

]

28 x 28 pixels 26x26 pixels

22x22 pixels

Figure 10.9. Convolution with a 3 x 3 and a 7 x 7 kernel and resulting reduction in
image size.

26 x 26 output image and a 7 x 7 kernel turns it into a 22 x 22 pixel image.
Mathematically, the convolution is defined as

(nl,ng) * h nl, ng Z Z h]{21, kg n1 — kl,ng -]{22) (10.22)

k1=—00 ko=—00

where bounds (here, infinity) need to be chosen so that the kernel starts
at the upper left corner of the image and ends at the lower right corner. It
is also possible to artificially grow the input image by adding pixels around

192

10.6. Convolutional Neural Networks

it, which is known as padding. Note that the resulting output is identical to
examples shown in Chapter 8.

10.6.1. From convolutions to 2D neural networks

When looking at how one individual pixel in the output above gets computed,
we assume that the input pixel is labeled z; ; with ¢ the row and j the column
of this pixel. We also assume the entries of the convolution kernel to be
indexed in a similar way. Using a 3 x 3 kernel, the first pixel of the output
is then calculated by:

00,0 = X0,0W0,0 + T0,1W0,1 + To,2W0,2 (10.23)
+z10w10 + T11W11 + T12wW1 2

+To w20 + T2 1W21 + T2 2wW2 2

This operation is therefore simply computing the dot-product of the value
of 9 pixels with the kernel weights. Adding a bias value and an activation
function such as ReLu is therefore identical to adding a hidden layer with
nine neurons!

Performing the convolution by moving the convolution kernel with a width
of (2r + 1) across an entire X x Y image is therefore akin to creating
(X —2r)(Y —2r) “convolutional” neurons; the resulting structure is called a
feature map. Note that the “weights” of the feature map—i.e., the entries of
the kernel matrix—are identical for each neuron in the feature map. We can
now repeat this step with additional kernels, resulting in multiple feature
maps, which then form a convolutional layer.

Importantly, as this structure is very similar to the conventional neural
network structure (except for the fact that a large number of weights are
identical), the parameters of each kernel can also be trained using backprop-
agation! See Appendix D.

10.6.2. Padding and striding

As mentioned earlier, a convolution of kernel width 27 + 1 reduces the input
by r on each side. If this is not desired (for example, when multiple con-
volutional layers are used in series), padding can be used to surround the
input image with up to r pixels, which results in the output image having
the same dimension as the input image. Instead of moving the convolution

193

10. Artificial Neural Networks

kernel pixel by pixel, skipping pixels will further reduce the size of the out-
put image. The amount by which the convolution kernel is moved is known
as stride. This is illustrated in Figure 10.10 for strides of one and three.

[|
0o
9x9 input gxg inputl
3x3 kernel <3 kerne
1x1 stride 77 output 3x3 stride SX9 output

Figure 10.10. Convolution with 1 x 1 and 3 x 3 stride and resulting output.

10.6.3. Pooling

The feature maps that result from convolution each identify specific features
that are defined by their kernels. Though training, it is possible to iden-
tify these kernels and specialize them for specific characteristics that are of
interest: some might “fire” on edges, others on intersections of lines, and
others on very specific patterns in the dataset. Activation functions may
be used to further amplify this effect, making a clear distinction between
whether a feature is present or not. However, in most practical applications
such features are rather sparse, and whether they exist in a larger area or
not might the most salient information. This can be achieved by a pooling
layer.

A pooling operation applies a window to select the maximum (in which
case it is referred to as MaxPooling) or the average, among many other
possible non-linear functions, from a window of a given size. Figure 10.11
shows the result of a MaxPooling layer with pool size of 3 x 3 and stride
lengths of 1 x 1 and 3 x 3. Usually, the stride length is the same as the width
of the window.

Although the maz() function is not differentiable, MaxPooling can still
be used in backpropagation by selectively passing the gradient to only the
neuron that has shown to have the maximum activation and setting the
gradient of all other neurons to zero. When an averaging pooling function is
used, the gradient is divided among all neurons in the pool in equal parts.

194

10.6. Convolutional Neural Networks

FIEIRIEIEIES
9178883
“HiSclon e
< 9]
i S[70191910 111
SHIOIRI - [RI7T0[0[019
7x7 Input 6x6 Ouput 7x7 Input 3x3 Output
3x3 Pool 3x3 Pool
1x1 Stride 3x3 Stride

Figure 10.11. Pooling using a pool size of 3 x 3 for different strides and corresponding
output.

10.6.4. Flattening

The first step in previous neural network models has been to flatten a 2D in-
put image into a one-dimensional vector. This has been the precondition to
apply a dense layer and has been accomplished during preprocessing. How-
ever, CNNs require multi-dimensional inputs (e.g., 2D images with multiple
color channels). Turning a multi-dimensional tensor into a vector is known
as flattening and results into simple reordering. For example, an RGB im-
age of dimensionality (28 x 28 x 3) might be turned into 20 convolutional
filters, or 2352 individual neurons. A flattening layer arranges them again
in a single vector.

10.6.5. A sample CNN

Figure 10.12 shows a typical CNN that combines multiple convolutional and
pooling layers. The network takes a 28 x 28 image as an input and trains 20
different 5 x 5 convolution kernels to create 20 feature maps of 28 x 28 each.
This layer is followed by a maxpooling layer that downsamples each feature
map by a factor of two. These feature maps are then convolved with 50 5 x 5
convolution kernels to create 50 14 x 14 feature maps. These will again be
downsampled by a maxpooling operation. The resulting 50 feature maps are
then flattened and fed into a hidden layer of 500 neurons, and finally into a
SoftMax-activated output layer with 10 neurons.

10.6.6. Convolutional Networks beyond 2D image data

Convolution kernels emphasize areas of similarity. This can be readily under-
stood when considering a simple kernel like [[0,9,0],[0,9,0], [0,9,0]] which

195

10. Artificial Neural Networks

MaxPool

Convolution HidNen Layer Output layer

Convolution MaxRpol
28x28 (20) 4

Figure 10.12. A typical convolutional neural network taking a 28 x 28 input image
and reducing it to 10 classes.

emphasizes vertical lines but ignores horizontal ones. Training a convolu-
tional network therefore automatically finds regularities in the training set,
as well as in the resulting feature map—often generating hierarchical repre-
sentations by itself. A common example is a convolutional neural network
for face detection in which early layers detect low-level features, which then
get recombined into noses, ears, mouth and eyes in deeper layers.

Convolutional neural networks are not limited to 2D image data, but can
also be applied to 1D time series. Here, the will find distinct patterns, for
example peaks in an accelerometer or gyroscope reading, which can then be
used collectively to classify complex signals.

10.7. Recurrent Neural Networks

So far, we have only worked with static data. Even if data had a temporal
nature, we have simply concatenated inputs and looked at a piece of history
all at once. When using a dense network, all inputs are initially of equal
importance and it is up to the network to identify salient information. Al-
beit convolutional layers might help to dictate some sense of order—a 1D
convolutional layer might as well be interpreted as detecting a pattern in a
timeseries—dense layers focus on the values of individual features, not on

196

10.7. Recurrent Neural Networks

the order of information.

For example, it is straightforward to train a neural network controller to
transform input data from sensors into motor commands to perform tasks
like light following, obstacle avoidance, and wall following such as those
described in Chapter 11; however, such a controller will be purely reactive
and not be able to, for example, escape a U-shaped obstacle.

To overcome this limitation, it is useful to introduce a notion of state in a
neural network. In this case, the detection of an event such as “getting stuck”
may be used to modify the network state in some way. This is accomplished
using so-called recurrent neural networks. A recurrent neural network uses
a special kind of neuron, which sums the input z; at time ¢ with the value
of the hidden state h;_1 at the previous time step ¢ — 1 to compute a hidden
state h; at time ¢t. Both terms of this sum are weighed by weights W and U.
The output of the recurrent layer is the hidden state h; weighed by a third
weight V and ran through a second activation function. The equation below
shows the computation of a RNN layer in vector form, passing the hidden
states through a softmax activation.

hy = tanh(Why_1 + Uxy) (10.24)
yr = softmax(Vhy) (10.25)

This relationship is shown in Figure 10.13. As an RNN cell is reusing its
internal state h; in the next iteration, a network that looks back N time-
steps is modeled as N cells that are laterally connected. As this is how an
RNN is actually implemented, the data from all time steps is presented at
the same time.

Take-home lessons

e Artificial Neural Networks and the tools associated with them have
become a powerful tool to skip modeling a system using first principles,
but simply learn its properties from data. As such, they are capable of
replacing many of the models discussed in previous chapters, ranging
from kinematics to vision, feature detection, and controls.

e Simple neural networks are capable of both classification and regres-
sion akin to techniques described in Chapter 9, whereas convolutional
networks are capable of filtering and pre-processing techniques such as
described in Chapter 8.

197

10. Artificial Neural Networks

y(1) v(2) ¥(3) y(4)

x(1) x(2) x(3) x(4)

Figure 10.13. A sample recurrent neural network (left) and its expanded version
(right) that is looking back four time steps.

e When a system is not purely reactive but requires state such as those

described in Chapter 11, recurrent neural networks are needed to im-
plement a notion of memory.

Exercises

1.

198

Implement the simple perceptron training algorithm and use it to find a
separating hyperplane for simple data.

. Find out how to implement the auto differentiation (or auto gradient) function

in your favorite numerical package, e.g. NumPy or PyTorch to automatically
calculate the derivative of your loss function.

Use a machine learning package of your choice to train a classifier for synthetic
images such as the “Ratslife” landmarks. If you can, use a real robot to
generate appropriate training data.

Select a simple 2D target, e.g. a cross on white background, and record
images from different distances and angles. Can you train a CNN to predict
these two quantities from your image?

Select a pre-trained image classifier from your preferred machine learning
toolkit and use it as the basis to train your classifier for either landmark
recognition or pose recognition. How does using a pre-trained classifier affect
learning time and accuracy?

What kind of network architecture would you chose to track the robot’s lo-
cation (odometry) based on encoder inputs?

10.7. Recurrent Neural Networks

7. Download the “Robot Execution Failures Data Set” from the UCI machine
learning repository. It contains time-series data from a robot’s force-torque
sensor as well as whether manipulation was successful. Define a recurrent
neural network architecture for this data and train it.

199

Chapter 11

Task execution

In its most basic implementation, sensors and actuators can be directly tied
to each other, removing the need for computation. Such robots are purely
reactive, thereby missing the ability to “think” or plan. In order to achieve
more complex behavior, memory and state are needed to switch between
different controllers and algorithms.

This chapter introduces these basic principles as well as their implementa-
tion, starting with basic reactive controllers (Section 11.1), then introduces
more advanced concepts that let the robot make basic “if” ... “then” de-
cisions using Finite State Machines (FSM) in Sections 11.2 and 11.3, and
finally introduce advanced concepts such as behavior trees and semantic
planning in Sections 11.4 and 11.5. The goals of this chapter are to intro-
duce:

e the basic control loop that allows robots to react to their environment,
e ways to introduce state that allow robots to switch their behavior,

e basic concepts that allow the robot to reason about its discrete states
and pick the next action.

11.1. Reactive control

A wide variety of robotic behaviors can be accomplished by directly connect-
ing sensor input to actuator output. These behaviors can even be accom-
plished without a computer, that is, using analog electronics that provide
appropriate conditioning. Simple autonomous robots that use these concepts

201

11. Task execution

Figure 11.1. Two vehicles approaching a light source. The brighter the light, the
more does each motor turn. The left vehicle will therefore approach the light by
turning toward it, the right vehicle will avoid it by turning away from it.

have been demonstrated as early as 1953 (Walter 1953) and have become
known as “tortoises”. For example, by tying the output of a light sensor to
a motor controller, the motor turns faster when the light is brighter. Using
an inverse relationship between sensor and motor, the motor will turn slower
when the light is brighter. When used in a differential wheel configuration
with two motors and two light sensors, such a robot can be built to either
drive toward or away from the light.

Formally, we can express the light following behavior—also known as
phototaxis—via the following relationship between the left and right wheel
speeds ¢; and <Z>r and the measurements of the right and left light sensors A,
and A;:

dr=a\ +b (11.1)
br=a\ +b (11.2)

with a a constant weight, and b a bias term. We observe that the left wheel
turns faster the brighter the light shines on the right sensor. If the right
light sensor receives more light than the left sensor the right wheel will turn
slower, thereby exhibiting a phototaxis behavior that results in a right turn.

A more complex reactive behavior is obstacle avoidance. Assuming the
output of an obstacle sensor increases as the obstacle nears (e.g., an infrared

202

11.1. Reactive control

ds dy
do ds
2
dy dg —%‘
(]
distance
do dr

Figure 11.2. A schematic of a differential-wheel robot with eight infrared distance
sensors (left) and typical sensor response as a function of distance (right).

proximity sensor), we can use the same principle to compute the wheel speeds
such that the obstacle is actively avoided. An example for a differential-wheel
robot with eight infrared proximity sensors is illustrated in given by:

by =—6dy — 6d1 — 19dy — 13ds + 94d4 + 63d5 — 50dg — 6d7 + b

¢r = —6dp + 50d1 + 63da + 94d3 — 22d4 — 10ds — 6dg — 6d7 +b

with the eight sensors dy . ..dr; arranged similarly to the E-Puck differential
wheel robot in Figure 7.4: dyp as the left rearward sensor and the other
sensors being arranged clockwise such that dy is the right rearward one.
Behaviors such as phototaxis and obstacle avoidance can also be combined
by simply weighing each input accordingly. This idea has been popularized
by the neuroscientist Valentino Braitenberg, who augmented this system
with additional ideas around basic forms of learning (by changing the weights
based on events such as collisions), natural selection (building robots with
random weights and selecting those that perform best), and analogies to the
human brain (Braitenberg 1986). Controllers of these kind are therefore of-
ten called “Braitenberg vehicles”. Indeed, the controllers above bear strong
resemblance to artificial neural networks such as those described in Chap-
ter 10, and “optimal” values to obtain a certain behavior can be obtained
using evolutionary computation (Floreano & Mondada 1998) or by training
a neural network on recordings of input/output pairs that correspond to a

203

11. Task execution

desired behavior.

There are numerous variants of the control architecture including the sub-
sumption architecture (Brooks 1990) and motor schemas (Arkin 1989) that
propose variations of switching different components of a reactive controller
on and off to obtain desired behaviors. However, while useful for achieving
relatively simple behaviors and capable of exhibiting more complex, emer-
gent ones, these approaches are difficult to manage in practice and are better
solved by being embedded in high-level control frameworks.

11.1.1. Limitations of reactive control

The limitations of a reactive control scheme are evident when considering
that a robot combining both phototaxis and obstacle avoidance will still get
stuck if presented with a U-shaped obstacle (Figure 11.3). While obstacle
avoidance will prevent the robot from hitting the obstacle, as soon as the
way is clear, the robot will keep turning toward the light, thereby getting
stuck in a loop. This type of behavior can also be observed in insects such
as flies or moths.

In order to avoid this situation, the robot needs to memorize its previous
state and switch behaviors accordingly. For example, in addition to the
basic combined avoidance and following behavior (“avoid and follow”), we
can introduce an additional term (“wall following’) in which the robot uses
its proximity sensors to maintain a constant distance to a wall. In order
to switch from one to the other behavior, we need to change the constant
gains into dynamic ones that change their value based on other observations
the robot makes. For example, the robot could estimate its progress by
monitoring whether its light sensor is constantly increasing, and if it is not,
inhibiting phototaxis behavior and emphasizing wall following.

Designing reactive systems with time-dependent behavior and state is po-
tentially realizable with very simple electronics; for this reason, we’ve seen
real-world implementations of such mechanisms, e.g. in robot vacuum clean-
ers. However, it very quickly becomes difficult to manage. It is therefore
desirable to establish discrete abstractions for various behaviors, which can
be more easily managed and understood by a programmer.

11.2. Finite State Machines

A simple yet powerful tool to facilitate switching between different behaviors
is a so-called Finite State Machine (FSM). In an FSM, each state is asso-

204

11.2. Finite State Machines

Figure 11.3. A differential wheel robot with distance and light sensors wired in a
“light following” configuration in an U-shaped obstacle. Although the obstacle
will be avoided, the light following behavior will continuously drive the robot into
the obstacle unless state is added.

205

11. Task execution

Obstacle Light
detected decreases

Obstacle Light

free increases

Figure 11.4. A simple Finite State Machine (FSM) with four states. The final state
is colored in gray; the initial state is set apart with a double circle.

ciated with a specific controller. In practice, an FSM consists of a global
variable that stores the current state and a series of “if” statements that
contain the code that is associated with each unique state. For example, an
FSM to perform phototaxis while avoiding U-obstacles could consist of four
states, with one for each desired behavior: one state that computes wheel-
speeds so that the robot moves toward the light, another to use its sensors
to avoid obstacles ahead of it, a state that computes wheel-speeds so the
performs a wall following behavior for a fixed amount of time, and finally a
state to stop the robot. An example of these states is shown in Figure 11.4.

To specify an FSM, one also needs to specify the state transitions, i.e. the
conditions that determine when to switch states. For example, if multiple
sensors detect an obstacle (implying that it may be a large one), then it may
be desirable to have the FSM transition from its first state (phototaxis with
simple obstacle avoidance) to its second (avoid obstacles). Should the light
measurement decrease, such as when the robot needs to make a u-turn in
order to avoid the obstacle, the behavior should transition to wall following.
Once the light increases again, such as when the robot has gone around the
obstacle, it resumes light following. Once the light sensor exceeds a threshold
(“bright enough”), the robot stops.

Finally, it is necessary to specify an initial state (the state the system
starts in) and any number of final states (terminal states that signify program
termination). In the example in Figure 11.4, the program will always start in
light following mode and terminate once the state labeled “stop” is reached.

Formally, a FSM is defined by a Tuple (X, S, sg, d, F') where:

e Y is the input Alphabet, i.e. a set of symbols that represent events

206

11.2. Finite State Machines

that can trigger state transitions,
e S is a finite set of states,
e 5o is an initial state and an element of S, i.e. sg € 5,

e § is the state-transition function § : S x ¥ — S that maps combinations
of states in S and symbols x in 3 to a new state in .S, and

e [is the set of final states, a subset of S.

Historically, this definition stems from FSMs formally defining the working
of a computer with a stream of symbolic commands of an actual program.
In robotics, symbols that trigger state transitions can themselves be the
result of complex computations. An example of such is the robot switching
to wall-following if it has not made actual progress toward its goal in some
time and resumes phototaxis once it reached a position that is closer to the
light than it was before.

In conjunction with a controller for each state, an FSM is called a Hybrid
System(Van Der Schaft & Schumacher 2000) as it combines both discrete
(the state) and continuous (the controller outputs) variables.

11.2.1. Implementation

A low-level robot controller is usually implemented as a loop with fixed loop
time, for example 100ms for slow moving differential-wheel robots or 1ms
for dynamical systems such as drones or humanoid robots. At each start of
the loop, the controller reads all sensors, then branches into the part of the
code that corresponds to its current state, processes sensor information and
computes actuator output, and finally sends the control commands to the
actuators.

Unlike a computer program that can process information as fast as pos-
sible, a robot controller needs to wait until sensor information are actually
available and actuator commands are executed (i.e. that the robot has phys-
ically moved). As the robot keeps moving while computation is ongoing, it
is important to run the main loop at a constant rate. As computation is
usually much faster than the loop time, it might be necessary to use an
internal clock to wait until the loop time is completed.

It is helpful to capture all the FSM’s state transitions in a drawing as
shown in Figure 11.4. In practice, FSMs are difficult to develop, debug, and

207

11. Task execution

maintain. As the controller is being developed and experimented with, edge
cases require the addition of transitions and states. With IV states, there
are possibly NxN state transitions, and it is typical to discover necessary
additional state transitions as the FSM is specified. FSMs with many tran-
sitions become difficult to depict graphically, making it difficult to visualize
what the program will actually do.

Whenever a state is added or removed, the programmer has to identify
transitions required for the new one or modify all other states that have
transitions to the one being removed, further contributing to FSM mainte-
nance difficulty. Although behaviors such as obstacle avoidance are generic,
each state also contains transitions that are specific to an application, poten-
tially making it difficult to reuse states in other FSMs (modularity). FSMs
also have difficulties with state transition conditions that cannot be eval-
uated in a single time step, e.g. when averaging the gradient of the light
sensor to robustly detect an increase or decrease. In this case, these com-
putations need to be carefully woven into the state execution code, adding
complexity and making maintenance difficult.

11.3. Hierarchical Finite State Machines

In order to make FSMs more manageable and to deal with information
that needs to be processed at different time-scales, states can be grouped
into clusters—each with their own associated FSM, thereby creating “super-
states” organized in hierarchical fashion. This construct is usually referred
to as Hierarchical FSM (FSM) but also known as “Statechart” (Harel 1987).
Considering the example in Figure 11.4, each state might as well be a super-
state: e.g., the “follow wall” state may consist of an FSM that deals with
an edge case such as rounding sharp corners. An example HFSM is depicted
in Figure 11.5. State transitions between super states can be tied to states
in the included FSM or be implicitly connected to all states of the included
FSM, which allows leaving the super state from every state therein.

Super states can also be executed in parallel, providing events that lead
to state transitions in other FSMs. For example, detecting whether a robot
still makes progress toward a light while avoiding an obstacle might require
computing a running average and dropping outliers. This is illustrated by
two super-states, one for the actual light-following behavior and the other
for computing a running average of the light measurement, rejecting out-
liers, and generating symbols that can be consumed by the light following

208

11.4. Behavior Trees

Figure 11.5. A hierarchical FSM with the states from Figure 11.4 as super states,
a more sophisticated wall-following behavior, and signal processing for averaging
the light measurement being performed in parallel.

behavior. In Figure 11.5, we are using the character “/” to delineate state
transition conditions such as “Light decreases” and the symbol that is gener-
ated during the state transition (here “LLD”). These symbols can then drive
state transitions in other clusters.

11.3.1. Implementation

In practice, HFSMs are implemented in distinct processes that run indepen-
dently and asynchronously. They can communicate using an inter-process
communication (IPC) framework such as XMLRPC or REST, which are
socket-based networking protocols that allow to exchange eXtended Markup
Language (XML) or JavaScript Object Notation (JSON) data structures be-
tween two processes on the same or different computers using a networking
interface. There exist many IPC frameworks that are particularly targeted
at robotics and introduce abstractions for robot-specific data structures such
as coordinate frames or video streams, the associated tools to manage them,
and bindings for different languages to publish and subscribe to them. A
prominent example is the Robot Operating System (ROS).

HFSMs solve some of the problems of FSMs by increasing modularity and
simplifying programmability, but still have the problem that N states can
lead to N? state transitions, each of which needs to be manually coded.

11.4. Behavior Trees

A Behavior Tree (Colledanchise & Ogren 2018) provides structure for hier-
archically organizing the decision-making flow of a system that makes many

209

11. Task execution

of the considerations that need to be explicitly coded in an FSM implicit
instead. The leaves of a Behavior Tree are “Action Nodes” that can rep-
resent actual discrete behaviors, such as “Close Gripper” or “Find Block”.
The root and internal nodes of the Behavior Tree are made up of “Utility
Nodes” that guide the path of traversal through the tree. What equates to
manual addition and removal of state transitions in an FSM can often be
accomplished in a Behavior Tree by simply changing the type of an util-
ity node from one to another. Another powerful aspect of this abstraction
is that Behavior Trees specifying complex behaviors, such as “Navigate to
Kitchen”, can be encapsulated within a single node of another tree.

11.4.1. Node Definition and Status

In a traditional implementation, the nodes within a Behavior Tree can return
any of three statuses when queried: “Success”, “Failure”, or “Running”. The
incorporation of a “Running” status allows the Behavior Tree to use behav-
iors that operate over longer time periods, such as a block picking behavior
that persists over multiple control cycles of a robot’s main processing loop,
including time required to plan the end-effector’s path, the time required
to physically move the robot to the destination, and the time required to
close the gripper. In this example, the node might return “Failure” if any of
the individual behaviors didn’t work or if the end-effector didn’t successfully
grasp the block by the end of the behavior, and “Success” otherwise. Thus,
each node in the Behavior Tree needs a rigidly defined notion of “Success” or
“Failure” that can be propagated throughout the Behavior Tree, informing
which sequence of behaviors is executed to achieve the desired result.

Unlike the Finite State Machine formalism that didn’t incorporate an ex-
plicit notion of time, the “Running” status enables nodes to operate using
the information that their child nodes may take variable amounts of time,
with each discrete unit of time defined as a tick. This design choice simpli-
fies the specification of control flow, and dramatically reduces the number
of explicit transitions that are needed to model a system. Suffice to say, for
a robot with a 100ms control loop, many of the discrete behaviors that a
programmer would be interested in (such as turning 180 degrees or moving
forward one meter) are likely to require more than a single program cycle
and will have action nodes that run for multiple ticks.

Nodes may also be parameterized, allowing for information computed from
one node to be passed on and used in a subsequent node. Consider building

210

11.4. Behavior Trees

a Behavior Tree for sorting blocks on a table into bins by color: one way
to organize this Behavior Tree is repeating the sequence of behaviors “Find
Block”, “Pick Block”, “Get Block Color”, “Place Block in Bin” until no
blocks remain. In this case, the behaviors “Get Block Color” and “Place
Block in Bin” are connected, since the color of the block will determine
which bin it should be placed in. This potential for interaction between
nodes allows for powerful expressiveness of complex behaviors.

11.4.2. Node Types

Within a Behavior Tree, nodes can generally be classified based on their
connectivity (do they have children, and if so, how many?) and function
(is this a utility node that determines control flow, or is it an action node
executing the action itself?). The three primary node types are composite,
decorator, and action.

Composite nodes have one or more children and are responsible for regu-
lating the control flow. Three important examples of composite nodes are
the sequence node, selector/fallback node, and parallel node. A sequence
node executes each of its child nodes in order, returning “Failure” if a single
one fails and “Success” after all have finished successfully. A selector (or fall-
back) node executes each of its child nodes in order, but returns “Success”
once a single child node succeeds, only returning “Failure” if all child nodes
have failed. Sequence nodes can be thought of as analogous to an AND
conditional statement, while selector nodes are similar to an OR conditional
statement. A parallel node has N > 1 children and attempts to execute its
child nodes in parallel, returning “Success” if M or more children succeed
and failure if more than (N — M) children fail, for any choice of M < N.

Decorator nodes have exactly one child node and perform transformations
on its child node’s outputs back to its parents. An example of a simple
decorator node is the Inverter, a node that inverts the return status of its
child, effectively producing a NOT operation: if the child node returns “Suc-
cess” then the decorator returns “Failure”, and vice versa. Another useful
decorator node is one that returns “Success” when its child returns a status
of either “Success” or “Failure”, allowing for the inclusion of action nodes
where success is not critical for the behavior. Decorator nodes can also be
designed to repeat the execution of its child, for instance until it returns a
“Success” status, until it returns a “Failure” state, or endlessly (which is
typically placed as the tree’s root node to ensure continuous operation).

211

11. Task execution

Action nodes have zero child nodes, and represent the execution of a dis-
crete behavior. These nodes can use input parameters, return output values,
and generally have any amount of complexity that the designer desires to
program within them. Crucially, an entire Behavior Tree can be treated as a
single action node, allowing for the composition of multiple Behavior Trees
to build arbitrarily complex behaviors!

Node Class Node Type Symbol

Composite Sequence
Composite Selector/Fallback

Composite Parallel

Decorator Decorator O
Action Action Text

Table 11.1. Common Behavior Tree nodes and their symbols.

11.4.3. Behavior Tree Execution

For each unit of time (e.g., control cycle) that passes, a preorder tree traver-
sal occurs where nodes are recursively visited and evaluated left-to-right,
commonly described as propagating a tick signal through the tree. In doing
so, each parent node calls on its child nodes in order to retrieve their status.
If a child node returns “Success”, the parent node will move on to its next
child node. If a child node returns a status of “Running” then the parent
node will return “Running” without moving on to the next child node unless
it permits running multiple child nodes in parallel. If a child node returns
a status of “Failure”, its behavior will depend on the type of node of the
parent, for example returning “Failure” if the parent is a sequence node or
moving on to the next child node if it is a selector node.

Consider the example of a robotic manipulator inserting a peg into a hole
in Figure 11.6: the first tick through the tree will trigger the Move Peg to
Surface action. Subsequent ticks will be absorbed into this action until it
returns a status other than “Running”, at which point the next action will
be triggered and the same absorption of ticks will occur in the new action
being executed. If any single action node returns a status of “Failure”, the
entire behavior will result in a “Failure” status. A slightly more complex
behavior tree is demonstrated via the Pick Square Peg behavior shown in
Figure 11.7, which allows the robot to check whether or not it is holding a

212

11.4. Behavior Trees

Insert Square Peg
—

Move Peg Move Peg Rotate Peg Move Peg

to Surface over hole until aligned down until

new contact

Figure 11.6. Behavior Tree for a peg insertion task. A sequence node triggers the
execution of movement actions that align a peg over a hole and lower it until the
gripper makes contact with the surface.

Pick Square Peg
‘7

Sense if peg already in gripper Get Peg

Locate Peg Open Gripper Move Gripper to Peg Close Gripper

around peg

Figure 11.7. Behavior Tree for a peg picking task. First, the selector node will
check if a peg is already in the robot’s gripper. If it is not, the first action node
will fail and the Get Peg behavior will execute, returning “Success” only if the
gripper is successfully closed around the peg.

peg already, only moving its gripper for the pick action if this check fails.
11.4.4. Implementation

As the execution of a Behavior Tree is fundamentally a tree traversal, a
tree is the ideal data structure to store composite, decorator, and action
nodes. As a large part of the mechanics of these nodes remain the same,
nodes are usually implemented as classes (in an object-oriented program-
ming sense), which need to be inherited, modified, and instantiated by the
programmer. Programming a complex robotic system therefore starts with
defining and implementing the basic action nodes and then recombining them
with appropriate composition nodes and decorators until the robot performs

213

11. Task execution
as expected.

11.5. Mission Planning

So far, we have seen how reactive behaviors can be composed into more com-
plex programs using Finite State Machines and Behavior Trees. Although
Behavior Trees facilitate dealing with the exploding number of possible state
transitions by making them implicit, the programmer still needs to define
the entire program flow. Consider again a pick-and-place task. This time,
we will not simply grasp a new item in case the object falls out of the hand,
but try to find it on the table and try to pick it up from there. In a more
elaborate version, we might also go on and search for the object on the floor
if it cannot be found on the table. But why not have the robot replace an
object from a warehouse if it cannot be found, or even mail order a new
version? Obviously, it is very cumbersome to foresee all these eventualities
when programming a robot. We therefore need a framework to make it easier
to compose behaviors in real-time. This is where mission planning excels.

An example of mission planning is described in (Saito, Chen, Okada, In-
aba, Kunze & Beetz 2011), where a robot is tasked to deliver a sandwich.
The robot initially moves to a fridge, opens it and looks for a sandwich
there, and then decides to take the elevator to the sandwich store in the
basement of the University of Tokyo’s engineering tower. Here, the robot is
not only piecing together behaviors as it goes, but also using what is known
as “semantic planning” to select the right actions, exploiting databases of
common sense knowledge in textual form. How to represent such knowledge
in an efficient and general manner is an active research topic in robotics and
artificial intelligence and goes beyond the scope of this introductory book.
However, we describe here the basic algorithms that will allow you to com-
pose complex behaviors at run-time, thereby generating much more complex
robot responses than could ever be accomplished using hand-coding.

11.5.1. The General Problem Solver and STRIPS

One of the first planning frameworks was introduced in 1959 as the “General
Problem Solver” (GPS) (Newell, Shaw & Simon 1959), an idea that was
popularized, refined and actually demonstrated on real robots later on as the
“STanford Research Institute Problem Solver” (STRIPS) (Fikes & Nilsson
1971). In STRIPS, a robotic problem is composed of:

214

11.5. Mission Planning

1. A set of symbols that represent the initial state
2. A set of symbols that represent the desired goal state

3. A set of actions, each with a set of preconditions and a set of postcon-
ditions.

An action’s preconditions are a set of symbols that need to be part of the
current state for the action to execute. An action’s postconditions are the
set of symbols the action creates or deletes, thereby affecting the state. In a
nutshell, a STRIPS planner will work backwards from a desired goal state,
find actions that have equivalent post-conditions, and then recursively try
to satisfy these actions preconditions.

For a robot to be able to get you a sandwich, a suitable goal state could
be ROBOT HAS SANDWICH=true, some possible actions PICK SANDWICH
FROM FRIDGE and OPEN FRIDGE DOOR, and initial states SANDWICH IN
FRIDGE=true and FRIDGE DOOR CLOSED=true. An action OPEN FRIDGE
DOOR would then require FRIDGE DOOR CLOSED=true as a precondition
and lead to FRIDGE DOOR CLOSED=false as a postcondition. The action
PICK SANDWICH FROM FRIDGE would require SANDWICH IN FRIDGE=true
and FRIDGE DOOR CLOSED=false as preconditions and result in ROBOT HAS
SANDWICH=true. A planner can now work backwards from the desired state
to identify appropriate actions and then satisfy their preconditions recur-
sively. In this case, the planner will discover the action PICK SANDWICH
FROM FRIDGE and then identify OPEN FRIDGE DOOR to satisfy the precon-
dition FRIDGE DOOR CLOSED=false.

Formally, an instance of a STRIPS problem is a quadruple (P, O, I, G):

e P is a set of propositional variables that can be either true or false and
exhaustively describe the world the robot operates in.

e O is a set of operators, each itself a quadruple («, 3,7, d) whose entries
determine the set of conditions that need to be true («) and that need
to be false () for the action to take place, and a set of conditions that
will be true () and that will be false (J) if the action is successful.

e [is a set of conditions I C P that are initially true and define the
initial state, all other conditions are initially false.

215

11. Task execution

e G is a tuple (N, M) in which N is a set of conditions that need to be
true and M is a set of conditions that need to be false.

Formalizing the sandwich example from above using this framework is
left to the reader as an exercise. It becomes quickly clear that the devil
is in the details here. For example, we have assumed that the positions of
the robot are resolved by the action themselves. In practice, the STRIPS
plan would also require additional preconditions on the robot’s location, e.g.,
ROBOT AT FRIDGE=true which would then be resolved by the planner. An
observant reader might have also noticed that great care needs to be taken
in determining which variables an action actually affects and specifying the
precisely desired goal state. For example, the plan as described above will
lead to a scenario in which the fridge door remains open.

A common extension in a STRIPS instance is to parametrize locations and
objects. In this case, ROBOT AT FRIDGE would become ROBOT AT X. Values
for “X” can then be substituted at run-time, for example when evaluating
the preconditions of OPEN FRIDGE. Similarly, a STRIPS plan might be
formulated to satisfy hunger, substituting the sandwich with other victuals.
Managing these different categories, their contexts, and trade-offs between
qualities of different outcomes becomes quickly challenging and is an ongoing
subject of research.

Other challenges with STRIPS planning are exogenous events that change
the environment state, such as a draft that closes the fridge door after the
robot has opened it or probabilistic operators that might lead to different
outcomes for an operator depending on chance. These are situations that
are well covered by the Behavior Tree framework, making the combination
of BT and STRIPS planning particularly compelling (see also (Colledanchise
& Ogren 2018), Chapter 7).

Take-home lessons

1. Writing a robotic program is fundamentally different from regular com-
puter programs as the program flow needs to be coordinated with the
actual physics of the world taking its course.

2. Discrete states are an abstraction of the physical world, and more

complex behaviors lead to exponential growth in the number of states
and transitions between them.

216

3.

11.5. Mission Planning

There exist multiple programming paradigms that make managing
large number of states and possible transitions between them more
manageable, but require an increasing amount of software and thereby
increasing computational infrastructure.

Exercises

1.

10.

11.

A differential wheel robot has three downward-facing light sensors at its tip.
The sensors are spaced such that the robot can detect a black line on a white
ground. Derive the equations for a line-following robot using the Braitenberg
formalism.

. Derive a control scheme that combines line following and obstacle avoidance.

Discuss your choices assuming that the robot has to avoid obstacles at all
cost.

Use a robotic simulator of your choice to implement basic phototaxis and
obstacle avoidance.

Use a robotic simulator of your choice to implement basic wall-following be-
havior

. Implement a light-following robot in a simulator of your choice and manually

control it toward the light. Train a neural network for a Braitenberg controller
using this data.

Implement a simple finite state machine that combines obstacle avoidance,
phototaxis and wall-following and is capable to escape from a U-shaped ob-
stacle

A FSM implements the following behavior: perform photo-taxis until an ob-
stacle is it; then perform wall-following for 10 time steps. Draw an appropriate
Finite State Machine. How many states do you need?

A robot runs at a 100ms loop time. Performing sensor readings takes 3ms,
odometry computations 15ms, and executing logic takes 30ms on average.
Which of these operations is likely to fail if the task logic takes 80ms?

Formulate both a Finite State Machine and a Behavior tree for the game
“Rats Life”, label each state and conditional transition, and compare the two
representations.

Construct a behavior tree that enables a single robot manipulator arm to sort
red, green, and blue blocks on a table into bins by color.

Construct a behavior tree that enables a bi-manual (two manipulator arm)
robot to sort red, green, and blue blocks on a table into bins by color with
both arms.

217

11. Task execution

12. Formally describe a STRIPS instance for a robotic sandwich retrieval problem
in which the fridge door is closed after the robot has retrieved a sandwich.

218

Chapter 12

Mapping

Mapping is the process of building representations of the environment for
either downstream consumption by autonomy algorithms or for informing
humans. Maps inform decision-making for planning and control algorithms
by, for example, providing information on the surfaces and obstacles, objects
with which the robot can interact, or topological information like how rooms
are connected with one another. If maps of an environment are already
provided, robots can build plans over them without having to build a map
themselves; indeed, they can even localize themselves within these maps
simply by collecting information in situ and referencing that information
against prior maps. Mapping also provides humans with an appreciation for
what the robot sees, thereby guiding designers or operators of robots with
information about what is possible or information available to the robot.
Therefore, mapinformation for both the purposes of autonomy and design is
a critical linchpin to operating in real environments.

When one considers the quantities of interest to be collected from an en-
vironment, there are two distinct classes: metric (e.g., the physical extents
of an environment) and semantic (e.g., the type of room one is in, or ob-
jects of interest within it). These two categories can inform one another,
for instance a door is typically of a particular height or width, but the in-
ference required to resolve information in these two classes is remarkably
different. Metric information is frequently resolved using geometric tech-
niques with which we have become familiar in Chapter 7, whereas semantic
information is typically obtained through machine learning techniques. For
the purposes of this text, we will focus almost exclusively on the problem of

221

12. Mapping

metric mapping due to the prevailing importance of this information as it
relates to robotic planners and localization, but semantic mapping is a rich
field with an increasing importance to developing robotic autonomy; greater
distinctions between these types of maps will be discussed in Section 12.1.

With respect to metric mapping, range sensors have emerged as one of
the most effective sensors to make robots autonomous. Range data can
be collected into “scans” from a sensor, each of which consists of a list of
points that we term a point cloud. Point clouds makes the construction of
a 3D model of the robot’s environment straightforward; measurements on
the environment are inherently metric and require no “front-end” process-
ing, as images from a camera might require to extract such information.
Furthermore, sensors that output point cloud data are both quite accurate
and increasingly common on robotic platforms: the Velodyne 3D automotive
lidar sensor that combines 64 scanning lasers into one package was key in
mastering the DARPA Grand Challenge, and no team operated without li-
dars as part of their solution in the recent DARPA Subterranean Challenge.
So for both wide-area and close-corridor operation, 3D lidar has become a
standard. There is one hitch with lidars: most of them are built out of rotat-
ing laser arrays, which means that a moving sensor will collect information
from the environment at different rotation angles, thereby aliasing the lidar
measurements with the motion of the sensor. This motion aliasing can be
removed from the lidar data, but is negligible if the motion of the sensor is
slow enough. However, there are sensors that provide range data without
this limitation, such as RGB-D (color plus depth) cameras. Furthermore,
3D range data has become even more important in robotics with the advent
of cheap (priced at a tenth of the price of the cheapest 2D laser scanner)
RGB-D cameras. In this chapter we will largely ignore the source of range
data, and will instead focus on algorithms that operate over these data.

The mapping problem itself also ranges from trivial (when localization
is perfect) to arbitrarily complex, performing the equivalent of cartography
in which the tasks of localizing oneself and mapping the environment are
closely intertwined. While the problem of “simultaneous localization and
mapping” will be introduced in Chapter 17, Section 12.2 describes one of
the key algorithms that is used to infer relative pose between consecutive
measurements by a process known as scan matching.

Point cloud data allows fitting of lines and planes using RANSAC, which
can serve as features in EKF-based localization, but can also be used for

222

12.1. Map representations

improving odometry, loop-closure detection, and mapping. Point cloud data
can also be probabilistically fused into voxel occupancy grids and dense
surface representations, which inform planning and design. The goals of this
chapter are:

e introduce the Iterative Closest Point (ICP) algorithm for matching
point clouds as an example of sparse mapping;

e show how ICP can be improved by providing initial guesses via RANSAC;

e use point clouds to generate dense maps built through occupancy grids;
and

e demonstrate RGB-D mapping, another dense mapping technique that
results in surface representations.

12.1. Map representations

In order to plan a path, we need to represent the environment digitally. We
differentiate between two complementary approaches: discrete and contin-
uous approximations. In a discrete approximation, a map is sub-divided
into sections of equal (e.g., a grid or hexagonal map) or differing sizes (e.g.,
rooms in a building). The latter maps are also known as topological maps
or graph-based maps. Discrete maps lend themselves well to a graph rep-
resentation. Here, every region of the map corresponds to a vertex (also
known as a “node”), which are connected by edges if a robot can navigate
from one vertex to the other. For example a road-map is a topological map
with intersections as vertices and roads as edges, labeled with their length
(Figure 13.2). Computationally, a graph might be stored as an adjacency
or incidence list/matrix. A continuous approximation requires the definition
of inner (obstacles) and outer boundaries, typically in the form of a poly-
gon, whereas paths can be encoded as sequences of points defined by real
numbers. Despite the memory advantages of a continuous representation,
discrete maps are the dominant representation in robotics.

There is no one correct choice for choosing a map representation, and each
application might require a different solution that could utilize a combination
of different map types.

Discrete and continuous representations are often matched together in
clever ways. For example, roadmaps for GPS systems are stored as topo-
logical maps that store the GPS coordinates of every vertex, but might also

223

12. Mapping

contain overlays of aerial and street photography. These different maps are
then used at different stages of the path planning stage.

12.2. lterative Closest Point for Sparse Mapping

In its simplest form, a map can be created from slices of 2D range data such
as obtained from a laser scanner. In the absence of a precise estimate of
motion between two measurements, for example provided by odometry or
IMU measurements, the challenge is to associate subsequent scans.

A standard solution to this problem is known as the Iterative Closest Point
(ICP) algorithm. It was presented in the early 1990s for registration of 3D
range data to CAD models of objects. A more in-depth overview of what is
described here is given in (Rusinkiewicz & Levoy 2001). The key problem can
be reduced to finding the best transformation that minimizes the distance
between two sets of measurements.

In robotics, ICP found an application to match scans from 2D laser range
scanners. For example, the transformation that minimizes the error between
two consecutive snapshots of the environment is proportional to the motion
of the robot. This is a hard problem as it is unclear, which points in the two
consecutive snapshots are “pairs”, which of the points are outliers (due to
noisy sensors), and which points need to be discarded as not all points overlap
in both snapshots. Stitching a series of snapshots together theoretically
allows to create a 2D map of the environment. This is difficult, however, as
the error between every snapshots — similar to odometry — accumulates.
The ICP algorithm also works in 3D where it allows to infer the change in
6D pose of a camera and creation of 3D maps. In addition, ICP has proven
useful for identifying objects from a database of 3D objects. Furthermore,
the ICP algorithm can be used to stitch consecutive range images together
to create a 3D map of the environment (Henry, Krainin, Herbst, Ren &
Fox 2010).

Before providing a solution to the mapping problem, we will focus on
the ICP algorithm to match two consecutive frames. Variants of the ICP
algorithm can be broken down into six consecutive steps:

1. Selection of points in one or both meshes or point clouds.
2. Matching/Pairing these points to samples in the other point cloud /mesh.

3. Weighting the corresponding pairs.

224

12.2. Iterative Closest Point for Sparse Mapping
4. Rejecting certain pairs.
5. Assigning an error metric based on the point pairs.
6. Minimizing the error metric.

Depending on the number of points generated by the range sensor, it might
make sense to use only a few selected points to calculate the optimal trans-
formation between two point clouds, and then test this transformation on
all points. Depending on the source of the data, it also turns out that
some points are more suitable than others as it is easier to identify matches
for them. This is the case for RGB-D data, where SIFT features have been
used successfully. This is also the case for planar objects with grooves, where
sampling should ensure that angles of normal vectors of sampling points are
broadly distributed. Which method to use is therefore strongly dependent
on the kind of data being used and should be considered for each specific
problem.

Matching Points The key step in ICP is to match a point to its correspond-
ing point in a different measurement. For example, a laser scanner hits a
certain point at a wall with its 67th ray. After the scanner has been moved
by 10 cm, the closest hit on the wall to this point might have been by the
3rd ray of the laser. Here, it is actually very unlikely that the laser hits the
exact same point on the wall twice, therefore introducing a non-zero error
even for an optimal pairing. Prominent methods involve finding the clos-
est point in the other point cloud or finding the intersection of the source
points’ normal with the destination surface (for matching point clouds to
meshes). More recently, SIFT has allowed to match points based on their
visual appearance. Similarly to sorting through SIFT features, finding the
closest matching point can be accelerated by representing the point cloud in
a k-d tree.

Weighting of Pairs As some pairs are better matches than others, weight-
ing them in some principled way can drastically improve the quality of the
resulting transformation. One approach is to give more weight to points
that have smaller distances from each other. Another approach is to take
into account the color of the point (in RGB-D images) or use the distance
of their SIFT features (weighting pairs with low distances higher than pairs
with high distances). Finally, expected noise can be used to weight pairings.

225

12. Mapping

For example, the estimates made by a laser scanner are much more faithful
when taken orthogonally to a plane than when taken at a steep angle.

Rejecting of Pairs A key problem in ICP are outliers either from sensor noise
or simply from incomplete overlap between two consecutive measurement
frames. A common approach to deal with this problem is to reject pairings
when one of the points lies on a boundary of the point cloud, as these points
are likely to match with points in non-overlapping regions. As a function
of the underlying data, it might also make sense to reject pairings with too
high of a distance. This is a threshold-based equivalent to distance-based
weighting as described above.

Error Metric and Minimization Algorithm After points have been selected and
matched, and pairs have been weighted and rejected, the match between two
point clouds needs to be expressed by a suitable error metric which will then
need to be minimized. One straightforward approach for this is to consider
the sum of squared distances between each pair. This formulation can often
be solved analytically. Let

A=Aay,...,an} (12.1)
B ={by,...,by} (12.2)

be point clouds in R™. The goal is now to find a vector ¢ € R” so that
an error function ¢(A + ¢, B) is minimized. In 6D (translation and rota-
tion), an equivalent notation can be found for a transformation (see forward
kinematics). An error function for the squared distance is then given by

G(A+1t,B) = %ZHHFNB(CLH)H? (12.3)
a€A

Here Np(a+t) is a function that provides the nearest neighbor of a translated
by bin B. A key problem now is that the actual value of ¢ affects the outcome
of the pairing. What might look like a good match initially often turns out
not be the final pairing. A simple numerical approach to this problem is to
find t iteratively.

Initially ¢ = 0 and nearest neighbors/pairings are established. We can now
calculate a dt that optimizes the least-square problem based on this matching
using any solver available for the optimization problem (for a least-square
solution dt can be obtained analytically by solving for the minimum of the
polynomial by setting its derivative to zero). We can then shift all points

226

12.3. Octomap: dense mapping of voxels

in A by 0t and start over. That is, we calculate new pairings and derive a
new 6t. We can continue to do this, until the cost function reaches a local
minimum.

Instead of formulating the cost function as a “point-to-point” distance, a
“point-to-plane” has become popular. Here, the cost function consists of
the sum of squared distances from each source point to the plane that con-
tains the destination point and is oriented perpendicular to the destination
normal. This particularly makes sense when matching a point cloud to a
mesh/CAD model of an object. In this case there are no analytical solutions
to finding the optimal transformation, but any optimization method (such
as Levenberg-Marquardt) can be used.

12.3. Octomap: dense mapping of voxels

For mapping obstacles, the most common map is the occupancy grid map.
In a grid map, the environment is discretized into voxels of arbitrary reso-
lution, e.g. lem x lecm, upon which obstacles are marked. In a probabilistic
occupancy grid, grid cells can also be marked with the probability that they
contain an obstacle. This is particularly important when the position of the
robot that senses an obstacle is uncertain. Disadvantages of grid maps are
their large memory requirements as well as the computational time required
to traverse data structures with large numbers of vertices. A solution to
this is storing the grid map as a k-d tree. A k-d tree recursively breaks the
environment into k pieces, subject to a subdivision rule (e.g., only subdi-
vide a space if it is between 5-95% occupied). For k = 4, an area that fits
the subdividing criteria would be subdivided into four pieces. Each of these
pieces can again be subdivided into four pieces and so on, until the max-
imum allowable resolution is reached or the subdivision criteria no longer
applies. These pieces can be stored in a graph with each vertex having
four children, corresponding to the four pieces the space represented by the
vertex is broken into, unless it is a leaf of the tree. This data structure is
attractive because not all vertices need to be broken down to the smallest
possible resolution. Instead, only areas which contain obstacles need to be
subdivided. A grid map containing obstacles and the corresponding k-d tree
are shown in Figure 12.1. To capture 3D data, this representation can be
extended to a 8-d tree, also known as Octree.

The values of each entry in the k-d tree is the probability that the particu-
larly specified voxel is occupied. Note that this probability may be calculated

227

12. Mapping

Figure 12.1. A grid map and its corresponding quadtree (k-d tree).

through any number of sensor models, such as absolute thresholding or using
a probabilistic field-of-view sensor model. Absolute thresholding determines
that a voxel is occupied if the absolute count of points measured by the sen-
sor within a voxel is greater than a threshold. An improvement on this is to
use a probabilistic model wherein a false positives incidence rate and false
negative incidence rate are used to calculate the probability that a sensor’s
measurements indicate that a particular voxel is filled. Either way, these
techniques result in a map that is probabilistically fused over a sequence of
measurements to indicate filled and unfilled space in the form of a volumetric
map.

12.4. RGB-D mapping: dense mapping of surfaces

While occupancy grid mapping using a technique such as Octomap is ef-
ficient for planning, there are some drawbacks of this technique. First, it
can be immediately observed that the map voxels are of a fixed resolution
and fundamentally cannot resolve small obstacles at any smaller scale than
that of the voxels; that is, small obstacles will appear larger. Furthermore,
high-frequency information within the voxel that may be relevant to plan-
ning, such as surface curvatures, are unresolvable. However, this information
seems out of reach for any voxelized representation of the environment. The
resolution to this paradox is to populate the value of voxels not with prob-

228

12.4. RGB-D mapping: dense mapping of surfaces

2 -3 Trutication distance
-o4 1 Jx -o042 29
-430k1N 156 -ot2 208
1311731 231
24221 €102438 EA
-2 \
-41291
y. .
First frame econd frame
230N
-o41 2
4591 125
=231 173
-4221 (102435 ;
-2 olo “stimated motion
SAE297 4 ol
2
Fused map

Figure 12.2. Schematic of the generation of a TSDF based on 2D range data from a
sensor. Voxels are only populated with distances that lie within the “truncation
distance.”

ability of a voxel’s being occupied, but rather the most probable distance to
the nearest surface. If for a particular range scan, a surface lies beyond a
certain voxel, that distance is positive, and if a surface lies in front of a cer-
tain voxel, that distance is negative. See Figure 12.2 for an example of this
mathematical construction, which is known as a signed distance field (SDF).
The SDF is generated by following the distance along a ray to the surface
and entering that value into the voxel, and incrementally probabilistically
updating the values in the voxel as frames are consumed from the depth
channel. Note that the SDF provides an implicit representation of a sur-
face as can be seen in Figure 12.2. In this figure the notion of “truncation”
is also motivated, wherein voxels that would have a value above a certain
threshold known as a truncation distance are left unfilled; this is a frugal use
of memory and results in a speedup for reconstruction algorithms. It also
is required to avoid surfaces interfering with one another. An SDF which is
pruned in this way is known as a “truncated SDF” (TSDF).

The TSDF can naturally represent multiscale obstacles, and provides an
added benefit for planning algorithms: it provides the distance to the near-

229

12. Mapping

TSDF/Volume

Cloud Slices

Camera Pose

L Pose Graph

Figure 12.3. Fused point cloud data from a walk trough of an office environment
using “Kintinious”. Picture courtesy of John Leonard.

est obstacle at the same time! This is helpful as distance to obstacles can
be used as a risk metric in planning algorithms (i.e. it is often advanta-
geous to maintain maximal distance from obstacles over a trajectory, which
can be easily obtained from the TSDF). There are two significant down-
sides of this technique, however. First, it requires highly accurate pose
information, frequently meaning ICP must be performed for each scan from
the sensor. Second is that implicit representation of surfaces do not admit
straightforward visualizations of the 3D maps. In order to accomplish this,
a rendered is required to operate on the TSDF's, which result in maps such
as 7?7, which is using the method of (Whelan, Johannsson, Kaess, Leonard
& McDonald 2013). The resulting visualizations can be surprisingly high-
resolution even over coarse voxelization of the environment. Together with
RGB information, it is possible to create complete 3D walk throughs of an
environment.

The problem with using ICP continuously to generate these maps is that
errors in each transformation propagate into the maps generation process in
the form of map drift. Here, the SLAM algorithm (Chapter 17) can be used
to correct previous errors once a loop closure is detected, but the update of
TSDFs on the trigger of a loop closure requires both the continuous retaining

230

12.4. RGB-D mapping: dense mapping of surfaces

and global reprocessing of all data used to generate the TSDF's that would
be effected by the loop closure, which is a high price to pay.

As ICP only works when both point clouds are already closely aligned,
which might not be the case for a fast moving robot with a relatively noisy
sensor (the XBox Kinect has an error of 3cm for a few meters of range
vs. millimeters in laser range scanners), RGB-D Mapping uses RANSAC to
find an initial transformation. Here, RANSAC works as for line fitting: it
keeps guessing possible transformations for 3 pairs of SIFT feature points
and then counts the number of inliers when matching the two point clouds,
one of which being transformed using the random guess.

Take-home lessons

1. The challenge in mapping an environment originates from the uncer-
tainty in both localization and sensing.

2. Techniques that are used to overcome uncertainty in localization and
sensing can in turn be used to increase confidence in the former. For
example, given robust features such as corners or walls, ICP results
can be used to improve odometry estimates.

3. In the absence of reliable localization, the mapping problem turns into
the simultaneous localization and mapping problem that is addressed
in Chapter 17.

Exercises

1. Simulate a Lidar sensor in a simulator of your choice.Devise a grid-
map structure that will allow you to draw the robot’s position. Use
the constant angular offset of your Lidar sensor and the pose of the
robot to compute map coordinates for each reading.

2. Run a simulated robot in an obstacle course and record a map using
your simulated Lidar. Implement the ICP algorithm described above
to estimate the translation between consecutive scans and compare
them with your odometry estimate.

3. Use ICP to improve the robot’s state estimate for different settings of
wheel-slip in your simulation.

231

Chapter 13

Path Planning

Path planning allows autonomous mobile robots and manipulators to find
a path to move between two points. A path is a set of poses from a start
configuration to an end configuration that respect a set of specifications (for
example, avoiding obstacles for a mobile base or respecting a specific force
profile at the end effector of a manipulator). It differs from the concept of
trajectory in that a trajectory is the execution of a path over time. Depend-
ing on the choice of the planning algorithm, a path could satisfy various
degrees of optimality with respect to some criteria such as minimizing path
length, minimizing turns, or minimizing the amount of braking. Algorithms
to find a shortest path are important not only for robotics applications, but
also in network routing, video games, and understanding protein folding.
Path planning requires a suitable representation of the environment such
as a map introduced in Chapter 12, and a perceptual understanding of the
robot’s location with respect to such representation We will assume for now
that the robot is able to localize itself, is equipped with a map, and is capable
of avoiding temporary obstacles on its way. The goals of this chapter are to:

introduce the concept of “configuration space” for planning,

e understand the difference between graph-based and sampling-based
planning algorithms,

e explain basic path algorithms such as Dijkstra, A*, and RRT,

e understand variations of the path planning problem such as coverage
path planning.

233

13. Path Planning

Figure 13.1. A map with obstacles and its representation in configuration space,
which can be obtained by growing each obstacle by the robot’s extension.

13.1. The configuration space

In the vast majority of path planning algorithms, the robot is treated as a
point-mass element with no volume. In order for a path to be executed on
the robot, it is important to take into account the physical embodiment of
the robot and its non-zero volumetric occupancy, which complicates the path
planning process. It is possible for the robot to be reduced to a point-mass
while growing all obstacles by its radius. This works for a circular robot.
This can be generalized for robots of any shape by growing each obstacle by
the length of the longest extension of the robot from its center. This repre-
sentation is known as configuration space as it reduces the representation of
the robot to its controllable degrees of freedom (e.g., its and y coordinates
in the plane for a robot capable of planar translation). An example is shown
in Figure 13.1. The configuration space can now either be used as a basis
for a grid map or a continuous representation.

13.2. Graph-based planning algorithms

The problem to find a “shortest” path from one vertex to another through
a connected graph is of interest for multiple domains, most prominently
network routing, where it is used to find an optimal route for an internet
data packet. The term “shortest” here is defined as the minimum cumulative
edge cost, which could be physical distance (in a robotic application), delay

234

13.2. Graph-based planning algorithms

Figure 13.2. A generic path planning problem from vertex I to vertex VI. The
shortest path is I-II-ITI-V-VI, and has length of 13.

(in a networking application), or any other metric that is relevant for the
task. An example graph with arbitrary edge lengths is shown in Figure 13.2.

13.2.1. Dijkstra’s algorithm

One of the earliest and simplest algorithms for path planning is Dijkstra’s
algorithm (Dijkstra 1959). Given a graph, Dijkstra is an iterative process
where, starting from the “start” vertex, the algorithm marks all its direct
neighbors with the cost to reach them. It then proceeds to inspect the
neighboring vertex with the lowest cost and all its adjacent vertices and
marks them with the cost to get to them via the vertex under consideration.
If the cost turns out to be lower, the cost is updated accordingly. Once
all neighbors of a vertex have been checked, the algorithm proceeds to the
vertex with the next lowest cost. Once the algorithm reaches the goal vertex
and there exist no vertex with a lower cost to the goal, it terminates and the
robot can follow the edges pointing towards the lowest edge cost.

In the example in Figure 13.2, Dijkstra would first mark nodes II, III and
IV with cost 3, 5 and 7 respectively. It would then continue to explore all
edges of node II, which so far has the lowest cost. This would lead to the

235

https://youtu.be/_lHSawdgXpI

13. Path Planning

discovery that node III can actually be reached in 3+ 1 < 5 steps, and node
III would therefore be relabeled with cost 4. In order to completely evaluate
node II, Dijkstra needs to evaluate the remaining edges before moving on and
label node VI with 3 + 12 = 15. The node with the lowest cost is now node
IIT (cost of 4). We can now relabel node VI with 14, which is smaller than
15, and label node V with 4 +5 = 9, whereas node IV remains at 4+ 3 = 7.
Although we have already found two paths to the goal, one of which better
than the other, we cannot stop as there still exist nodes with unexplored
edges and overall cost lower than 14. Indeed, continuing to explore from
node V leads to a shortest path I-II-III-V-VI of cost 13, with no remaining
nodes to explore.

As Dijkstra would not stop until there is no node with lower cost than the
current cost to the goal, we can be sure that a shortest path will be found if
it exists. We can therefore say that Dijkstra is both complete and optimal.

As Dijkstra will always explore nodes with the least overall cost first, ex-
ploration of the environment resembles a wave front originating from the
start vertex, eventually arriving at the goal. This is of course highly inef-
ficient, in particular if Dijkstra is exploring nodes away from the goal. As
an example, if we were to add a couple of nodes to the left of node I in
Figure 13.2, Dijkstra would explore all of these nodes until their cost ex-
ceeds the lowest found for the goal. This can also be seen when observing
Dijkstra’s algorithm on a grid, as shown in Figure 13.3.

11[10|9 [10]11]12 11109 [10]11]12|13]14]15]16
G 10]9 [8 [9 |10]11]12 G 10]9 |8 o J10f11]12]13]14]15|G
9 [8 |7 |8 |9 [10]11]12 9 |8 |7 18 |9 |10]11]12]13]|14]15

7 16 |5 |6 7 6 |5 |6 13|14

6 |5 |4 |5 |6 |7 |8 |9 |10][11]12 6 |5 [4]5 |6 |7 |8 |9 [10]11]12]13

5 |4 (3|4 |5 |6 |7 |8 |9 [10]11]12 5 (4 [3]4 [5 |6 |7 |8 |9 [10]11]12

4 |3]2 (3 |4 |5 |6 10]11]12 4 (3]|2]3 |4 |5 |6 10]11]12]13

3 0201|2345 11]12 32 (1]2(3]4]5 11]12]13]14

S 2 (1 |S|1]2 |3 |4 10[11]12 2 |1 |S]1 |2 |3 |4 10]11]12]13

3 2|1 |23]4]5 9 [10]11]12 30201t |2(3]4]s 9 [10]11]12

4 |3 1213 /4|5 (6 (7 |8 |9 |t011] |4 [3 [2 |3 |4 |5 |6 |7 |8 |9 |10]11

Figure 13.3. Dijkstra’s algorithm finding a shortest path from ‘S’ to ‘G’ assuming
the robot can only travel laterally (not diagonally) with cost one per grid cell.
Note the few number of cells that remain unexplored once the shortest path
(grey) is found, as Dijkstra would always consider a cell with the lowest path
cost first.

236

13.2. Graph-based planning algorithms

9+ [10+ |11+ o+ [10+ |11+ [124] 13+] 14+ 15+
s |7 s |7 [6 [5 |a |3

G 9+ [8+ [9+ [10+ |11+ G o o+ o+ [aos fuas fravfiiseJ1as 1se] 5
6 |s 6 fs |4 [3 |2 |1

8+ |7+ 8+ |7+

10 |9 7|6 10 |9

6+ 7+ |6+ 7+ |6+
10 11 |io 11 |10
6+ |5+ |6+ 6+ |5+ 6+ |5+
12 [11 10 12 |1 12 |11

5+ [a+ [5+ |6+ s+ |a+ |5+ [6+ [7+ [8+ [9+ [104+]114+ 5+ |4+
13 12 |11 10 13 |12 [11 o Jo |8 |7 f6 |5 13 |12
4+ [3+ [4+ [5+ |6+ 4+ [3+ [a+ |5+ |6+ 10+ a+ |3+ [4+ [s+ |6+ [7+ [8+ |10+ |11+ |12+
14 113 iz 11 o 14 13 112 |11 |10 s |7 14 13 |12 |31 f10 9 8 7 |6 |S
3+ (24 [3+ |4+ |5+ |6+ 3+ |2+ |3+ [a+ |5+ 3+ |2+ [3+ |4+ [s5+ [6+
15 |1a |13 |12 |11 |10 15 [1a 13 |12 |11 15 13 12 |1 |10
2+ |1+ (24 [3+ |4+ [+ 2+ |1+ |2+ [3+ |4+ 2+ |1+ [2+ [3+ |4+ [s+
16 115 lia 13 [12 |nn 16 15 [14 |13 |12 16 15 11a |13 12 |11
1+ |G 1+ [2+ |3+ |ar 1+ |G [1r f2+ |3+ 1+ |G |1s [+ |3+ |ar
17 15 [1a |13 |12 17 15 [14 [13 17 15 14 13 |12
1+ (24 [3+ |4+ [s5+ 1+ [2+ |3+ |4+ 1+ |2+ |3+ |4+ |5+
17 16 15 lia |13 17 16 |15 |14 17 |16 |15 |14 [13

Figure 13.4. Finding a shortest path from ‘S’ to ‘G’ assuming the robot can only
travel laterally (not diagonally) with cost one per grid cell using the A* algorithm.
Much like Dijkstra, A* evaluates only the cell with the lowest cost, but takes an
estimate of the remaining distance into account.

Note that the grid can be reduced to a graph in which each vertex, except
those at the borders, have four or eight neighbors.

13.2.2. A*

Instead of exploring in all directions, knowledge of an approximate direc-
tion of exploration to reach the goal may help avoiding the exploration of
nodes that are not needed to succeed in the task. As humans, we can easily
interpret the task in Figure 13.3 and understand that most states in the
top-left and bottom-right corner should not be explored if we want to find
a solution in a short amount of time. Such knowledge may be encoded in
the search algorithm via a heuristic function, i.e. an informed guess or es-
timate of sorts. For example, we could give priority to nodes that have a
lower estimated distance to the goal than others. For this, we would mark
every node not only with the actual distance that it took us to get there
(as in Dijkstra’s algorithm), but also with the estimated cost to target, for
example by calculating the Euclidean distance or the Manhattan distance
between the vertex we are looking at and the goal. This algorithm is known
as A* (Hart, Nilsson & Raphael 1968), and illustrated in Figure 13.4 using
the Manhattan distance metric. Depending on the environment, A* might
accomplish search much faster than Dijkstra’s algorithm, and performs the
same in the worst case.

An extension of A* that addresses the problem of expensive re-planning
when obstacles appear in the path of the robot is known as D* (Stentz 1994).

237

https://commons.wikimedia.org/wiki/File:Astar_progress_animation.gif

13. Path Planning

Unlike A*, D* starts from the goal vertex and has the ability to change the
costs of parts of the path that include an obstacle. This allows D* to re-plan
around an obstacle while maintaining most of the already calculated path.

A* and D* become computationally expensive when either the search space
is large, e.g., due to a fine resolution required for the task, or when the di-
mensions of the search problem are high (e.g. when planning for an arm with
multiple degrees of freedom). Solutions to these problems can be provided
by sampling-based path planning algorithms.

13.3. Sampling-based path planning

Section 13.2 introduced a series of complete algorithms for the path planning
problem, i.e. algorithms that are guaranteed to (eventually) find a solution
if one exists. However, complete algorithms are often infeasible in practice,
e.g. because of a large state space, low available memory, or limited time to
execute the algorithm. This is often the case for robots with many degrees
of freedom such as arms. Importantly, most algorithms are only resolution
complete, i.e. they are only complete if the choice of environment resolution
is fine enough: since the state space needs to be discretized, some solutions
might be missed because of such discretization.

Sampling-based planners are an alternative to graph-based planners that
evaluate all possible solution and non-complete Jacobian-based inverse kine-
matic solutions. In sampling-based motion planning, possible paths are
generated via random sampling and stored in a tree-like structure until
some solution is found or the alloted time expires. As the probability
to find a path approaches one when the number of samples goes to in-
finity, sampling-based path planners are probabilistic complete. Promi-
nent examples of sampling-based planners are Rapidly-exploring Random
Trees (RRT)(LaValle 1998) and Probabilistic Roadmaps (PRM) (Kavraki,
Svestka, Latombe & Overmars 1996).

An example execution of RRT is shown in Figure 13.5; in essence, RRT
grows a single tree from a robot’s starting point until one of its branches hits
a goal. This example illustrates how a sampling-based planner can quickly
explore a large portion of space and refine a solution over time. Conversely,
probabilistic road-maps create a tree by randomly sampling points in the
state space, testing whether they are collision-free, connecting them with
neighboring points using paths that are achievable subject to the kinematics
of the robot, and then using classical graph shortest path algorithms to

238

13.3. Sampling-based path planning

Figure 13.5. Counterclockwise from top-left: Random exploration of a 2D search
space by randomly sampling points and connecting them to the graph until a
feasible path between start and goal is found.

find shortest paths on the resulting structure. The advantage of PRM is
that the map has to be created only once (assuming the environment is
not changing) and can then be used for multiple queries. PRM is therefore
a multi-query path planning algorithm, whereas RRT is known as single-
query path planning algorithm. Over the years the boundary between these
different algorithms has blurred, and single-query and multi-query variants
of both RRT and PRM exist. In all, there is no ‘silver bullet’ algorithm or
heuristic and even the choice of their parameters is highly problem-specific.
We will therefore limit our discussion on useful heuristics to those that are
common to sampling-based planners.

13.3.1. Rapidly Exploring Random Trees

Let X be a d-dimensional state space. This can either be the robot’s state
given in terms of translation and rotations (6 dimensions or a subset thereof),
or the joint space with one dimension per joint. What representation you
chose will determine how to compute whether a point is reachable or not,
but will not affect the algorithm itself.

Let G C X be a d—dimensional sphere in the state space that is considered

239

https://youtu.be/Ob3BIJkQJEw

13. Path Planning

to be the goal, max_dist the longest permissible edge length, t the allowed
time, k the maximum number of vertices to allow in the tree, and goal bias
the percentage of the time the algorithm should try to connect to a goal
state. An RRT planner would follow the below pseudo-code:

Tree=Init (X, G, start, max_dist, t, k, goal_bias);
iteration = 0
WHILE (ElapsedTime() < t AND iteration < k
AND NoGoalFound(Tree,G)) DO:
iteration = iteration + 1
IF RandomPercentage() < goal_bias THEN
g_rand = SampleRandomGoal (G);
ELSE
g_rand = SampleRandomState (X);
ENDIF
g_nearest = NearestVertex(q_rand)
g_new = Extend(g_nearest, g_rand, max_dist)
edge = CreatePath(q_nearest, q_new);
IF IsAllowablePath(edge) THEN
Tree.addVertex(q_new) ;
Tree.addEdge (edge) ;
ENDIF
ENDWHILE
return Tree

This process can be iterated as long as time allows and maximum number
of vertices or goal_bias) are optional parameters. RRT is known as an Any-
time algorithm, i.e., any user interruption once an initial solution has been
found would still provide some kind of solution. Given a suitable distance
metric, the path cost can be stored at each node of the tree, allowing to
track the shortest path to goal in case there are multiple vertices in the goal
region. There are four key points in this algorithm, which will be discussed
below:

1. determining the next point q_rand to add to the tree (SampleRandomGoal,
SampleRandomState, and Extend);

2. finding out where and how to connect this point to the tree taking into
account the robot kinematics (NearestVertex, CreatePath);

240

13.3. Sampling-based path planning

3. testing whether this path is suitable (IsAllowablePath)—i.e., collision-
free;

4. smoothing the path (not shown in the algorithm).

Selecting the next best point. A simple approach is to randomly select a
point in the state space and connect it to the closest existing point in the
tree. Other solutions may assign preference to nodes with few out-degrees
(i.e. those without many connections), and choose points in their vicinity in
order to facilitate expansion in under-explored regions of the state space. Im-
portantly, both approaches allow to quickly explore the entire state space; if
there are constraints imposed on the robot’s path—e.g., if the robot needs to
hold a cup and therefore is not supposed to rotate its wrist—this dimension
can simply be taken out of the state space and fixed at runtime.

Connecting points to the tree. Intuitively, the new point q_rand should be
connected to the closest point already in the tree or to the goal. This requires
iterating over all nodes in the tree and calculating their distance to the
candidate point q_rand, which is a computationally expensive process; the
resulting point g_nearest is the one with the shortest distance. The selection
of the right data structure for storing the graph in memory may reduce the
computational cost to be on average sub-linear in the number of vertices.

Importantly, following this method does not guarantee that the shortest
path will be found. As an alternative, RRT* grows the tree in a way that
always minimizes the overall path length from the root to every vertex. This
is done in two steps. First, only points in the tree within a d—dimensional
sphere (on a 2D map, d = 2, i.e. a circle) of fixed radius from q_rand are
considered, and the point that minimizes the overall path length from the
start configuration (rather than simply the shortest distance from q_rand)
is found. With this step, we can guarantee that the new vertex q_rand is
connected to the shortest reachable path from the root of the tree. Second,
a rewiring step occurs where vertices near q_rand are evaluated to inspect if
an edge between them and g_rand would be shorter than the current edge.
If this is true and the edge is allowable (i.e., not in collision nor outside of
the physical abilities of the robot), the graph is rewired so that the newfound
vertex becomes the new parent of q_rand.

Once the nearest vertex is found, the Extend function uses the max_dist
parameter to limit the maximum edge length, replacing q_rand with a point
g-new on the line connecting q nearest and q_rand that is max_dist away

241

13. Path Planning

from q-nearest. During this step, it is also a good time to take into account
the specific kinematics of a robot and its motion capabilities. In the example
of a car, a local planner can be used to generate a suitable trajectory that
takes into account the orientation of the vehicle at each point in the tree.
Using an open-source physics simulation such has been developed for com-
puter games also allows to consider dynamics, including drift. Using such a
simulation within a planning framework has demonstrated trajectories that
meet the performance of the most skilled operators ((Keivan & Sibley 2013)).

Collision checking. Efficient algorithms for testing collisions deserve a ded-
icated section. While the problem is intuitive in configuration-space 2D
planning and can be solved using a simple point-in-polygon test (since the
robot reduces to a point), this issue becomes more involved for manipula-
tors that are essentially multiple rigid bodies connected together and that
may be subject to self-collisions. Conventionally, collision checking for these
kind of objects has be achieved by converting them into triangle meshes that
can then be tested for intersections. More recently, physics-based computer
game engines that provide built-in collision checking are increasingly used.
This makes particularly sense, when such engines are also used to predict
the dynamics of rigid bodies within the CreatePath function.

Typically, collision checking takes up to 90% of the execution time of a path
planning problem; therefore, methods that aim at reducing computational
cost are desirable. For example, the “lazy collision evaluation” algorithm
differs from standard collision checking in that it does not evaluate every
point for a possible collision. Rather, it first finds a suitable path, and
only after a path is found it evaluates every edge for collisions. Segments
in collision are deleted and the algorithm continues, but only collision-free
segments are maintained.

Once a possible path is found, the sampling space can be reduced to an
ellipsoid that bounds the maximal path length. This ellipsoid can be con-
structed by mounting a wire of the maximum path length between start and
goal and pushing it outward with a pen. Intuitively, only points that are
contained by this ellipsoidal area can provide a shorter path than the one
currently known, so it becomes a waste of time to grow the tree in areas of the
state space that are outside of this ellipsoid. This approach is particularly
effective when running multiple copies of the same planner in parallel and
exchanging the shortest paths once they are found (Otte & Correll 2013).

242

13.4. Planning at different length scales

Path smoothing. As path planning randomly samples from discrete and ar-
bitrarily coarse maps, the resulting paths are typically jagged and irregular—
i.e., far from optimal in practice. This can be drastically improved via path
smoothing. One way of doing this is to connect points of the path using
splines, polynomial curves, or even trajectory snippets that are known to be
feasible for a specific platform. Alternatively, one can also use a model of
the actual platform and use a feedback controller such as the one described
in Section 3.4.2 for mobile robots and Section 3.2.2 for manipulators, which
will generate a trajectory that the robot can actually drive. When combined
with dynamics, this approach is known as model-predictive control. Again,
using a physics-based simulation environment

13.4. Planning at different length scales

The reality of performing complex, autonomous behaviors in realistic scenar-
ios is that, in practice, no one map representation and planning algorithm
might be sufficient. Planning a route for a car, for example, is a multi-
step process wherein robot autonomy interleaves with human intelligence:
as detailed in Figure 13.6, a hierarchy of increasingly granular map repre-
sentations and path planning algorithm is needed. First, a coarse search is
performed over the street network (by e.g. your preferred mapping and nav-
igation app), followed by a more precise planner that determines which lanes
to choose and how to navigate roundabouts and intersections; in both these
layers of abstraction, graph-based planning algorithms are ideal. Then, a
sampling-based algorithm may be used to determine how to actually move
the car between lanes and what trajectory to use to avoid obstacles. Finally,
such trajectories need to be turned into wheel speeds and steering angles—
possibly using some form of feedback control. In Figure 13.6, downward-
pointing arrows indicate the input that one planning layer provides to the
one below, whereas upward-pointing arrows instead indicate exceptions that
cannot be handled at the lower levels. For example, a feedback controller
cannot handle obstacles, requiring the sampling-based planning layer to come
up with a new trajectory. Should the entire road be blocked, this planner
would need to hand-off control the lane-based planner. A similar case can be
made for manipulating robots, which also need to combine multiple different
representations and controllers to plan and execute trajectories efficiently.
Note that this representation does not include a reasoning level that en-
codes traffic rules and common sense. While some of these might be encoded

243

13. Path Planning

/ ehve—g e oo \

Discrete Planning on
Distance Graph

T Y
- ~

Discrete Planning on
Roadnetwork Graph

LANE 2.1 LANE 2.2

v A

Sampling-based
Planning

//\ e Feedback control

- /

Figure 13.6. Path planning across different length scales, requiring a variety of map
representations and planning paradigms. Arrows indicate information passed
between layers.

244

13.5. Coverage path planning

using cost-functions, such as maximizing distance from obstacles or insuring
smooth riding, other more complex behaviors such as adapting driving in
the presence of cyclists or properties of the ground need to be implemented
in an additional vertical layer that has access to all planning layers.

13.5. Coverage path planning

So far, we have only considered the problem of finding a (shortest) path. A
variation of the path planning problem is coverage path planning. This is
relevant for applications such as cleaning, mowing or painting and usually
aims at minimizing the time to completion and redundancy during coverage.
This problem is closely related to the shortest path problem. For example,
floor coverage can be achieved by performing a depth-first search (DFS) or a
breadth-first-search (BFS) on a graph where each vertex has the size of the
coverage tool of the robot. “Coverage” is not only interesting for cleaning a
floor: the same algorithms can be used to perform an exhaustive search of a
configuration space, such as in the example shown in Figure 3.3, where we
plotted the error of a manipulator arm in reaching a desired position over
its configuration space. Finding a minimum in this plot using an exhaustive
search solves the inverse kinematics problem.

Doing a DFS or a BFS might generate efficient coverage paths, but they
are far from optimal as many vertices might be visited twice. A path that
connects all vertices in a graph but passes every vertex only once is known
as a Hamiltonian Path. A Hamiltonian path that returns to its starting
vertex is known as a Hamiltonian Cycle. This problem is also known as the
Traveling Salesman Problem (TSP), in which a route needs to be calculated
that visits every city on his tour only once and is known to be NP Complete.

13.6. Summary and Outlook

Path planning is an ongoing research problem. Finding collision-free paths
for mechanisms with high degrees of freedom (such as multiple arms operat-
ing in a shared space, multi-robot systems, or systems involving dynamics)
is still a computationally intensive problem. Although sampling-based path
planners can drastically speed up the time to find some solution, they are
not optimal and struggle with algorithm-specific concerns such as navigat-
ing in narrow passages. There is no “silver bullet” algorithm for solving
all path planning problems and heuristics that lead to massive speed-up in

245

13. Path Planning

one scenario might be detrimental in others. Also, algorithmic parameters
are mostly ad-hoc and correctly tuning them to a specific environment may
drastically increase performance.

Take-home lessons

The first step in path planning is choosing a map representation that
is appropriate to the application (Chapter 12).

The second step is to reduce the robot to a point-mass, which allows
planning in the configuration space (or C-space).

This allows the application of general-purpose shortest path graph-
based algorithms, which have applications in a large variety of domains
and that are not limited to robotics.

A sampling-based planning algorithm finds paths by sampling random
points in the environment. Heuristics are used to maximize the ex-
ploration of space and bias the direction of search. This makes these
algorithms fast, but neither optimal nor complete.

As the resulting paths are random, multiple trials might lead to entirely
different results.

There is no one-size-fits-all algorithm for a path planning algorithm
and care must be taken to select the right paradigm (e.g. single-query
vs. multi-query), heuristics, and parameters.

Exercises

1.

2.

246

How does the computational complexity of Dijkstra’s algorithm change when
moving from 2D to 3D search spaces?

A* uses a “heuristic” to bias the search in the expected direction of the goal.
Why can it only use a heuristic, not the actual length?

Assuming points are sampled uniformly at random in a randomized planning
algorithm. Calculate the limiting behaviour of the following ratio (area of
points in tree)/(area of points sampled) as the number of points sampled
goes to infinity, assuming no duplicates. Assume the total area A;pq and
the area of free space Afyc. within are known.

4.

10.

11.

12.

13.

13.6. Summary and Outlook

Assuming a kd-tree is used as a nearest-neighbour data structure, and points
are sampled uniformly at random, calculate the run-time of inserting a point
into a tree of size N. Use “big-Oh” notation, e.g. O(N).

. What other practical runtime concerns must one consider besides computa-

tional complexity alone when doing sampling based motion planning? Can
you suggest ways to deal with these other concerns?

Write a program that can read in a simple map provided as a textfile where
’1’ indicate obstacles and 0’ indicates free space.

a) Implement Dijkstra’s algorithm to find the shortest path between any
two given points in free space.

b) Implement A* to find the shortest path between any two given points.

¢) How do these two implementations compare in terms of computational
complexity?

Write a program that can read an image file in which white areas represent
navigable space and black obstacles. Implement a basic RRT algorithm to
find the shortest path between any two points.

Explore the internet for libraries that implement “path planning” in the lan-
guage of your choice. What tools do you find? How do they define the map?
Do they performan obstacle avoidance? Does the kinematics of the robot
matter?

Extend your path planning implementation for being used with a differential
wheel robot. Describe steps that you would need to take for Dijkstra/A* and
for RRT.

Extend your path planning algorithm for being used with a two-link robot
arm. Would you plan in joint or in configuration space, and what are advan-
tages and drawbacks of each?

How does the computational complexity change when moving from a single
6-DoF robot arm to a torso with two 6-DoF robots? Can you think about an
approach that maintains the original computational complexity? What are
the drawbacks of this approach.

Consider a robotic assembly task in which a robot retrieves objects from a
known location and assembles them on a table. When can you rely on simple
inverse kinematics and when do you need path planning?

How does a planning problem change when you not only consider positions,
but also forces and torques? Could you use a variation of RRT to solve such
a problem?

247

13. Path Planning

14. Download a robotic path planning tool that allows you to try different algo-
rithms.

a) Compare solution quality and speed among the different solutions.
b) What do you need to take into account when using randomized plan-
ners? Is comparing single-shot experiments sufficient?

15. Implement a coverage path planner for a single robot on a grid map using
depth first search. Evaluate the amount of redundancy for different starting
locations.

248

Chapter 14

Manipulation

While grasping (Chapter 5) is generally concerned with connecting an object
to a robot’s kinematic chain, the act of grasping itself is usually only a small
part of a small part of the tasks involved in physically dealing with objects.

Think of all the possible ways in which you interact with objects on a
daily basis. Identify which part of these can be classified as “grasping”
and what is actually “manipulation”? How many times do you need
to plan for a complex sequence of actions (e.g., making coffee in the
morning)?

Oftentimes, the intention of the grasping action is to change the pose
of this object in a precise, repeatable, and purposeful way. For example,
cutlery and dishes need to be in well-specified areas and aligned with each
other when setting a table, merchandise needs to be neatly stacked in a
shelf, and machine parts need to be assembled with each other according to
a specific order. These activities are more generally known as manipulation.

The goals of this chapter are to introduce:

e the difference between grasping and manipulation,
e algorithms for choosing the right grasp,

e canonical manipulation tasks such as pick-and-place and assembly.

251

14. Manipulation

14.1. Non-Prehensile Manipulation

Manipulation can be thought of as a superset of grasping, that includes
additional capabilities that are typically referred to as non-prehensile—i.e.,
anything but grasping. Indeed, objects can be pushed, poked, tossed, flipped,
inserted, screwed-in, turned, twisted, and much more! However, discussing
all the possible ways objects might be manipulated and the many different
contexts such actions would be required—which might dramatically change
the approach a robot would need to chose—is well beyond the scope of this
book and still matter of active research.

Many manipulation problems can be cast into a sequence of pick-and-place
problems in which the possible grasp choices are appropriately constrained.
For example, an object can be turned or flipped by planning a sequence of
pick-and-place movements that each turn the object by a certain degree.
Similarly, using two robotic arms, with one grasping an object out of the
hand of the other, will allow a robot system to change an object’s pose almost
arbitrarily. (Which poses an object will be able to reach will depend on the
object’s exact geometry, the kinematics of the robotic arms, and constraints
in the workspace.) So-called in-hand manipulation is still an active area of
research as repeatedly picking and placing an object and hand-overs between
different arms is considered to be too slow and otherwise impractical for
many application areas.

14.2. Choosing the right grasp

While we have so far only considered the mechanics of grasping (Chapter 5),
choosing an appropriate pose for grasping an object in a specific way is an
algorithmic problem.

Finding a good grasp that fully constrains an object against all possi-
ble external forces and torques, i.e. a grasp that lies within the “grasping
wrench space” detailed in Section 5.1.1 may be too restrictive and, often-
times, unnecessarily so. For example, it might be sufficient to find a grasp
that constrains an object simply against gravity. Other applications might
require the grasp to constrain an object’s movement also again lateral forces
that happen due to acceleration. In practice, these considerations usually
lead to simple application-specific heuristics. For example, in a warehouse
picking tasks (Correll, Bekris, Berenson, Brock, Causo, Hauser, Okada, Ro-
driguez, Romano & Wurman 2016), the problem can be constrained to have

252

14.2. Choosing the right grasp

the robot grasp only objects that are suitable to be retrieved with a simple
suction cup. Finding a good grasp is then reduced to finding a flat surface
close to the object’s perceived center of gravity. When considering house-
hold tasks, such has handling and placing dishes, using silverware to pickup
food, or holding a pitcher, we are often interested in very specific grasps that
support the intended manipulation that follows.

Theoretically speaking, grasps such as picking up an object or opening
a door by turning its knob are task-specific wrench spaces. We can then
say that the grasp is “good”, when the task wrench space is a subset of
the grasping wrench space, and will fail otherwise. We can also look at the
ratio between the forces actually applied to the object and the minimum
force needed to perform a desired wrench. If this ratio is high—for example,
when the robot grasps an object far from its center of gravity or has to
squeeze an object heavily to prevent it from slipping—this grasp is not as
good as one where the ratio is low, since in this latter case all of the force
the robot is exerting is being efficiently utilized for the intended purposes.
Unfortunately, it is usually not possible to find close-form expressions for the
grasping wrench space. Rather, one can sample the space of suitable force
vectors—e.g., by picking a couple of forces that are on the boundary of the
cone’s base, and calculate the convex hull over the resulting wrenches.

14.2.1. Finding good grasps for simple grippers

Finding good grasps for simple grippers—i.e., those with only one or at most
two DoF's, see Section 5.2—reduces the problem to finding geometries on the
object that are suitable to place the gripper’s jaws: that is, what we need is
to find two parallel faces that are reasonably flat and at a distance that is
lower than the gripper’s maximum aperture. In practice, an object might be
perceived by a three-dimensional perception device such as a stereo camera
or a laser scanner, which provides only one perspective of an object and may
introduce noise and uncertainty (Chapter 15). A typical grasping pipeline
using such a device is shown in Figure 14.1, and proceeds as follows:

1. Acquisition: Obtain a “point cloud” or “depth image” of the objects
of interest (Figure 14.1, b).

2. Pre-processing: Remove table plane or other points that are either too
close or too far from the sensor (Figure 14.1, c).

3. Segmentation: Cluster points that are close enough, e.g., to identify

253

14

. Manipulation

a) b)
.f”m\
2 -
/
c) d)
- SR
e) f)

Fi

/)

gure 14.1. a) Random objects on a table, b) measurements from a laser scanner
on the objects’ surface, ¢) removal of table plane, d) connected components after
segmentation, e) removal of connected components based on size, f) calculation of
principal axes, g) evaluation of possible grasps based on collisions, h) physically
attempting grasp.

254

14.2. Choosing the right grasp

individual objects (Figure 14.1, d).

4. Filtering: Filter clusters by size, geometry or other features, to down-
select objects of interest (Figure 14.1, e).

5. Planning: Compute center-of-mass and principal axes of relevant clus-
ters (Figure 14.1, f).

6. Collision-checking: Generate possible grasps and check for collisions
with point clouds (Figure 14.1, g).

7. Execution: Physically test a grasp by monitoring jaw distances, as well
as forces and torques at the wrist (Figure 14.1, h).

Some of these steps might not be necessary for all grasps, and some of them
might become very complicated for some task. For example, pre-processing
is often used to remove known quantities such as a table surface from the
data, but it might become non-trivial when e.g. removing the edges of a bin
or operating with a container with an arbitrary size.

Segmentation is the most critical step and requires some previous knowl-
edge about the objects to grasp such as their size or the geometry of features
thereon. In Figure 14.1, clustering points based on their distance is sufficient,
e.g. using the DBSCAN algorithm (Ester, Kriegel, Sander, Xu et al. 1996),
but requires an assumption about object size in order to select a suitable
threshold. Other segmentation algorithms might use surface normals, a com-
bination of point cloud and image data such as color or patterns, or employ
deep learning.

Filtering the resulting clusters to identify objects of interest can be as
simple as rejecting those that are too small (as shown in Figure 14.1, e), but
might also involve matching the points to a 3D model of a desired object or
involving image data, using e.g. ICP and RANSAC from Chapter 12.

A simple approach to plan for possible grasps is to calculate the center-
of-mass as well as the principal axes of an object using principal component
analysis (Appendix B.5). Other approaches might again require matching
the existing points to a 3D model of the object to identify specific grasp
points (such as the handle of a cup), or rely on image features to do so.

After planning all, or some, possible grasps, they need to be checked for
feasibility. While a collision with a point in the point-cloud might rule out
a grasp, local search is sometimes being used to find a collision-free variant,

255

14. Manipulation

for example by (virtually) moving the gripper up and down as well as along
the principal axes. In other applications, for example bin picking, some
collisions might be ignored with the expectation that the gripper will push
other objects out of its way.

Even though a grasp might look robust in a point cloud representation,
it might not be effective when physically executing it. Possible failures are
collisions with objects, insufficient friction with the object, or an object
moving before the gripper is fully closed. For this reason, it is important to
already close the gripper as much as possible before approaching the object,
increasing the requirements for accurate perception.

With the recent advent of (deep) machine learning and the ability of neural
networks (Chapter 10) to approximate complex functions, it is also possible
to replace parts, or all of, the algorithmic steps shown in Figure 14.1 with
a convolutional neural network trained via deep learning. While data in-
tensive, such an approach can seamlessly merge image and depth data and
adapt to application-specific data better than a hand-coded algorithm can.

14.2.2. Finding good grasps for multi-fingered hands

The simple grasping pipeline described above is computationally expensive
as there usually exist many possible grasp candidates, and each of them
need to be checked for collisions. This problem becomes even more relevant
when considering grippers with articulated fingers. This can be overcome by
considering only a predefined set of grasps, e.g. two and three finger pinches
for small objects and full-hand encompassing grasps for larger objects.

A suitable method to search the full space of possible grasps with an ar-
ticulated hand is to use random sampling, i.e. moving the end-effector to
random poses, closing its fingers around the object, and seeing what hap-
pens when generating wrenches that fulfill the task’s requirements. “seeing
what happens” is usually performed first in simulation, and it requires col-
lision checking and dynamic simulation. Dynamic simulation applies New-
tonian mechanics to an object (i.e., forces lead to acceleration of a body)
and moves the object at very small time-steps. While this can be done using
the connected components identified in the point cloud alone and assum-
ing reasonable parameters for friction and contact points, point cloud data
can also be augmented by object models to simulate whether a grasp has a
high likelihood to be successful. Here, there is a trade-off in exploring the
space of possible grasps in simulation and actually trying grasps with the

256

14.3. Pick and place

Approach Grasp Lift
(1 [DWU [] []
Move Place Release

Ty 7
[] |] 1]

Figure 14.2. Various stages of pick-and-place (or grasping) from approach to release.
Problems during an early step, such as during placing shown here, may lead to
failure of later stages of the algorithm.

real hardware.

14.3. Pick and place

One of the most basic manipulation problems is known as “pick and place”.
It involves grasping an object, transporting it, and placing it. However,
what looks like a simple action is actually a sequence of individual tasks
that can fail for multiple reasons. Pick and place consists of the following
steps (Figure 14.2):

1. Approaching the object;

2. Grasping the object;

3. Lifting the object;

4. Moving the object to an intermediate pose;
5. Placing the object;

6. Releasing the object;
Each of these actions might not work as intended, requiring the robot to

abort and restart the process. For example, what seems like a reliable grasp
may turn out not to be suitable for actually lifting the object. Or, a suitable

257

14. Manipulation

path (Chapter 13) toward the desired approach pose may not be found and it
may be necessary to find another suitable approach pose first. This problem
is known as Task and Motion Planning or TAMP. Once a suitable approach
pose has been found, placing the object will require to monitor forces and
torques to ensure a gentle placement. Finally, releasing the object might
require to verify the intended pose.

As failure can occur anywhere in the above pipeline and manually encoding
all possible state transitions will quickly get out of hand, Behavior Trees
(Section 11.4) have emerged as a powerful tool to encode complex sensor-
based action sequences. A sample behavior tree for a picking task is shown
in Figure 11.7.

14.4. Peg-in-hole problems

A canonical manipulation problem and a special case of pick-and-place is the
peg-in-hole problem and variations thereof—including hole-on-peg problems,
which generalize insertion and assembly operations. Peg-in-hole requires
repeatable grasping of an object and using force-torque based search motions
to find the hole. Typically, insertion patterns consist of tilting motions
and spiral-shaped search motions (Watson, Miller & Correll 2020). Both
approaches have advantages and drawbacks. Tilt insertion tends to work
better for larger objects (excess of 1em diameter) for peg-in-hole tasks.

Tilt insertion is detailed in Figure 14.3 and proceeds as follows: a) given a
hole pose, the part is held vertically above the hole by a preset distance; b)
the gripper is then tilted about its local y—axis and translated horizontally in
the global frame in the direction corresponding to the hand’s local z—axis; c)
this offset places the lowest part of the bottom edge of the part directly above
the estimated center of the hole. Then the hand is translated downwards in
the global frame until the part makes contact with the hole; d) naturally,
the shaft cannot sink deeply into the hole when tilted this way; rather,
the curvature of the hole meets the circumferential surface of the shaft and
gathers it towards the center of the hole, exploiting compliance in the gripper;
e) after being centered, the shaft is tilted back up a few degrees beyond
vertical; f) finally, the shaft is returned to true vertical and pushed down
into the hole until a preset reaction force (commensurate with the hole fit)
is met. If the z—component of the hand’s final pose is near to the expected
value, the insertion is considered successful.

Spiral insertion is best suited for hole-on-peg operations, and peg-in-hole

258

14.4. Peg-in-hole problems
a)

B
msat eyl
T oy

f)
Figure 14.3. Tilt-based peg-in-hole insertion. Arrows indicate the directions of
gripper translation and rotation. Dashed lines indicate motion that results from
compliant grasping.
I l I

I
ﬁ =
ﬂ e) f) n

Figure 14.4. Spiral-based hole-on-peg assembly. Arrows indicate the directions of
gripper translation and rotation. The spiral motion is performed in the horizontal
plane and is accompanied by downward pressure. It either leads to missing the
peg (d) or finding the peg (e) and complete assembly (f).

o
~

ﬁ
1
,

bfﬂ@

259

14. Manipulation

operations with a peg diameter less than 1ecm. It is described for hole-on-
peg assemblies in Figure 14.4. The algorithm proceeds as follows: a) given
a shaft end pose, the grasped part—e.g. a gear with a center hole—is held
vertically above the shaft by a preset distance; b) the hand then moves
down along the axis of insertion until a reaction force threshold is reached;
¢) the robot then performs a spiraling motion defined in polar coordinates
with its origin at the point of contact; the algorithm also probes the contact
surface as to whether the reaction force against the wrist in z—direction falls
below a threshold; it continues in this fashion until one of several conditions
are met: d) the gripper pose exceeds a threshold below which the intended
hole pose cannot lie, or e) lateral torques at the wrist exceed a threshold
indicating the gear has slid onto the shaft and cannot translate laterally. The
vertical probing steps also serve to sink the part into place before attempting
a lateral move that might sabotage what would otherwise be a successful
insertion. Once the torque threshold is met, the hand pushes down until a
preset reaction force (commensurate with the hole’s tolerance) is met. f) if
the z—component of the hand’s final pose is near to the expected value, the
assembly is considered a success.

Implementing peg-in-hole and hole-on-peg insertion also has a large num-
ber of possible failure modes, making a behavior tree (BT) architecture most
suitable. However, force and torque-based controls requires operating at a
higher bandwidth than a typical BT architecture would support (in the order
of hundred of Hz and more). How to implement these closed-loop control
loops is strongly dependent on the actual hardware. For example, some
robot arms do not make raw F/T values available at a rate that is required
for real-time control, but provide built-in functions to move until certain
force limits are met. This allows the robot manufacturer to run real-time
controllers that ensure safety, which would be more difficult to accomplish
when providing low-level control to the user.

Take-home lessons

e Performing simple pick and place tasks is now possible thanks to high-
resolution in-hand sensing and fast enough computation that can sift
through large amounts of point cloud data in real-time.

e Planning and executing a grasp is a complex problem that encompasses
topics from many of the previous chapters, ranging from identifying an

260

14.4. Peg-in-hole problems

object, localizing it and computing the inverse kinematics to reach it.

e Manipulation extends these techniques from the robot itself to the
objects the robot deals with and how they relate to each other, and
remains an open field of research.

e Seemingly simple manipulation tasks such as pick-and-place or peg-in-
hole assembly require both high-level planning and force-torque real-
time control, posing a combined task and motion planning problem.

Exercises

1. Write code to generate rectangles with random dimensions and orienta-
tions. Rectangles can overlap. Use a point-in-polygon test to simulate
random point samples on their surface, simulating a top-down view
with a depth sensor.

a) Implement a segmentation routine that clusters objects based on
a minimum distance.

b) Implement a filter that rejects connected components based on
size. For which kind of objects does this work well and where
does this method fail?

¢) Implement a filter that rejects connected components that do not
have rectangular shape. Are you able to specify a filter that works
independent of the object size?

d) Apply principal component analysis to compute the principal axes
of the rectangle and compare with ground truth. How does the
number of samples affect the accuracy of your estimate?

2. Use a function of the kind u(x — ¢) + rand(j) with u(z) the unit step
function, rand() uniformly distributed random noise, and 4, j suitable
parameters to simulate a noisy depth-image of a cube with width 1.
Use the nearest neighbor of each point to compute its normals and
a suitable clustering algorithm to identify the cube. How do ¢ and j
affect the accuracy of your estimate?

3. Think about simulating peg-in-hole assembly in a robotic simulator.
What are the problems with using a simulation environment when
simulating tight assembly problems?

261

14. Manipulation
4. Perform an internet search for “open source” robotic assembly prob-

lems and re-create them in your laboratory. Implement a spiral and
tilt-based assembly controller.

262

Part IV.

Uncertainty

265

Chapter 15

Uncertainty and Error Propagation

Robots are systems that combine sensing, actuation, computation, and com-
munication. All of its sub-systems are subject to a high degree of uncertainty.
This can be observed in daily life: phone calls with poor signal make it hard
to understand the other party, text characters are difficult to read from far
away or at low resolution, the wheels of your car may slip when accelerating
on a rainy road from a red light, or when your neural network mistakes a cat
for a dog. In robotics, measurements taken by on-board sensors are sensitive
to changing environmental conditions and subject to electrical and mechani-
cal limitations. Similarly, actuators are not accurate as joints and gears have
backlash and wheels can slip. Finally, wireless communication in particular,
whether via radio or infrared, is notoriously unreliable. Consider how these
types of uncertainty are all different: are they continuous or discrete? How
does the uncertainty corrupt the “ideal?” How can these various types of
uncertainties be quantified and accounted for? So far, we have considered
uncertainty only as far as limitations in accuracy and precision, but assumed
that they do not matter. The goals of this chapter are to understand:

e how to treat uncertainty mathematically using probability theory,
e how measurements with different uncertainty can be combined,

e and how error propagates when taking multiple measurements in a
TOW.

This will help us to better understand how sensor error affects higher level
features and decisions, but also create the basis for dealing with uncertainty
and the problems that arise from it.

269

15. Uncertainty and Error Propagation

This chapter requires an understanding of random variables, probabil-
ity density functions, and the Normal (alternatively called the “Gaussian”)
distribution. These concepts are explained in a robotic sensing context in
Appendix C.1.

15.1. Uncertainty in Robotics as Random Variable

As quantities such as “distance to a wall,” “position on the plane,” or “I
can see a blue cross (yes/no)” are uncertain, we can consider them random
variables. A random variable can be thought of as the outcome of a “ran-
dom” experiment, such as the face shown when rolling a die, or the speed of
an individual molecule of gas in a room. Just because a variable is random
does not mean we know nothing about it. For instance, we can roll a fair
six-sided die hundreds of times and create a table of likelihoods of each side
coming up. We can also measure the temperature in a room and understand
the average speed of those gas molecules using the kinetic theory of gases.

Experiments in robotics rarely involve true statistical randomness due to
their scale and design. Instead, there are two primary sources of uncertainty:
sensors and physical interactions. Sensors are intrinsically noisy due to the
physical phenomena associated with them. These sources of uncertainty
are often modelled using Gaussian (or “Normal”) probability distribution
functions, as they accurately model measurement uncertainty at large sam-
ples, per the Central Limit Theorem. Moreover, Gaussian distributions are
mathematically convenient for combining multiple noisy measurements and
analyzing propagation of uncertainty. As individual sensor readings can be
considered random variables, quantities derived from multiple sensors can
be considered random variables as well. Also, some physical interactions
are very challenging to model accurately, especially those involving friction,
leading to uncertainty in the resulting models. This chapter focuses on how
to characterize the uncertainty of such aggregated quantities from the uncer-
tainty that characterizes the individual sensors and modeling assumptions.

15.2. Error Propagation

We'll begin with an example of error propagation that is a core motivation
for needing to quantify uncertainty: the distance traveled by a differential
wheel robot given the rotations of its wheels. It turns out that the Gaussian
Distribution is very appropriate to model the uncertainty in this process.

270

15.2. Error Propagation

The robot moves with an expected displacement (e.g. as commanded by
the motors on each wheel) plus some uncertain displacement that can be
decomposed into the radial and tangential directions for each timestep as a
result of wheel slip; see Figure 15.1 for a diagram of this. We can say that
process noise drawn from a Gaussian distribution was added to the position
resulting from the commanded motion. This process noise has zero mean
and distinct variance in both the radial and tangential directions; the process
noise is a static property of the wheel-ground interaction.

Such a robot (when subject to slip) will actually increase the uncertainty
in its position the farther it drives. Initially at a known location, the ex-
pected value (or mean) of its position will become increasingly uncertain,
corresponding to an increasing position variance. This variance is obviously
somehow related to the variance of the underlying mechanism (the process
variance), namely the slipping wheel. Interestingly, we will see its position
variance grow much faster orthogonal to the robot’s direction of motion,
as small errors in orientation have a much larger cumulative effect on po-
sition than small errors in the longitudinal direction. This is illustrated in
Figure 15.1.

If only there were a way to correct this unbounded error with some sort
of sensor measurement! However, even these sensor measurements would be
affected by uncertainty, so we will have to take this into account as well.
We’ll come up with a correction that is able to accommodate this shortly.

Similarly, when estimating distance and angle to a wall (a line feature in
2D) from point cloud data, the uncertainty of the random variables describ-
ing distance and angle to the wall are related to the uncertainty of each
point measured on the wall. These relationships are formally captured by
the error propagation law.

The key intuition behind the error propagation law is that the variance of
each component that contributes noise to a random variable has a weight
associated with it. This weight is a function of how strongly that component
influences the random variable. Measurements that have little effect on the
aggregated random variable should also have little effect on its variance and
vice versa. “How strongly” one variable affects another can be expressed by
the ratio of how small changes of the first variable relate to small changes in
the second one. This concept should sound familiar, as it is none other than
the partial derivative of the first variable with respect to the second. For
example, let y = f(z) be a function that maps a random variable z (a sensor

271

15. Uncertainty and Error Propagation

>

X

Figure 15.1. Two-dimensional Normal distribution depicting growing uncertainty
as the robot moves. Albeit starting with equal uncertainty in x and ¥, the large
effect of small errors in orientation causes the error to grow faster in y-direction
of the robot.

272

15.2. Error Propagation

reading) to a random variable y (a feature). Let the standard deviation of x
be given by o,. We can then calculate the resulting standard deviation o,

by
oy = <g£> Oy (15.1)

2
op = (gi) o2 (15.2)

In case y = f(x) is a multivariable function that maps n inputs to m outputs,
variances between these variables may be represented by covariance matrices,
a representation of the various combinations in which these variables may
affect one another, one by one. A covariance matrix holds the variance of
each n input variables along its diagonal and is zero otherwise, if the random
variables are not correlated. We can then write

and its variance 05 as

»Y = JgnXgT, (15.3)

where ©X and £Y are the n x n and m x m covariance matrices holding
the variances of the input and output variables respectively, and J is a
m X n Jacobian matrix, which holds the partial derivatives gg; As J has n
columns, each row contains partial derivatives with respect to x1 to xz,.

15.2.1. Example: Line Fitting

Detecting walls is a fairly common sensing task for a mobile robot, and can
be accomplished with a range-bearing sensor like a LIDAR. We can make
some simplifying assumptions for the sake of this next example, namely that
a wall sensed by a 2D spinning LIDAR would appear as a straight line of
points in 3D space. Thus, our wall detection problem can be described as
estimating the angle o and distance r of a line (the wall) from a set of points
(LIDAR readings) given by (p;, 6;) using Equations (9.4) and (9.5). We can
now express the relationship of changes of p; to changes in a by

da
opi’

(15.4)

Similarly, we can calculate %, g—; and %. We can do this because we

have derived analytical expressions for « and r as a function of #; and p; in
Chapter 9.

273

15. Uncertainty and Error Propagation

We are now interested in deriving equations for calculating the variance of
«a and r as a function of the variances of the distance measurements. Let’s
assume each distance measurement p; has variance oﬁﬂ- and each angular
measurement #; has variance agﬂ-. We now want to calculate 0371» as the

weighted sum of ag,i and ag’l-, each weighted by its influence on «a:

80&1‘2 80&1‘2
2= o ol + 30, Ths- (15.5)

g,

Derivation of af’i is done similarly.
More generally, if we have I input variables X; and K output variables
Y}, the covariance matrix of the output variables oy can be expressed as

2
032, = g—)f(Ug(where oy is the covariance matrix of input variables and .J

is a Jacobian matrix of a function f that calculates Y from X and has the

form
o o
af 1 I
Ofk I
0X1 """ 00Xy

15.2.2. Example: Odometry

Whereas the line fitting example demonstrated a many-to-one mapping (where
E multiple instantaneous measurements form a feature), odometry requires
calculating the variance that results from multiple sequential measurements.
s Error propagation allows us to not only express the robot’s position, but
= also the variance of this estimate. Our list of questions to answer for this
task is as follows:

1. What are the input variables and what are the output variables?

2. What are the functions that calculate output given an input?

3. What is the variance of the input variables?

As usual, we describe the robot’s position by a tuple (x,y,6). These are

the three output variables. We can measure the distance each wheel travels
As, and As; based on the encoder ticks and the known wheel radius. These

274

https://www.youtube.com/watch?v=ubg_AAM7Zd8

15.2. Error Propagation

are the two input variables. We can now calculate the change in the robot’s
position by calculating

As= w (15.7)
Az = As cos(f) (15.8)
Ay = As sin(0) (15.9)
Af= w (15.10)
The robot’s new position is then given by
f(@,y,0, Asp, Asy) = [2,,0]" + [Az, Ay, A0]" (15.11)

We now have a function that relates our measurements to our output vari-
ables. What makes things complicated here is that the output variables are
also a function of their previous values. Therefore, their variance does not
only depend on the variance of the input variables, but also on the previous
variance of the output variables. We therefore need to write

Sy = VSV fT +Va, fEaVa,, f (15.12)

The first term is the error propagation from an initial position p = [z, y, 6]
to a new position p’. For this we need to calculate the partial derivatives of
f with respect to x, y and 6. This is a 3x3 matrix:

1 0 —Assin(6+ Af/2)
Su-[2 o

9r oy 00 =10 1 Ascos(@+A0/2) |. (15.13)

0 0 1

The second term is the error propagation of the actual wheel slip. This re-
quires calculating the partial derivatives of f with respect to As, and As;,
which is a 3x2 matrix. The first column contains the partial derivatives of
x,y, 0 with respect to As,. The second column contains the partial deriva-
tives of x,y, 8 with respect to As;:

%cos(a + Aiﬂ) — %—bs sin(6 + %)

%cos(@—i— A6/2) — Ssin(h + %)
Va,, f=1|1sin@+ A9/2)+ %cos(eJr %) %s
1

b 2b
in(0 + Ai/2) + % cos(0 + Abe):| - (15.14)
_1

2 b

2 2

Finally, we need to define the covariance matrix for the measurement noise.
As the error is proportional to the distance traveled, we can define ¥ A by

kr|As.| 0 }

EA:[0 klAs] (15.15)

275

15. Uncertainty and Error Propagation

Here k, and k; are constants that need to be found experimentally and | - |
indicates the absolute value of the distance traveled. We also assume that
the error of the two wheels is independent, which is expressed by the zeros
in the matrix.

We now have all ingredients for Equation 15.12, allowing us to calculate
the covariance matrix of the robot’s pose just as in Figure 15.1.

15.3. Optimal Sensor Fusion

We have now seen how errors from different sources can propagate into error
of compound measurements by means of the equations that relate input
to output error. We are now interested in how independent observations
of the same quantity can be combined. For example, we have considered
measurements obtained from two different wheels that are combined in a
pose estimate. What about a case in which we receive two independent
measurements of the robot’s pose? Similarly, we have seen how to combine
multiple point measurements into a line. How about two observations of the
same line (distance and angle) from two different sensors?

Let ¢1 and ga be two different estimates of a random variable and 0% and o3
their variances, respectively. Let ¢ be the true value. This could represent
the true pose of a line, with observations having different variances when
they are obtained by different means, say using a LIDAR for ¢; and by
using a camera for ¢a. We can now define the weighted mean-square error

n 1 R
S = Za—lq)2 (15.16)

That is, S is the sum of the errors of each observation ¢; with n = 2, weighted
by the inverse of their standard deviation U%

Each error is weighted with the inverse of its standard deviation to put
more emphasis on observations whose uncertainty is low. Minimizing S by
talking the derivatives of S with respect to ¢; and setting them to zero, yields
the following optimal expression for g:

))
103 4207
= ot o (15.17)
1 2 1 2
or, equivalently,
2
~ 01 ~ N
=q¢1+—-—-5(q — 15.18
qa=q J% T 05 (¢2 — q1) ()

276

15.3. Optimal Sensor Fusion

We have now derived an expression for fusing two independent observa-
tions with different variances that provably minimizes the error between our
estimate and the real value. As ¢ is a linear combination of two random
variables (Section C.4), the new variance is given by

e p—— (15.19)

Interestingly, the resulting variance is smaller than both ¢; and o9; that
is, incorporating additional observations can always help improve accuracy
instead of introducing more uncertainty.

15.3.1. The Kalman Filter

Although we have introduced the problem above as fusing two observations
of the same quantity and weighting them by their variance, we can also in-
terpret the equation above as an update step that calculates a new estimate
of an observation based on its old estimate and a new measurement. Specif-
ically, we can interpret the expression ¢a — ¢ from Equation (15.18) as the
difference between what the robot actually sees and what it thinks it should
see. This term is known as innovation in what is also known as the Kalman
filter. We can now rewrite (15.18) from above into

1 = Tk + K10k, (15.20)

also known as the perception update step. Here, T is the state we are
2

interested in at time k, Ky = ﬁ is what is known as the Kalman gain,
and yr+1 = ¢2 — ¢1 as the innovation.

Unfortunately, there are few systems that allow us to directly measure the
information we are interested in. Rather, we obtain a sensor measurement
2t that we need to convert into something we can use to update our state.
We can then consider the inverse problem of predicting your measurement

zi from your state xj. This is done using the observation model Hy, so that
gk = ZE — Hka?k, (15.21)

where Hpxp is the measurement prediction. In our example, Hy was just
the identity matrix; in a robot position estimation problem, Hy is a function
that would predict how a robot would observe a shift in position through a

277

https://youtu.be/IFeCIbljreY

15. Uncertainty and Error Propagation

sensor. As you can see, all the weighting based on variances is done in the
Kalman gain K.

It is now time for a brief disclaimer: the Kalman filter only works for
linear systems. Forward kinematics of even the simplest robots are mostly
intrinsically non-linear, and so are observation models that relate sensor
observations to the robot position. Non-linear systems can be dealt with by
using the Extended Kalman Filter, which will be introduced a bit later on
in the context of robot localization.

15.4. Take-home lessons

e Uncertainty can be expressed by means of a probability density func-

tion.

More often than not, the Gaussian distribution is chosen as it allows
treating error with powerful analytical tools.

In order to calculate the uncertainty of a variable that is derived from
a series of measurements, we need to calculate a weighted sum in which
each measurement’s variance is weighted by its impact on the output
variable. This impact is expressed by the partial derivative of the
function relating input to output.

It is also possible to fuse independent observations, each with their own
variance, of the same quantity. This will usually reduce the variance
of the resulting observation.

Exercises

1. Given two observations ¢; and ¢ with variances o; and o of a normal dis-

278

tributed process with actual value ¢, an optimal estimate can be calculated
by minimizing the expression

1 1
S—_—(6—¢ 2 7 IRy
J%(q q1) —&-J%(q)

Calculate ¢ so that S is minimized.

. An ultrasound sensor measures distance x = cAt/2. Here, c is the speed

of sound and At is the difference in time between emitting and receiving a
signal.

15.4. Take-home lessons

a) Let the variance of your time measurement At be oZ. What can you

say about the variance of x, when c is assumed to be constant? Hint:
how does a change in At affect z?

b) Now assume that ¢ is changing depending on location, weather, etc. and
can be estimated with variance o2. What is the variance of x now?

3. Consider a unicycle that turns with angular velocity ¢ and has radius r. Its
speed is thus a function of ¢ and r and is given by

U:f((b,’l“>:7"¢

Assume that your measurement of ng is noisy and has a standard deviation
Fe Use the error propagation law to calculate the resulting variance of your

speed estimate o2.
4. Consider a scenario in which a robot can localize itself against landmarks.

Describe what happens to the robot’s positional error in the following three
cases:

a) the landmark location is known and the robot can reliably localize to
it,

b) the landmark location has a variance and the robot can reliably localize
to it,

c¢) both the landmark and localization mechanism have a variance.

5. Write a program that graphically illustrates merging observations with two
different variances in 1D and 2D.

279

Chapter 16

| ocalization

Robots employ sensors and actuators that are subject to uncertainty. Chap-
ter 15 describes how to quantify this uncertainty using probability density
functions that associate a probability with each possible outcome of a ran-
dom process, such as the reading of a sensor or the actual physical change of
an actuator. Here, the robot’s pose is a compound metric that is of central
importance to mobile robotics, and the focus of this chapter.

There are many ways to localize a robot in its environment, and odometry
is just one of them. A different possible way to localize a robot in its envi-
ronment is to extract high-level features (Chapter 9), such as the distance
to a wall from a number of different sensors.

As we have seen in Chapter 15, uncertainty keeps propagating without
the ability to take corrective measurements. The goals of this chapter are to
present mathematical tools and algorithms that will enable you to actually
shrink the uncertainty of a measurement by combining it with additional
observations. In particular, this chapter will cover

e using landmarks to improve the accuracy of a discrete position estimate
(Markov Localization and Bayes Filter),

e approximating continuous position estimates (Particle Filter),

e using the Extended Kalman Filter to estimate a continuous position
estimate.

281

16. Localization

16.1. Motivating Example

Imagine a floor with three doors, two of which are closer together, and
the third farther down the corridor (Figure 16.1). Imagine now that your
robot is able to detect doors, namely that it is able to tell whether it is
in front of a wall or in front of a door. Features like this can serve as
a landmark for the robot. Given a map of this simple environment and
no information whatsoever about where our robot is located, we can use
landmarks to drastically reduce the space of possible locations once the robot
has passed one of the doors. One way of representing this belief is to describe
the robot’s position with three Gaussian distributions, each centered in front
of a door and its variance a function of the uncertainty with which the robot
can detect a door’s center. This is known as a multi-hypothesis belief, since
we have a hypothesis stating that the robot can be in front of each door.
What happens if the robot continues to move? From the error propagation
law we know:

1. The Gaussians describing the robot’s 3 possible locations will move
with the robot.

2. The variance of each Gaussian will keep increasing with the distance
the robot moves.

What happens if the robot arrives at another door? Given a map of the en-
vironment, we can now map the three Gaussian distributions to the location
of the three doors. As all three Gaussians will have moved, but the doors are
not equally spaced, only some of the peaks will coincide with the location of
a door. Assuming we trust our door detector much more than our odometry
estimate, we can now remove all beliefs that do not coincide with a door.
Again assuming our door detector can detect the center of a door with some
accuracy, our location estimate’s uncertainty is now only limited by that of
the door detector.

Things are just slightly more complicated if our door detector is also sub-
ject to uncertainty: there is a chance that we are in front of a door, but
haven’t noticed it. Then, it would be a mistake to remove this belief. In-
stead, we just weigh all beliefs with the probability that there could be a
door. Say our door detector detects false-positives with a 10% chance. Then,
there is a 10% chance to be at any location that is not in front of a door,
even if our detector tells us we are in front of a door. Similarly, our detector

282

16.2. Markov Localization

might detect false-negatives with 20% chance, telling us that there is no door
even though the robot is just in front of it. Thus, we would need to weigh
all locations in front of a door with 20% chance and all locations not in front
of a door with 80% likelihood if our robot tells us there is no door, even if
we are indeed in front of one.

16.2. Markov Localization

Calculating the probability to be at a certain location given the likelihood of
certain observations is the same as any other conditional probability. There
is a formal way to describe such situations: Bayes’ Rule (Appendix C.2):

P(A)P(BJA)

P(AIB) = =5

(16.1)

16.2.1. Perception Update

How does this map into a Localization framework? Let’s assume event A is
equivalent to being at a specific location loc. Let’s also assume that event
B corresponds to the event of seeing a particular feature feat. We can now
rewrite Bayes’ rule to

P(loc)P(feat|loc)
P(feat)

Rephrasing Bayes’ rule in this way, we can calculate the probability to be
at location loc, given that we see feature feat. This is known as Perception
Update. For example, loc could correspond to door 1, 2 or 3, and feat could
be the event of sensing a door. What do we need to know to make use of
this equation?

P(loc|feat) = (16.2)

1. We need to know the prior probability to be at location loc P(loc)

2. We need to know the probability of seeing the feature if we were actu-
ally at this location P(feat|loc)

3. We need the probability of encountering the feature feat P(feat)

Let’s start with (3), which might be the most confusing part of informa-
tion we need to collect. It may make more sense to consider P(feat) =
> wciocations (feat|z) x P(x), the probability that we’d see this feature in a
given location for every possible location. It is also common to see this term

283

16. Localization

]

>» X

Fligure 16.1. A robot localizing itself using a “door detector” in a known map. Top:
Upon encountering a door, the robot can be in front of any of the three doors.
Middle: When driving to the right, the Gaussian distributions representing its
location also shift to the right and widen, representing growing uncertainty. Bot-
tom: After detecting the second door, the robot can discard hypotheses that are
not in front of the door and gains certainty on its location.

284

16.2. Markov Localization

set to 1, with P(loc|feat) written as being proportional to the numerator of
Equation (16.2) instead of equals.

The prior probability to be at location loc, P(loc), is called the belief
model. In the case of the 3-door example, it is the value of the Gaussian
distribution underneath the door corresponding to loc.

Finally, we need to know the probability P(feat|loc) of seeing the feature
feat given that we are at location loc. If your sensor was perfect, this
probability is simply 1 if the feature exists at this location, or 0 if the feature
cannot be observed at this location. If your sensor is not perfect, P(feat|loc)
corresponds to the likelihood of the sensor to see the feature if it exists.

The last missing piece involves deciding how to represent possible loca-
tions. In the graphical example in Figure 16.1 we assumed Gaussian distri-
butions for each possible location. Alternatively, we can discretize the world
into a grid and calculate the likelihood of the robot to be in any of its cells.
In our 3-door world, it might make sense to choose grid cells that have the
width of a door.

16.2.2. Action Update

One of the assumptions in the above thought experiment was that we know
with certainty that the robot moved right. We will now more formally study
how to treat uncertainty from motion. Recall that odometry input is just
another sensor that we assume to have a Gaussian distribution; if our odome-
ter tells us that the robot traveled a meter, it could have traveled a little
less or a little more, with decreasing likelihood the further we get from the
given measurement. We can therefore calculate the posterior probability of
the robot moving from a position loc’ to loc given its odometer input odo:

P(lod— > loc|odo) = P(loc'— > loc) P(odo|loc’— > loc)/ P(odo) (16.3)

This is again Bayes’ rule. The unconditional probability P(loc’— > loc) is
the prior probability for the robot to have been at location loc’. The term
P(odo|lod’— > loc) corresponds to the probability to get odometer reading
odo after traveling from a position loc’ to loc. If getting a reading of the
amount odo is reasonable for the distance from loc’ to loc this probability is
high. If it is unreasonable, for example if the distance is larger than what is
physically possible, this probability should be very low.

As the robot’s location is uncertain, the real challenge is now that the robot

285

16. Localization

could have potentially been anywhere to start with. We therefore have to
calculate the posterior probability P(loclodo) for all possible positions loc’.
This can be accomplished by summing over all possible locations:

P(loclodo) = ZP(loc'— > loc) P(odollod’ — > loc) (16.4)

loc!

In other words, the law of total probability requires us to consider all possible
locations the robot could have ever been at. This step is known as the Action
Update. In practice we don’t need to calculate this for all possible locations,
but only those that are technically feasible given the maximum speed of
the robot. We note also that the sum notation technically corresponds to
a convolution (Appendix C.3) of the probability distribution of the robot’s
location in the environment with the robot’s odometry error probability
distribution.

16.2.3. Example: Markov Localization on a Topological Map

We have now learned two methods to update the belief distribution of where
the robot could be in the environment. First, a robot can use external land-
marks to update its position. This is known as the perception update and
relies on exterioception. Second, a robot can observe its internal sensors.
This is an instance of an action update and relies on proprioception. The
combination of action and perception updates is known as Markov Localiza-
tion. You can think about the action update as increasing the uncertainty of
the robot’s position and the perception update as shrinking it. (You can also
think about the action update as a discrete version of the error propagation
model.)

To illustrate this, we now describe one of the first successful real robot sys-
tems that employed Markov Localization in an office environment. The ex-
periment is described in more detail in a 1995 article of AI Magazine(Nourbakhsh,
Powers & Birchfield 1995). The office environment consisted of two rooms
and a corridor that can be modeled by a topological map (Figure 16.2). In a
topological map, areas that the robot can be in are modeled as vertices, and
navigable connections between them are modeled as edges of a graph. The
location of the robot can now be represented as a probability distribution
over the vertices of this graph.

The robot has the following sensing abilities:

e [t can detect a closed door to its left or right.

286

16.2. Markov Localization

Figure 16.2. An office environment consisting of two rooms connected by a hallway.
A topological map is super-imposed.

Wall Closed dr Open dr Open hwy Foyer

Nothing detected 70% 40% 5% 0.1% 30%
Closed door detected 30% 60% 0% 0% 5%
Open door detected 0% 0% 90% 10% 15%
Open hallway detected 0% 0% 0.1% 90% 50%

Table 16.1. Conditional probabilities of the Dervish robot detecting certain features
in the Stanford laboratory.

e It can detect an open door to its left or right.
e [t can detect whether it is an open hallway.

Unfortunately, the robot’s sensors are not at all reliable. The researchers
have experimentally found the probabilities to obtain a certain sensor re-
sponse for specific physical positions using their robot in their environment.
These values are provided in Table 16.1.

For example, the success rate to detect a closed door is only 60%, whereas
a foyer looks like an open door in 15% of the trials. This data corresponds
to the conditional probability to detect a certain feature given a certain
location.

Consider now the following initial belief state distribution: p(‘1—2') = 0.8
and p(‘2 — 3") = 0.2. Here, ‘1 — 2’ and ‘2 — 3’ refer to the positions on the
topological map in Figure 16.2. For this domain, we are told with certainty

287

16. Localization

that the robot faces east. The robot now drives for a while until it reports
“open hallway on its left and open door on its right”. This actually corre-
sponds to location 2, but the robot can in fact be anywhere. For example
there is a 10% chance that the open door is in fact an open hallway, i.e.
the robot is really at position 4. How can we calculate the new probability
distribution of the robot’s location? Here are the possible trajectories that
could happen:

The robot could move from 2 —3 to 3, 3 —4 and finally 4. We have chosen
this sequence as the probability to detect an open door on its right is zero
for 3 and 3 — 4, which leaves position 4 as the only option if the robot has
started at 2 — 3. In order for this hypothesis to be true, the following events
need to have happened, their probabilities are given in parentheses:

1. The robot must have started at 2 — 3 (20%)

2. Not have seen the open door at the left of 3 (5%) and not have seen
the wall at the right (70%)

3. Not have seen the wall to its left (70%) and not have seen the wall to
its right at node 3 — 4 (70%)

4. Correctly identify the open hallway to its left (90%) and mistake the
open hallway to its right for an open door (10%)

Together, the likelihood that the robot got from position 2 — 3 to position 4
is therefore given by 0.2 x 0.05 x 0.7 x 0.7 x 0.7 x 0.9 x 0.1 = 0.03%, that is
very unlikely.

The robot could also move from 1 — 2 to 2, 2 — 3, 3, 3 —4 or 4. We can
evaluate these hypotheses in a similar way:

e The chance that it correctly detects the open hallway and door at
position 2 is 0.9 x 0.9, so the chance to be at position 2, having started
at 1 — 2,18 0.8 x 0.9 x 0.9 = 64%.

e The robot cannot have ended up at position 2 —3, 3, and 3 —4 because
the chance of seeing an open door instead of a wall on the right side is
zero in all these cases.

e In order to reach position 4, the robot must have started at 1 —2 has a
chance of 0.8. The robot must not have seen the hallway on its left and

288

16.3. The Bayes Filter

the open door to its right when passing position 2. The probability for
this is 0.001 x 0.05. The robot must then have detected nothing at 2—3
(0.7 x 0.7), nothing at 3 (0.05 x 0.7), nothing at 3 —4 (0.7 x 0.7), and
finally mistaken the hallway on its right for an open door at position
4 (0.9 x 0.1). Multiplied together, this outcome is very unlikely.

Given this information, we can now calculate the posterior probability to
be at a certain location on the topological map by adding up the probabilities
for every possible path to get there.

16.3. The Bayes Filter

We have seen how sensor measurements can be formally incorporated into a
position estimate using Bayes’ rule, which relates the likelihood of being at a
certain position given that the robot sees a certain feature to the likelihood of
the robot seeing this feature if it were really at the hypothetical location. We
have also seen how the robot can use its sensor model to relate its observation
with possible positions. Its real location is likely to be somewhere between
its original belief (based on error propagation) and where the sensor tells it
that it is. We will now provide an algorithm for localizing a robot through
a multi-hypothesis, iterative process that does not depend on a particular
class of motion or sensor model (e.g., the Gaussian noise models used by
Kalman Filters).

To formalize our terms and notation, we will describe our robot’s motion
model as the distribution given by P(a'|x,u), that is, the probability of
being in a particular state x’ given that we started in state x and executed
action u. We can describe our sensor model as being characterized by the
distribution given by P(z|x), namely the probability that we would see sensor
observation z if we were in state x. This is not limited to discrete locations
as in the previous sensor, but could also be the likelihood of an ultrasound
sensor detecting a wall a certain distance. Typically, this will require some
discretization of the environment, such as a grid. Finally, we will define the
probability of being in a particular state z as P(z).

Our goal with the Bayes filter will be to estimate our robot’s state over time
(z¢, where t indicates timestep) given a history of actions and observations
(sensor measurements). To do so, we will compute the posterior probability
of our state estimate, also known as belief, using this history. We define
the belief that our robot is in state z at time ¢ given a history of actions

289

16. Localization

(uq, ...us) and sensor measurements (z1, ..., 2¢) as:
Bel(xy) = P(x¢|uy, 21, u2, 22, ... Ut, 2¢)

By leveraging the Markov assumption, that our current state only de-
pends on our previous state x;—; and action u;, we can greatly simplify the
computation required.

P(x¢|xos—1, 214—1, u1:) = P(xe|zi—1,us)

For example, if we wanted to calculate the probability of an observation z,
we know that the only term that actually matters is the robot’s current state
(since the other terms don’t affect what sensor readings we’d expect to get).

P(z|wo:, 21:60—1, u1:t) = P(2e]ae)

We will now derive a recursive definition for belief that makes itera-
tively computing state belief over a time history of actions and observations
tractable. Beginning with our initial definition of belief, we will apply Bayes
rule, the Markov property, the law of total probability, and recursion to
achieve our goal. We will use ¢ to denote the normalizing constant (from the
denominator of Bayes rule), which is the same for all possible z;.

Bel(zt) = P(xt|ur, 21, ..., ut, 2t) (16.5)
Bel(xy) = cx P(z|m, ur, 21, ooy ug, 2¢) * P(2¢]ug, 21, ..., ug) (16.6)
Bel(x) = ¢ x P(z|xy) * P(x¢|u, 21, ..., uy) (16.7)
Bel(zy) = ¢ x P(z¢]xe)*
Z P(It’Ul, 21, ...,Ut,xt_l) * P(iUt_1|U1, Zlyeeey Zt—l)ut)
wtfleX
(16.8)
Bel(zt) = ¢ x P(z¢|xt) * Z P(xi|ug, ve—1) * P(ai—1|u1, 21, ... 2t—1)
r1€X
(16.9)
Bel(zy) = ¢ x P(z¢|xy) * Z P(z|ug, x¢—1) * Bel(xi—1) (16.10)
T 1€X

This final equation is remarkable because it allows us to perform a belief
update for a given state by incorporating a sensor measurement and/or a

290

16.3. The Bayes Filter

motion prediction based on an action we took. With this formulation, we
can define an algorithm for belief updates that takes our current belief, an
array of action and observation data, and the set of states that comprise
the state space as inputs, returning an updated belief that incorporates this
information.

BayesFilter(Belief Bel, Data d, Set of States X):
while d is not empty:
c=20
if (d[0] is a sensor measurement):
z = d.pop(0)
for all z € X:
Bel’(x) = P(z|x)Bel(x)
c += Bel’ (x)
for all x € X:
Bel’ (x) = ¢ '*Bel’ (x)
elif (d[0] is an action):
u = d.pop(0)
for all x € X:
Bel’ (x) =).
Bel = Bel’
return Bel

P(x|u,z¢—1)*Bel(zs—1)

Ti—1

This powerful idea of iteratively incorporating sensor measurements and
motion predictions underpins an entire family of state estimation methods.
In the sections that follow, we will extend this concept to be applicable in
contexts that we often find robots: infinitely large, continuous state spaces
that we cannot exhaustively iterate over.

16.3.1. Example: Bayes filter on a grid

Instead of using a coarse topological map, we can also model the environment
as a fine-grained grid. Each cell is marked with a probability corresponding
to the likelihood of the robot being at this exact location (Figure 16.3). We
assume that the robot is able to detect walls with some certainty, perhaps
with a short-range ultrasonic sensor on the front, back, and sides of the
robot. The images in the right column show the actual location of the
robot, while the left column shows the probability of the robot being in
each grid cell. Initially, the robot does not see a wall and therefore could be

291

16. Localization

Figure 16.3. Markov localization on a grid. The left column shows the likelihood
to be in a specific cell as grey value (dark colors correspond to high likelihoods).
The right column shows the actual robot location. Arrows indicate previous
motion. Initially, the position of the robot is unknown, but recorded upwards
motion makes positions at the top of the map more likely. After the robot has
encountered a wall, positions away from walls become unlikely. After rightwards
and down motions, the possible positions have shrunk to a small area.

292

16.4. Particle Filter

almost anywhere. The robot now moves northwards. The action update now
propagates the probability of the robot being somewhere north. As soon as
the robot encounters the wall, the perception update bumps up the likelihood
to be higher in grid cells near walls. As there is some uncertainty associated
with the wall detector, the robot will not only have likelihood directly at
the wall, but also at other locations — with decreasing probability — close
by to walls. As the action update involved continuous motion to the north,
the likelihood that the robot is close to the south wall is almost zero. The
robot then performs a right turn and travels along the wall in the clockwise
direction. As soon as it hits the east wall, it is almost certain about its
position, which then again decreases as the robot continues to travel.

16.4. Particle Filter

Although grid-based Markov Localization can provide compelling results, it
can be computationally very expensive, in particular when the environment
is large and the resolution of the grid is small. This is in part due to the fact
that we need to carry the probability to be at a certain location forward for
every cell on the grid, regardless of how small this probability is. An elegant
solution to this problem is the particle filter. It works as follows:

1. Represent the robot’s position by N particles that are randomly dis-
tributed around its estimated initial position. For this, we can either
use one or more Gaussian distributions around the initial estimate(s)
of where the robot is, or choose an uniform distribution (Figure 16.4).

2. Every time the robot moves, we will move each particle in the exact
same way, but add noise to each movement much like we would observe
on the real robot. Without a perception update, the particles will
spread apart farther and farther.

3. Upon a perception event, we evaluate every single particle using our
sensor model. What would the likelihood be to have a perception event
such as we observed at this location? We can then use Bayes’ rule to
update each particle’s position.

4. Once in a while or during perception events that render certain parti-
cles infeasible, particles that have a probability that is too low can be
deleted, while those with the highest probability can be replicated.

293

16. Localization

¥,

Fax |
Noraa TN

A

[Y

Figure 16.4. Particle filter example. Possible positions and orientations of the robot
are initially uniformly distributed. Particles move based on the robot’s motion
model. Particles that would require the robot to move through a wall in absence
of a wall perception event are deleted (stars). After a perception event, particles
too far from a wall become too unlikely and are resampled to be in the vicinity
of a wall. Eventually, the particle filter converges.

Observation Let us now assume that we can detect line features zj; =
, where « and r are the angle and distance of the line from the
coordinate system of the robot. These line features are subject to variances

(ciyri)T

294

16.4. Particle Filter

Oa; and op;, which make up the diagonal of Rj. See the line detection
section for a derivation of how angle and distance as well as their variance
can be calculated from a laser scanner. The observation is a 2x1 matrix.

Measurement Update We assume that we can uniquely identify the lines we
are seeing and retrieve their real position from a map that we have been given
in advance. This is much easier for unique features, but can also be done
for lines by assuming that our error is small enough and we therefore can
search through our map and pick the closest lines. As features are stored in
global coordinates, we need to transform them into how the robot would see
them. In practice this is nothing but a list of lines, each with an angle and
a distance, but this time with respect to the origin of the global coordinate
system. Transforming them into robot coordinates is straightforward. With
& = (21, yr, Ok)T and m; = (a4, r;) the corresponding entry from the map,
we can write

ai—e

ri — (zcos(a;) + ysin(ay) (16.11)

W& pype—1) = [a’“] = h(z,m;) = [

Tkyi

and calculate its Jacobian H as the partial derivatives of a to x,y,0 in
the first row, and the partial derivatives of r in the second. How to calculate
h() to predict the radius at which the robot should see the feature with
radius 7; from the map is illustrated in the figure below.

Matching We are now equipped with a measurement z; and a prediction
h(Z,—1) based on all features stored in our map. We can now calculate the
innovation

Uy, = 2k — h(Zpp—1) (16.12)

which is simply the difference between each feature that we can see and
those that we predict from the map. The innovation is again a 2x1 matrix.

A major strength of particle filters is that they are non-parametric estima-
tors of arbitrary probability distributions, and thus are able to accommodate
non-linear functions that Kalman Filters cannot. However, this is not the
only algorithm available for utilizing non-linear motion and sensor models
for state estimation. We now introduce a modification to the Kalman Filter
enabling the use of non-linear models.

295

16. Localization

16.5. Extended Kalman Filter

In contrast to the linear models required of the Kalman Filter, in the Ex-
tended Kalman Filter the state transition and observation models do not
need to be linear functions of the state but may instead be any function so
long as it’s differentiable. The action prediction step looks as follows:

Zppr—1 = f(Tr-1,ug-1) (16.13)

Here f() is a function of the previous state x;_1 and control input ug_1. A
good example for such an equation is the odometry update we are already
familiar with. Here, f() is a function describing the forward kinematics of
the robot, xj its position and uj the wheel-speed we set.

Sticking with our well known example, we can also calculate the covariance
matrix of the robot position

Pyt = VayofPr15-1Vayof' +Va, fQr 1Va, f- (16.14)

where @, was the covariance matrix of the wheel-slip and the Jacobian
matrices of the forward kinematic equations f() with respect to the robot’s
position (indicated by the index z,y,6) and with respect to the wheel-slip
of the left and right wheel.

The perception update step now looks as follows:

Ly =T -1 + Kp Yy (16.15)
Pk‘k’:(I_Kk"Hk’)Pk"k—l (1616)

We are calculating everything twice: once we update from & — 1 to an
intermediate result &’ during the action update using our motion model, we
obtain the final result after performing the perception update where we go
from k' to k.

We need to calculate three additional variables:

1. The innovation g, = zx — h(Zpk—1)
2. The covariance of the innovation S}, = HkPk|k_1H; + Ry,

3. The (near-optimal) Kalman gain Ky = PWC_lH;S,;l

296

16.5. Extended Kalman Filter

Here h() is the observation model and H its Jacobian. How these equations
are derived is involved (and is one of the fundamental results in control
theory), but the idea is the same as introduced above: we wish to minimize
the error of the prediction.

16.5.1. Odometry using the Kalman Filter

We will show how a mobile robot equipped with a laser scanner that has
a map of the environment can correct its position estimate by relying on
unreliable odometry and unreliable sensing, in an optimal way. Whereas the
update step is equivalent to forward kinematics and error propagation that
we have seen before, the observation model and calculating the “innovation”
require additional steps to perform odometry.

1. Prediction We assume for now that the reader is familiar with calculating
Ty o1 = f(z,y,0)" and its variance Pjyj;—1. Here, Q_y, the covariance
matrix of the wheel-slip error, is given by

krlAsy 0] (16.17)

Qk_l - [0 kl‘ASl’

where As; and As, is the wheel movement of the left and right wheel and k;
and k, are constants. Refer to the odometry lab for detailed derivations of
these calculations and how to estimate k;, and k;. The state vector &g/ _1 is
a 3x1 vector, the covariance matrix Pys|g_1 is a 3X3 matrix, and Va,, that
is used during error propagation is a 3x2 matrix. See the error propagation
section for details on how to calculate VAN.

2. Observation Let us now assume that we can detect line features 2z ; =
(a;,)T, where o and r are the angle and distance of the line from the
coordinate system of the robot. These line features are subject to variances
0q,; and o;;, which make up the diagonal of Rj. See the line detection
section for a derivation of how angle and distance as well as their variance
can be calculated from a laser scanner. The observation is a 2x1 matrix
(representing angle and distance).

3. Measurement Update We assume that we can uniquely identify the lines
we are seeing and retrieve their real position from a map. This is much easier
for unique features, but can also be done for lines by assuming that our error
is small enough and that we can search through our map and pick the closest
lines. As features are stored in global coordinates, we need to transform

297

16. Localization

them into how the robot would see them. In practice this is nothing but
a list of lines specified with respect to the origin of the global coordinate
system, each with an angle and a distance. Transforming them into robot
coordinates is straightforward. With & = (zg,yx,0x)" and m; = (az,7;)
the corresponding entry from the map, we can write

ai—e

ri — (zcos(a;) + ysin(ay) (16.18)

h&g—1) = [ak’i] = h(x,m;) = [

Tk,i

and calculate its Jacobian H as the partial derivatives of « to x,y,60 in
the first row, and the partial derivatives of r in the second. How to calculate
h() to predict the radius at which the robot should see the feature with
radius r; from the map is illustrated in the figure below.

4. Matching We are now equipped with a measurement z; and a prediction
h(Z ;1) based on all features stored in our map. We can now calculate the
innovation

Yy = 2k — h(Zpp—1) (16.19)

which is simply the difference between each feature that we can actually
see (our sensor measurement) and the measurement values that we would
expect if making a prediction using the map (not using our sensors). The
innovation is again a 2x1 matrix.

5. Estimation We now have all the ingredients to perform the perception
update step of the Kalman filter:

LTy =T -1 + Kp Yy (16.20)
Pk‘k’:(I_Kk’Hk‘/)Pk‘"k—l (1621)

It will provide us with an update of our position that fuses our odometry
input and the information that we can extract from features in the environ-
ment in a way that takes into account their variances. That is, if the variance
of your previous position is high (because you have no idea where you are),
but the variance of your measurement is low (maybe from a GPS or a highly
recognizable symbol on the wall), the Kalman filter will put more emphasis
on your sensor. If your sensors are poor (maybe because you cannot tell
different lines/walls apart), more emphasis will be placed on the odometry.

298

16.6. Summary: Probabilistic Map based localization

As the state vector is a 3x1 vector and the innovation a 2x1 matrix, the
Kalman gain must be a 3x2 matrix. This can also be seen when looking
at the covariance matrix that must come out as a 3x3 matrix, and knowing
that the Jacobian of the observation function is a 2x3 matrix. We can now
calculate the covariance of the innovation and the Kalman gain using

Sk=HiPy,_H, + Ry, (16.22)
Kyp=Py_H.S;' (16.23)

16.6. Summary: Probabilistic Map based localization

In order to localize a robot using a map, we need to perform the following
steps:

1. Calculate an estimate of our new position using the forward kinematics
and knowledge of the wheel-speeds that we sent to the robot until the
robot encounters some uniquely identifiable feature.

2. Calculate the relative position of the feature (a wall, a landmark or
beacon) to the robot.

3. Use knowledge of where the feature is located in global coordinates to
predict what the robot should see.

4. Calculate the difference between what the robot actually sees and what
it believes it should see (e.g. using a Kalman filter).

5. Use the result from (4) to update its belief by weighing each observation
against its variance.

Steps 1-2 are based on the sections on “Forward Kinematics” and “Line
detection”. Step 3 uses again simple forward kinematics to calculate the
position of a feature stored in global coordinates in a map in robot coordi-
nates. Step 4 is a simple subtraction of what the sensor sees and what the
map says. Step 5 may induce the Kalman filter, or an error minimization
constraint.

299

16. Localization

Take home lessons

e If the robot has no additional sensors and its odometry is noisy, er-
ror propagation will lead to ever increasing uncertainty of a robot’s
position regardless of using Markov localization or the Kalman filter.

e Once the robot is able to sense features with known locations, Bayes’
rule can be used to update the posterior probability of a possible po-
sition. The key insight is that the conditional probability to be at a
certain position given a certain observation can be inferred from the
likelihood to actually make this observation given a certain position.

e A complete solution that performs this process for discrete locations
is known as Markov Localization.

e The Extended Kalman Filter is the optimal way to fuse observations
of different random variables that are Gaussian distributed.

e Possible random variables could be the estimate of your robot position
from odometry and observations of static beacons with known location
(but uncertain sensing) in the environment.

e In order to take advantage of the approach, you will need differentiable
functions that relate measurements to state variables as well as an
estimate of the covariance matrix of your sensors.

e An approximation that combines benefits of Markov Localization (mul-
tiple hypothesis) and the Kalman filter (continuous representation of
position estimates) is the Particle filter.

Exercises

1. Assume that the ceiling is equipped with infrared markers that the robot can
identify with some certainty. Your task is to develop a probabilistic localiza-
tion scheme, and you would like to calculate the probability p(marker|reading)
to be close to a certain marker given a certain sensing reading and information
about how the robot has moved.

a) Derive an expression for p(marker|reading) assuming that you have an
estimate of the probability to correctly identify a marker p(reading|marker)
and the probability p(marker) of being underneath a specific marker.

300

16.6. Summary: Probabilistic Map based localization

b) Now assume that the likelihood that you are reading a marker correctly
is 90%, that you get a wrong reading is 10%, and that you do not see
a marker when passing right underneath it is 50%. Consider a narrow
corridor that is equipped with 4 markers. You know with certainty
that you started from the entry closest to marker 1 and move right in
a straight line. The first reading you get is “Marker 3”. Calculate the
probability to be indeed underneath marker 3.

c¢) Could the robot also possibly be underneath marker 47

301

Chapter 17

Simultaneous Localization and Map-
ping

Robots are able to keep track of their position and orientation, known as
pose, using a model of the noise arising in their drivetrain and their forward
kinematics to propagate this error into a spatial probability density func-
tion (Section 15.2). If the robot sees uniquely identifiable landmarks with
known locations, the variance of this distribution would shrink. This can
be accomplished for discrete locations using Bayes’ rule (Section 16.2) and
for continuous distributions using the extended Kalman filter (Section 16.5).
The key insight here is that every observation will reduce the variance of
the robot’s position estimate. The Kalman filter performs an optimal fusion
of two observations by weighting them inversely by their variance, i.e., un-
reliable observations count less than reliable ones. In the robot localization
problem, one of the observations is typically comes from the robot’s pro-
prioceptive position observations (e.g. using wheel encoders or feed-forward
control inputs) whereas the other observation comes from a landmark with
known location on a map composed of “landmarks.” So far, we have assumed
that these locations are known. This chapter will introduce:

e the concept of covariance (or, what all of the non-diagonal elements in
the covariance matrix describe), and

e how to estimate the robot’s location and that of landmarks in the map
at the same time (simultaneous localization and mapping, or SLAM)

303

17. Simultaneous Localization and Mapping

17.1. Introduction

The SLAM problem has been a cornerstone problem of autonomous mobile
robotics for a long time. It provides the foundation for a robot to be trans-
ported to an unknown location and being able to explore the area and build
metrically accurate maps and pose estimates through onboard sensing alone.
This could be useful for any field robot, whether terrestrial, extraterrestrial,
under the ocean or in an unexplored built environment. This chapter will
introduce one of the first comprehensive solutions to the problem to build
understanding, even though it has since been superseded by computationally
more efficient versions with a variety of algorithmic speed-ups and accuracy
improvements. Let’s begin by studying a series of special cases.

17.1.1. Landmarks

Since exteroceptive sensor measurements occur at a high frequency and gen-
erally must be processed in some way to reduce this data to algorithmi-
cally usable content, these measurements are generally distilled into features
(Chapter 9). The features present in each sensor measurement, as explained
in Section 9.3 for lines, are less numerous than the number of data points
in each measurement, and may be matched across measurements repeatably
despite slight viewpoint changes. Worth noting here is that not all features
may be matched across a sequence of sensor measurements. Those features
that may be matched reliably represent coherent structures in the world
(e.g. a wall or edge) are geometrically pertinent. The structures are known
as landmarks; they are geometric objects in the real world that can be used
to inform motion within the world.

17.1.2. Special Case I: one landmark

Consider an environment about which you know that it has only a single
landmark, but the position of the landmark is unknown. We assume that
the robot is able to obtain the relative range and angle of this landmark, each
with some variance. This landmark could be a tower, but also a graphical
tag that the robot can uniquely identify. The position of this measurement
of the landmark m; = [ay, ;] in global coordinates is unknown, but can be
calculated if an estimate of the robot’s position &, is known. The variance of
m;’s components is now the variance of the robot’s position plus the variance
of the observation.

Now consider the robot moving toward the landmark and obtaining ad-

304

17.1. Introduction

ditional observations of it. Although the robot’s position uncertainty is
growing as it moves, it can now rely on the landmark m; to reduce the vari-
ance of its prior position (as long as the landmark is stationary). Repeated
observations of the same landmark from different angles and distances might
improve the quality of its estimation of the landmark’s position, and hence,
its own position. The robot therefore has a chance to keep its variance very
close to that with which it initially observed the landmark and stored it into
its map!

How does the arithmetic operation of this measurement fusion proceed?
As you may have already guessed, this probabilistic updating can be accom-
plished through the use of the EKF framework from Section 16.5. In that
treatment, we assumed that landmarks have a deterministic location, but
that the robot’s sensing introduces a variance. This variance was propa-
gated into the covariance matrix of the innovation (S). We can now simply
add the variance of the estimate of the landmark’s position to that of the
robot’s sensing process.

17.1.3. Special Case Il: two landmarks

Consider now a map that has two landmarks. Visiting one after the other,
the robot will be able to store both of them in its map, although the sec-
ond landmark’s location will be observed with higher variance due to the
increasing positional variance with time. Although the observations of both
landmarks are independent from each other, the relationship between their
variances depend on the trajectory of the robot. The differences between
these two variances are much lower if the robot observes them by moving in
a straight line than when it performs a series of turns between them, since
turns introduce greater variance in position.

As a thought experiment, consider this: a robot is driving for quite a long
time and has accumulated a large variance in its position. It then observes
the landmarks, one after the other, in a short period of time. The result of
this would be that the probability density function over the distance between
the two landmarks would have be narrowly distributed. This probability
density function can be understood as the covariance of the two random
variables (each consisting of range and angle). In probability theory, the
covariance is the measure of how much two variables are changing with
respect to one another. Obviously, the covariance between the locations
of two landmarks that are visited immediately after each other by a robot

305

17. Simultaneous Localization and Mapping

is much larger in magnitude than if those landmarks were to be observed
far apart. This does not indicate that there is greater uncertainty in the
landmarks’ locations, rather that there is correlation between the variables.
It should therefore be possible to use the covariance between landmarks to
correct estimates of landmarks in retrospect. If the robot returns to the first
landmark it has observed, it will be able to reduce the variance of its position
estimate. As it knows that it has not traveled very far since it observed the
last landmark, it can then correct this landmark’s position estimate.

17.2. The Covariance Matrix

When estimating quantities with multiple variables, such as the position of
a robot that consists of its z-position, its y-position and its orientation, ma-
trix notation is a convenient way of writing down the relationships between
them. For error propagation, we have written the variances of each input
variable into the diagonal of a covariance matrix. For example, when using
a differential wheel robot, uncertainty in position expressed by o, 0y and oy
were grounded in the uncertainty of its left and right wheel. We entered the
variances of the left and right wheel into a 2 x 2 matrix and obtained a 3 x 3
matrix that had 0., 0, and oy on its diagonal. Here, we set all other entries
of the matrix to zero and ignored entries in the resulting matrix that were
not on its diagonal. The reason we could do this is because the uncertainties
in the left and right wheels are independent random processes: there is no
reason that the left wheel slips, just because the right wheel slips. Thus the
covariance—the measure on how much two random variables are changing
together—of these is zero. This is not the case for the robot’s position: un-
certainty in one wheel will affect all output random variables (o, oy, and o)
at the same time, which is expressed by their non-zero covariances. There-
fore, there will be non-zero entries off the diagonal of the output covariance
matrix.

In the context of SLAM, we will maintain the poses of all landmarks that
the robot is aware of in a column vector. There variances will make up the
diagonal of a large covariance matrix. As the robot visits consecutive land-
marks there variances are correlated, leading to non-zero diagonal entries.

306

17.3. EKF SLAM

17.3. EKF SLAM

The key idea in EKF SLAM is to extend the state vector from the robot’s
position (and potentially pose) to contain the position of all landmarks.
Thus, the state:

i"k’\k—l = (xaya G)Ta (171)

becomes
Ci'k:($7y,9,a1,7’1,...,aN,T‘N)T7 (172)

assuming N landmarks, which is a (3 +2N) x 1 vector. The action up-
date (or “prediction update”) is identical to as if the landmarks are already
known; the robot simply updates its position using odometry and updates
the variance of its position using error propagation. The covariance matrix
is now a (34 2N) x (3 + 2N) matrix that initially holds the variances on
position and those of each landmark on its diagonal.

What about the perception update? Here it is worth noting that only
one landmark is observed at a time; even if they are observed at nearly
identical times, the algorithm requires only observing one landmark first,
and then the next. Thus, if the robot observes multiple landmarks at once,
one needs to do multiple, consecutive perception updates. In practice this
implies that only those values of the observation vector (a (3 + 2N) x 1
vector) that correspond to the landmark that you observe will be nonzero.
Similar considerations apply to the observation function and its Jacobian.

17.3.1. Algorithm

We now introduce the algorithm for EKF SLAM, which is based on an it-
erative re-approximation scheme of the state vector and its corresponding
covariance matrix. The state vector now includes the robot’s position (po-
tentially pose) and the position of all landmarks. The process proceeds as
follows.

Initialization

To initialize the state vector, first set all of its entries to zeros (begin by
assuming no landmarks in the environment):

o = (07 07 O)T7 (173)

and set its covariance to a small number e:

307

17. Simultaneous Localization and Mapping

€00
Py=1{0e0]. (17.4)
00¢

This is due to the fact that one cannot know any quantity definitively, and
also that otherwise the zero matrix would be uninvertible.

Update

If the robot is under motion and its sensors are providing information on
landmarks of the map, then the state vector will be augmented in time
while the pose of the robot will also be updated for each time-step. In EKF
SLAM, both the sensor model and the process model may be non-linear, so
we will need to calculate the Jacobian of these functions with respect to the
state and covariance matrices.

This update is a two-step process: first the prediction update, followed by
the perception update.

The prediction update. If f is the nonlinear transition model for the system
and u are hypothetical control inputs, then the state prediction update is
given as:

Zppk—1 = f(Tr-1, Ug-1). (17.5)

Meanwhile, the covariance prediction update is:

Py =Fsz P, FL +N, (17.6)

Zr_1
where Fg, |, = %];{,1 denotes the Jacobian matrix of the nonlinear
transition model with respect to the state variable evaluated at k£ — 1, and
N is the covariance matrix of noise affecting the system’s actuators (assumed
to be additive in the state).

A remarkable result is that only the robot’s state (and not the landmark
positions in the world frame) is dependent on k, so most of Pk/| k—1 will not
be updated in this step.

The perception update. We assume that the sensor observation function
h(x) may be nonlinear and is affected by additive noise with covariance R.
The actual noisy measurement coming from the sensors will be denoted as
Y- The Jacobian of the observation function evaluated at the prior timestep

is Hg , = 8}5(;’) |z. This update operates on the results from the prediction

308

17.3. EKF SLAM

update in order to provide a “fully fused” state estimate. The state per-
ception update, which results in the next state estimate and corresponding
state covariance estimate, is:

Epjk—1 = Trrpp—1 + K (Y — M@ p—1)), (17.7)

and

Py =Py — KpZp K, (17.8)

where Z;, and Ky are:

Zy =Hg, Py H} , +R, (17.9)

and

Ky = Py H} Zy (17.10)

respectively. Crucially this step requires the careful and error-free associa-
tion of features with landmarks in a process known as data association. Data
association can be accomplished through using description vectors over the
features and matching if the similarity of the descriptors are above a certain
threshold, or through a Hungarian algorithm for optimal assignment. This
data association step can be avoided if the landmarks are uniquely labeled
and do not rely on feature matching. It may also depend on the generation
of new landmarks or the deletion of old ones to keep the state vector of
bounded length.

Note that there are some significant computational speedups associated
with the matrix inversions and multiplications in the preceeding update
equations due to their sparsity, which we do not cover explicitly here. In
total, the total complexity for the updates is O(kn?), where k is the number
of landmarks and n is the number of states. There are ways to in fact make
this algorithm constant-time through a process known as marginalization
(Sibley, Matthies & Sukhatme 2010), wherein some variables are effectively
no longer re-estimated (e.g. old poses which are no longer affecting the cur-
rent pose significantly).

17.3.2. Multiple Sensors

The use of sensors in robotics is riddled with multiple cost-benefit analyses.
A vision sensor provides information on the structure of the environment and

309

17. Simultaneous Localization and Mapping

pose-to-pose information, e.g. through frame-to-frame alignment. However
it succumbs in low-light or textureless environments, where frame alignment
may no longer be feasible due to inadequate information content. A depth
sensor can provide information on structure but can fail in many odometric
tasks due to redundant geometry (e.g. in a building corridor). Finally, an
IMU can provide short-term odometry estimates intrinsically, but without
any environmental sensing, quickly drifts and diverges. There are constantly
more sensors being brought into the mix of this cost-benefit analysis, but one
can only add so many sensors to a platform due to size, weight, power, and
cost constraints. The choice of sensors must be made based on the expected
environment and design considerations.

Once a subselection of sensors has been determined, these sensors can be
integrated into an EKF SLAM system through a simple augmentation. In
this case, the Update step in Section 17.3.1 may be augmented with an ar-
bitrary number of sensors to be robust to failure modes in any one sensor.
For instance, an IMU can provide orientation observations interleaved with a
range sensor providing orientation and position observations based on land-
marks. The overall algorithm for EKF SLAM is unchanged here, but merely
introduces more update steps at different frequencies.

17.4. Graph-based SLAM

Usually, a robot obtains an initial estimate of where it is using some on-
board sensors (odometry, optical flow, etc.), leverages this estimate to local-
ize landmarks (walls, corners, graphical patterns) in the environment, and
finally refines its pose estimate by matching sensor information in consec-
utive fields-of-view using for example the ICP algorithm (Section 12.2) or
feature matching. As soon as a robot revisits the same landmark twice, it
can update the estimate on its location. As consecutive observations are not
independent, but rather closely correlated, the refined estimate can then be
propagated along the robot’s path. This is formalized in EKF-based SLAM,
where new measurements which are reliable can correct for errors in prior
measurements.

A more intuitive way to look at this is to consider it as a “graph” made
up of masses at nodes and springs on the edges. Consider this spring-mass
analogy: each possible pose (mass) is constrained to its neighboring pose by
a spring. The higher the uncertainty of the relative transformation between
two poses (e.g., obtained using odometry), the weaker the spring. Every time

310

17.4. Graph-based SLAM

Figure 17.1. Robot poses (triangles) and unique landmarks (stars) form a pose
graph on a 2D map. Edges between robot poses indicate odometry measure-
ments. Edges between robot poses and landmarks indicate range and bearing
measurements. Upon a loop closure, here the re-discovery of landmark 3, all
poses between the events can be adjusted.

a robot gains confidence on a relative pose, the spring is stiffened instead.
Eventually, all poses will be pulled in place so as to minimize the overall
tension across the graph. This can be achieved by numerically minimizing
the overall error based on all available observations using gradiant descent.
This formulation of the SLAM problem is known as Graph-based SLAM,
see also (Grisetti, Kummerle, Stachniss & Burgard 2010). An example pose
graph with feature-based landmarks is shown in Figure 17.1.

17.4.1. SLAM as a Maximum-Likelihood Estimation Problem

The classical formulation of SLAM describes the problem as maximizing
the posterior probability of all points on the robot’s trajectory given the
odometry input and the observations. Formally,

p(x1.1, m|z1r, urr), (17.11)

311

17. Simultaneous Localization and Mapping

where z1.7 are all discrete positions from time ¢ € (1,7, z are the obser-
vations, and u are the odometry measurements. This formulation makes
heavily use of the temporal structure of the problem. In practice, solving
the SLAM problem requires:

1. a motion update model, i.e., the probability p(x|x;—1,u;) to be at
location x; given an odometry measurement u; and being at location
ri_1, and

2. a sensor model, i.e., the probability p(z;|z:,m;) to make observation
z¢ given the robot is at location x; and the map my.

Note that these are reminiscent of the probabilities we invoked on action
and perception updates in the EKF. Namely, in EKF-SLAM we maintained
a probability density function for the robot pose as well as the positions
of all landmarks on the map. Being able to address the data association
problem, where features are corresponded with landmarks, is still of utmost
importance. Like EKF-based SLAM, graph-based SLAM does not solve this
problem and will fail if landmarks are confused.

In graph-based SLAM, a robot’s trajectory forms the nodes of a graph
whose edges are transformations (translation and rotation) that have a vari-
ance associated with it. An alternative view is the spring-mass analogy
mentioned above. Instead of having each spring wiggle a node into place,
graph-based SLAM aims at finding those locations that maximize the joint
likelihood of all observations. Said differently: of all the possible values the
state variables can take, graph-based SLAM finds the “best” values which
are defined as the most likely ones based on the evidence (observations from
odometry and sensors). As such, graph-based SLAM is a mazimum likelihood
estimation problem.

To ground this arithmetically, let’s revisit the normal distribution:

1 —(z—pw)?
e 2t (17.12)

oV 2w

It provides the probability for a measurement to have value x given that
this measurement is normal distributed with mean x and variance o2. This
is a univariate (single-variable) formulation of the normal distribution, how-
ever it can be extended to multivariate distributions by considering x and p

312

17.4. Graph-based SLAM

as vectors and o as the covariance matrix. We can now associate such a dis-
tribution with every node-to-node transformation. We denote the measure-
ment of a transformation between node ¢ and a node j as z;;. Its expected
value is denoted Z;;; this expected value is based on some model for the
measurements that operate on the state variables and output an “expected
measurement” based on the current value of the state variables.

A quick aside regarding expected measurements: we’ve seen this before.
Recall in Section 8.4 where we constructed a sensor model for a camera of
3D points based on 2D measurements. Those 3D points here represent land-
marks we are tracking, and the 2D measurements are the 2;; of constraints
between the position and the projection of the landmarks. Note that the
projection of the landmarks as a sensor measurement are 2D in the camera
case, so there is a correspondence between the real measurement taken of a
landmark z;; and the predicted one Z;; based on the estimated position of
the robot and the estimated position of the landmark.

Formulating a normal distribution of measurements z;; with mean 2;; and
a covariance matrix ¥;; (containing all variances of the components of z;; in
its diagonal) is now straightforward. Note that just as in Eq. (17.12) involves
the distance between the observation and its expected value scaled inversely
by the square of the standard deviation, in our case we utilize the inverse of
the squared covariance matrix, also known as the information matrix (as it
denotes the amount of “information” on a variable that is available), which
we denote by {);; = Z;jl.

As we are interested in maximizing the joint probability of all measure-
ments []z;; over all edge pairings ij following the maximum likelihood
estimation framework, it is customary to express the PDF using the log-
likelihood. Note that this provides some algebraic convenience in two ways.
First, the logarithm is a positive monotonic operation, so the logarithm of
any function will not change the points at which it is maximized or mini-
mized. Second, the logarithm of Eq. (17.12) will result in a linear function in
x, which is easier to work with than the cumbersome exponential function.
By taking the natural logarithm on both sides of the PDF expression in Eq.
(17.12), the exponential function vanishes and log[] z;; becomes)" log z;;
or) l;;, where l;; is the log-likelihood distribution for z;;.

lij oc (23 — Zij (i 27)) Qg (235 — 235 (23, 25)) (17.13)

Again, the log-likelihood for observation z;; is directly derived from the

313

17. Simultaneous Localization and Mapping

definition of the normal distribution, but using the information matrix in-
stead of the covariance matrix and is ridden of the exponential function by
taking the logarithm on both sides.

The optimization problem can now be formulated as:

* : T
a” = argmin Z e;;8ijeij, (17.14)
<i,j>€C

with e;j(xs,25) = 2zij — 2ij(x;,xj) the error between measurement and ex-
pected value. Note that the sum actually needs to be minimized as the
individual terms are technically the negative log-likelihood.

17.4.2. Numerical Techniques for Graph-based SLAM

Solving the MLE problem is non-trivial, especially if the number of con-
straints provided, i.e., observations that relate one landmark to another, is
large. A classical approach is to linearize the problem at the current config-
uration and reducing it to a problem of the form Ax = b. The intuition here
is to calculate the impact of small changes in the positions of all nodes on
all e;;. After performing this motion, linearization and optimization can be
repeated until convergence.

Recently, more powerful numerical methods have been developed. Instead
of solving the MLE, one can employ a stochastic gradient descent algorithm.
A gradient descent algorithm is an iterative approach to find the optimum
of a function by moving along its gradient. Whereas a gradient descent algo-
rithm would calculate the gradient on a fitness landscape from all available
constraints, a stochastic gradient descent picks only a (non-necessarily ran-
dom) subset. Intuitive examples are fitting a line to a set of n points, but
taking only a subset of these points when calculating the next best guess.
As gradient descent works iteratively, the hope is that the algorithm takes a
large part of the constraints into account. For solving Graph-based SLAM,
a stochastic gradient descent algorithm would not take into account all con-
straints available to the robot, but iteratively work on one constraint after
the other. Here, constraints are observations on the mutual pose of nodes
i and j. Optimizing these constraints now requires moving both nodes
and j so that the error between where the robot thinks the nodes should be
and what it actually sees gets reduced. As this is a trade-off between multi-
ple, maybe conflicting observations, the result will approximate a Maximum
Likelihood estimate.

314

17.4. Graph-based SLAM

More specifically, with e;; the error between an observation and what the
robot expects to see, based on its previous observation and sensor model,
one can distribute the error along the entire trajectory between both land-
marks that are involved in the constraint. That is, if the constraint involves
landmarks ¢ and j, not only ¢ and j’s pose will be updated but all points
in-between will be moved a tiny bit.

In Graph-based SLAM, edges encode the relative translation and rota-
tion from one node to the other. Thus, altering a relationship between
two nodes will require to propagate to all nodes in the network. This is
because the graph is essentially a chain of nodes whose edges consist of
odometry measurements. This chain then becomes a graph whenever ob-
servations (using any sensor) introduce additional constraints. Whenever
such a “loop-closure” occurs, the resulting error will be distributed over the
entire trajectory that connects the two nodes. This is not always necessary,
for example when considering the robot driving a figure-8 pattern. If a loop-
closure occurs in one half of the 8, the nodes in the other half of the 8 are
probably not involved.

This can be addressed by constructing a minimum spanning-tree (MST)
of the constraint graph. The MST is constructed by doing a Depth-First
Search (DFS) on the constraint graph following odometry constraints. At
a loop-closure, i.e., an edge in the graph that imposes a constraint to a
previously seen pose, the DFS backtracks to this node and continues from
there to construct the spanning tree. Updating all poses affected by this new
constraint still requires modifying all nodes along the path between the two
landmarks that are involved, but inserting additional constraints is greatly
simplified. Whenever a robot observes new relationships between any two
nodes, only the nodes on the shortest path between the two landmarks on
the MST need to be updated.

Take-home lessons

e Simultaneous Localization and Mapping (SLAM) is a key capability
for mobile robots to operate autonomously in the world.

e There exist robust implementations for environments with strong land-
marks, that is landmarks that can be reliably localized and identified,
that use different forms of optimization to find a collection of poses
that are most likely given the available measurements.

315

17. Simultaneous Localization and Mapping

e SLAM strongly benefits from additional sensors, that can provide ad-
ditional evidence, in particular beacon-based sensors such as GPS.

e How to deal with environments with dynamical objects, that is chang-
ing maps, remains an open problem.

Exercises

1. In the following, you will develop a basic EKF-based SLAM system with
known landmarks:

a)

d)

Implement a single-landmark SLAM system. Implement basic odometry
in a simulator of your choice as well as a detector to measure the angle
and distance to a single landmark. Initialize your first measurement
with the mean and variance from your odometry measurement and show
how additional measurements can provide a bound on the odometry
error using an Kalman filter.

Introduce an additional landmark and let the robot return to the first
landmark after visiting the second landmark. What can you say about
the variance of the second landmark after correcting your variance when
reaching the first landmark for the second time?

Implement a simulation environment that consists of multiple distinct
landmarks. The Ratslife world is a good example (see Figure 1.3).
Experimentally determine the average variance when localizing against
your landmarks. How you do this will depend on the tools already at
your disposal. It is ‘OK’ to cheat, for example by providing the robot
with a list of landmarks close by and simulating a range and bearing
measurement. Alternatively, download an open-source SLAM dataset
such as the UTTAS Mr.CLAM dataset.

Use the tools that you developed above to implement EKF-based SLAM.

2. EKF-based SLAM requires landmarks to be uniquely identifiable. Think
about a possible implementation using only corner and wall detectors. How
could you make these landmarks appear to be unique and what is the limi-
tation of this approach?

3. In the following, you will develop a basic Graph-based SLAM system:

316

a)

b)

Implement a graph data structure that allows you to maintain pose of
the robot and landmarks in the environment. Store translation and
rotation from node to node or to the landmark, respectively, on each
edge.

Implement a Depth-First Search algorithm that allows you to compute
the shortest path between two nodes on the graph.

17.4. Graph-based SLAM

¢) Use your own simulator or a canned dataset to implement basic graph-
based SLAM. Upon loop closure, update your pose estimate based on
the landmark position by averaging between. Use your new estimate to
update previous poses along the shortest path back to the previous pose
at which the landmark has been observed. Experiment with different
policies to update your pose and document your findings.

317

Part V.

Appendices

319

Appendix A

Trigonometry

Trigonometry relates angles and lengths of triangles. Figure A.1 shows a right-
angled triangle and conventions to label its corners, sides, and angles. In the fol-
lowing, we assume all triangles to have at least one right angle (90 degrees or 7) as
all planar triangles can be dissected into two right-angled triangles.

90-180 —_ 0..90
sin
«
cosa
A
180-270 270-360

Figure A.1. Left: A right-angled triangle with common notation. Right: Trigono-
metric relationships on the unit circle and angles corresponding to the four quad-
rants.

The sum of all angles in any triangle is 180 degrees or 27, or
a+ [+v=180° (A1)

If the triangle is right-angled, the relationship between edges a, b, and ¢, where c is
the edge opposite of the right angle is

a4+ v =c? (A.2)

The relationship between angles and edge lengths are captured by the trigonometric

323

A. Trigonometry

functions:
sina = % =2 (A.3)
cosa = % = % (A.4)
tana = ponte _ o g (A5)

Here, the hypothenuse is the side of the triangle that is opposite to the right
angle. The adjacent and opposite are relative to a specific angle. For example, in
Figure A.1, the adjacent of angle « is side b and the opposite of « is edge a.

Relations between a single angle and the edge lengths are captured by the law of
cosines:

a® =b* 4+ — 2bccos a (A.6)

A.1l. Inverse trigonometry

In order to calculate an angle given two edges, one uses inverse functions sin™?,

cos™!, and tan~!. (Not to be confused with - etc.) As functions can, by definition,
only map one value to exactly one other value, sin~! and tan~! are only defined in
the interval [—90°; +90°] and cos~! is defined in the interval [0°; 180°]. This makes
it impossible to calculate angles in the 2nd and 3rd, or the 3rd and 4th quadrant,
respectively (Figure A.1). In order to overcome this problem, most programming
languages implement a function atan2(opposite,adjacent), which evaluates the
sign of the numerator and denumerator, provided as two separate parameters.

A.2. Trigonometric identities

Sine and cosine are periodic, leading to the following identities:

sinf = —sin(—0) = — cos(0 + g) = cos(f — %) (A.7)
cos) = cos(—0) = sin(f + g) = —sin(d — g) (A.8)

The sine or cosine for sums or differences between angles can be calculated using
the following identities:

cos(01 + 62) = cos(61) cos(fz) — sin(f) sin(62) (A.9)
sin(0; + 03) = sin(61) cos(62) + cos(6;) sin(62) (A.10)
cos(f1 — 02) = cos(61) cos(fz) + sin(6) sin(62) (A.11)
sin(fy — 03) = sin(61) cos(f2) — cos(f) sin(62) (A.12)

The sum of the squares of sine and cosine for the same angle is one:

cos(#) cos() + sin(f) sin(f) =1 (A.13)

324

Appendix B

Linear Algebra

Linear algebra concerns vector spaces and linear mappings between them. It is
central to robotics as it allows describing positions and speeds of the robot within
the world as well as moving parts connected to it, as well as in processing image
and depth data, which is often presented in matrix form.

B.1. Dot product

The dot product (or scalar product) is the sum of the products of the individual
entries of two vectors. Let hata = (a1,...,a,) and b = (by,...,b,) be two vectors.
Then, their dot product a - b is given by

a-b= iaibi (B.1)

The dot product therefore takes two sequences of numbers and returns a single
scalar.
In robotics, the dot product is mostly relevant due to its geometric interpretation:

a-b=|lal|[|b] cos® (B.2)

with 6 the angle between vectors a and b. . .
If G and b are orthogonal, it follows @ -b = 0. If & and b are parallel, it follows
a- b= ||alll|oll.

B.2. Cross product

The cross product a x b of two vectors is defined as a vector é that is perpendicular
to both @ and b. Its direction is given by the right-hand rule and its magnitude is
equal to the area of the parallelogram that the vectors span.

327

B. Linear Algebra

Let a = (ay,a,as)” and b = (by, ag, as) be two vectors in R3. Then, their cross
product @ X b is given by

~ a2b3 — a3b2
axb= Cl3b1 — Cl1b3 (B?))
a1b2 — a2b1

B.3. Matrix product

Given an n X m matrix A and a m X p matrix B, the matrix product AB is defined
by

(AB)i; = > AuBy; (B.4)
=1

where the index 4j indicates the i-th row and j-th column entry of the resulting
n x p matrix. Each entry therefore consists of the scalar product of the i-th row of
A with the j-th column of B.

Note that for this to work, the right hand matrix (here B) has to have as many
columns as the left hand matrix (here A) has rows. Therefore, the operation is not
commutative, i.e., AB % BA.

For example, multiplying a 3x3 matrix with a 3x1 matrix (a vector), works as
follows: Let

abc x
A=|pqr B=|y
uUvw z
Then their matrix product is:
abc x ax + by + cz
AB=|pgqr yl =1 pr+qy+rz
uvw z ur + vy + wz

B.4. Matrix inversion

Given a matrix A, finding the inverse B = A~! involves solving the system of

equations that satisfies
AB=BA =1 (B.5)

with I the identity matrix. (The identity matrix is zero everywhere except at its
diagonal entries, which are one.)

In the particular case of orthonormal matrices, which columns are all orthogonal
to each other and of length one, the inverse is equivalent to the transpose, i.e.

A7l = AT (B.6)

328

B.5. Principal Component Analysis

This is important, as rotation matrices are orthonormal.
In case a matrix is not quadratic, we can calculate the pseudo-inverse, which is
defined by
At = AT(AAT)! (B.7)

and is often used in finding an inverse kinematic solution.

B.5. Principal Component Analysis

Principal Component Analysis (PCA) breaks n-dimensional data into n vectors so
that each data point can be represented by a linear combination of the n vectors.
These n vectors have two interesting properties: first, they are ordered by their
variance so that the first vector is representative of the data with the highest varia-
tion in the data, and second, they are orthogonal. These vectors are therefore called
principal components. Figure B.1 shows an example of two-dimensional data and
the two principal components.

12

10r

Figure B.1. PCA of a multivariate Gaussian distribution centered at (1,3) with
a standard deviation of 3 in roughly the (0.866, 0.5) direction and of 1 in the
orthogonal direction. The vectors shown are the eigenvectors of the covariance
matrix scaled by the square root of the corresponding eigenvalue, and shifted so
their tails are at the mean. (©)Nicoguaro CC BY 4.0.

This approach has a strong geometrical interpretation: the points along the long

329

B. Linear Algebra

axis of the rectangle have higher variance than those along the the short axis. Every
point in this point cloud can then be reconstructed by a linear combination of the
principal component along the long axis and the principal component along the
short axis. Finding these vectors is therefore akin finding the principal axes of the
rectangle regardless of its orientation.

One can show that the principal components are eigenvectors of the data’s co-
variance matrix. For this, we need to compute the mean and variance of data such
as shown in Figure B.1 across each dimension, shift the data so that it has zero
mean, and then calculate the data’s covariance matrix. One can also show that the
values of the corresponding Eigenvalues are proportional to the importance of each
Eigenvector.

More formally, given N data samples x; € R", we can compute the entries of the
n X n covariance matrix C as

Cip = S0 = 1 —) —) (B.9)

with p; the mean across the j — th dimension of the data. The Eigenvalues A and
Eigenvectors u are given by

Cu = \u (B.9)

and are equivalent to the principal components of the data.

While a typical use of PCA is dimensionality reduction of data (by representing
the data only using the n first principal components), PCA is highly relevant in
point cloud analysis in robotics, for example when finding good grasp locations.

330

Appendix C

Statistics

C.1. Random Variables and Probability Distributions

Random variables can describe either discrete variables, such as the result from
throwing a dice, or continuous variables such as measuring a distance. In order to
learn about the likelihood that a random variable has a certain outcome, we can
repeat the experiment many times and record the resulting random variates, that
is the actual values of the random variable, and the number of times they occurred.
For a perfectly cubic dice we will see that the random variable can hold natural
numbers from 1 to 6, that have the same likelihood of 1/6.

The function that describes the probability of a random variable to take certain
values is called a probability distribution. As the likelihood of all possible random
variates in the dice experiment is the same, the dice follows what we call a uniform
distribution. More accurately, as the outcomes of rolling a dice are discrete num-
bers, it is actually a discrete uniform distribution. Most random variables are not
uniformly distributed, but some variates are more likely than others. For example,
when considering a random variable that describes the sum of two simultaneously
thrown dice, we can see that the distribution is anything but uniform:

333

C. Statistics

2:1+1 — i
3:14+2,2+1 — 21l
4:1+43,242,3+1 L 3it
5:14+4,2+3,3+2,4+1 Lall
6:1+52+4,3+3,4+25+1 L5l
71462453 +44+35+26+1600 (C.1)
8:2+6,3+5,4+4,5+3,6+2 Ls5il
9:34+6,4+55+4,6+3 4l
10:446,5+5,6+4 S 3id
11:546,6+5 —>2§§
12:6+6 — %3

As one can see, there are many more possibilities to sum up to a 7 than there are
to a 3, e.g. While it is possible to store probability distributions such as this one as
a look-up table to predict the outcome of an experiment (or that of a measurement),
we can also calculate the sum of two random processes analytically (Appendix C.3).

C.1.1. The Normal Distribution

One of the most prominent distribution is the Gaussian or Normal Distribution.
The Normal distribution is characterized by a mean and a variance. Here, the
mean corresponds to the average value of a random variable (or the peak of the
distribution) and the variance is a measure of how broadly variates are spread
around the mean (or the width of the distribution).

The Normal distribution is defined by the following function

fla) = e (€2)
€T) = e 20 .
V2ro?
where 1 is the mean and o2 the variance. (o on its own is known as the standard
deviation.) Then, f(xz) is the probability for a random variable X to have value z.
The mean is calculated by

pw= /OO xf(z)dz (C.3)

or in other words, each possible value x is weighted by its likelihood and added up.
The variance is calculated by

o? = /_OO (x — p)? f(x)d (C.4)

or in other words, we calculate the deviation of each random variable from the mean,
square it, and weigh it by its likelihood. Although it is tantalizing to perform this
calculation also for the double dice experiment, the resulting value is questionable,

334

C.2. Conditional Probabilities and Bayes Rule

T
999
DO BN N
It
==l
Lo

Lo R AR AL
0.8]
£.6(
=
04[3 2 -

0.2]

0~0} ’/—\—

Figure C.1. Normal distribution for different variances and p = 0.

as the double dice experiment does not follow a Normal distribution. We know this,
because we actually enumerated all possible outcomes. For other experiments, such
as grades in the classes you are taking, we don’t know what the real distribution is.

C.1.2. Normal distribution in two dimensions

The Normal Distribution is not limited to random processes with only one random
variable. For example, the X/Y position of a robot in the plane is a random process
with two dimensions. In case of a multi-variate distribution with k dimensions,
the random variable X is a k-dimensional vector of random variables, u is a k-
dimensional vector of means, and o gets replaced with ¥, a k-by-k dimensional
covariance matrix (a matrix that carries the variances of each random variable in
its diagonal).

C.2. Conditional Probabilities and Bayes Rule

Let A and B be random events with probabilities P(A) and P(B). We can now say
that the probability P(A N B) that event A and B happen is given by

P(AN B) = P(A)P(B|A) = P(B)P(A|B) (C.5)

Here, P(B|A) is the conditional probability that B happens, knowing that event A
happens. Likewise, P(A|B) is the probability that event A happens given that B
happens.

Bayes’ Rule relates a conditional probability to its inverse. In other words, if we
know the probability of event A to happen given that event B is happening, we can
calculate the probability of B to occur given that A is happening. Bayes’ rule can
be derived from the simple observation that the probability of A and B to happen
together (P(ANB)) is given by P(A)P(B|A) or the probability of A to happen and

335

-1
2

C. Statistics

the probability of B to happen given that A happens (Equation C.5). From this,
deriving Bayes’ rule is straightforward:

P(A)P(B|A)

PAIB) = =55

(C.6)

In words, if we know the probability that B happens given that A happens, we can
calculate that A happens given that B happens.

C.3. Sum of two random processes

Let X and Y be the random variables associated with the numbers shown on two
dice (see above), and Z = X +Y. With P(X =z), P(Y =vy), and P(Z = z) being
the probabilities associated with the random variables taking specific values x,y or
z. Given z = z + y, the event Z = z is the union of the independent events X = k
and Y = z — k. We can therefore write

EYP(Y =z —k) (C.7)
k=—o0
which is the exact definition of a convolution, also written as
P(Z)=P(X)xP(Y) (C.8)

Numerically calculating the convolution always works, and can be done analyti-
cally for some probability distributions.

Conveniently, the convolution of two Gaussian distributions is again a Gaussian
distribution with a variance that corresponds to the sum of the variances of the
individual Gaussians.

C.4. Linear Combinations of Independent Gaussian Random

Variables
Let X7, Xo, ..., X,, be n independent random variables with means py, po, ...,
i, and variances o7, 03, ..., and 2. Let Y be a random variable that is a linear

combination of X; with weights a; so that Y = >""" | a;X;.
As the sum of two Gaussian random variables is again a Gaussian, Y is Gaussian
distributed with a mean

py = Zai,ui (C.9)
i=1
and a variance .
0% = Za?af (C.10)
i=1

336

C.5. Testing Statistical Significance

C.5. Testing Statistical Significance

Robotics is an experimental discipline. This means that algorithms and systems you
develop need to be validated by real hardware experiments. Doing an experiment to
validate your hypothesis is at the core of the scientific method and doing it right is
a discipline on its own. The key is to show that your results are not simply a result
of chance. In practice, this is impossible to show. Instead, it is possible to express
the likelihood that your results have not been obtained by chance. This is known
as the statistical significance level. How to calculate the statistical significance level
depends on the problem you are studying. This section will introduce three common
problems in robotics:

1. testing whether data is indeed distributed according to a specific distribution
2. testing whether two sets of data are generated from different distributions

3. testing whether true-false experiments are a sequence of luck or not

C.5.1. Null Hypothesis on Distributions

The Null Hypothesis is a term from the statistical significance literature and for-
mally captures your main claim. A statistical test can either reject the Null Hy-
pothesis or fail to reject it. It can never be proven as there will always be a non-zero
probability that all your experiments are just a lucky coincidence. The statistical
significance level of a Null Hypothesis is known as the p-value.

An import class of Null Hypothesis are on the distribution of data. Consider
for example the time it takes to pass a message from one process to another and
which follows a log-normal distribution with outliers. We observe three peaks in
this Histogram. What can we say about message passing times? For example

e HO: Message passing times follow a Gaussian distribution.
e HO: Message passing times follow a bi-modal distribution.
e HO: Message passing times follow a log-normal distribution.

The first Null Hypothesis implies that messages take sometimes a little longer
and sometimes a little shorter, but have an average and a variance. The second
Null Hypothesis implies that usually messages take some low average time, but
occasionally are delayed due to the influence of some other process, for example
operating system duties. You can now test each of these hypotheses by calculating
the parameters of the distribution to expect and calculate the joint probability that
each of your measurements are actually drawn from this distribution. You will find,
that all of the above hypotheses are almost equally likely. Together, none of your
tests will reject your hypothesis. You therefore will need more data.

337

C. Statistics

You can now again calculate parameters for each distribution you suspect. For
example, you can calculate the mean and variance of this data and plot the resulting
Gaussian distribution. For example, the Gaussian distribution might have a mean
slightly offset to the right of the peak. You can also fit the data to a log-normal
distribution. You can now calculate the likelihood for the data actually be drawn
from either of the two distributions. You will see that the joint probability (the
product of all likelihoods) for all data points is actually much higher than that for
any Gaussian distribution or any bimodal distribution that you are able to fit.

Formally, this can be done by following Pearsons y2-Test (read Chi-Squared Test).
This test calculates a value that will approximate a y2-distribution from all samples
and the likelihood of that sample based on the expected distribution. Plugging the
resulting value into the x2-distribution leads to the statistical significance level (or

p-value).
The value of the test-statistic is calculated as follows:
n 2
2 (O; — Ey)
= - C.11
X ; z (C.11)
where

e X2 = Pearson’s cumulative test statistic, which asymptotically approaches a
chi-squared distribution.

e O; = an observed frequency in the data histogram

e E;, = an expected (theoretical) frequency, asserted by the null hypothesis,
i.e., the distribution you think the data should follow

e n = the number of samples.

This example also illustrates how statistical tests can be used to determine if you
have enough data. If you don’t, you will get very poor p-values. In practice, it is up
to you what likelihood you determine to be significant. Standard significance levels
are 10%, 5% and 1%. If you are unsatisfied with your p-values you can collect more
data and check, whether your p-value improves.

C.5.2. Testing whether two distributions are independent

Testing whether the data of two experiments are independent is probably the most
common statistical test. For example, you might run 10 experiments using algorithm
1 and 10 experiments using algorithm 2. It is up to you to show that the resulting
distributions are indeed statistically significantly different. In other words, you need
to show that the differences between the algorithm indeed lead to a systematic
improvement, and that it was not purely luck that one set of experiments turned
out “better” than another.

338

C.5. Testing Statistical Significance

If you have good reasons to believe that your data is normal distributed, there
exist a series of simple tests. For example, to test whether two sets of data are
distributed with Gaussian distributions that have the same mean, can be done
using Student’s t-test. A generalization of Student’s t-test to 3 or more groups is
ANOVA. These tests have to be done with care as most distributions in robotics
are not normal distributed. Examples where Gaussian distributions are commonly
assumed are sensor noise on distance measurements such as obtained by infrared or
odometry.

If data is not Gaussian distributed, there exist a series of numerical tests to test
the likelihood that two distributions are independent. For example, you could test
the message passing time with and without running some computationally expensive
image processing routines. You can then test whether the additional computation
affects message passing time. If it does, both distributions need to be significantly
different. Just using Student’s t-test does not work as the distributions are not
Gaussian!

Instead, testing whether two sets of data have the same mean, needs to be done
numerically. A common test is Mann-Wilcoxon’s Ranked Sum test. An imple-
mentation of this test is part of most mathematical calculation programs such as
Matlab or Mathematica. An algorithm to calculate this test statistic and the cor-
responding p-values is available on the Wikipedia page above. An extension of
the Mann-Wilcoxon’s Ranked Sum test for 3 or more groups is the Kruskal-Wallis
one-way analysis of variance test.

C.5.3. Statistical Significance of True-False Tests

There exists a class of experiments that do not lead to distributions, but result in
simple true-false outcomes. For example, a question one might ask is “does the robot
correctly understand a spoken command”. This class of experiments is captured
by the Lady tasting tea example. Here, a lady claims that she can identify the
brewing method of a cup of tea: tea prepared by first adding milk and tea prepared
by later adding milk. Unfortunately, it is easy to cheat as the likelihood of guessing
right is 50%. Testing the hypothesis that the lady can indeed differentiate the two
brewing methods therefore requires to conduct a series of experiments to reduce
the likelihood of winning by guesswork. In order to do this, one needs to calculate
the number of total permutations (or, possible outcomes over the entire series of
experiments). For example, one could present the lady 8 cups of tea, 4 brewed
one way and four the other. One can now enumerate all possible outcomes of
this experiment, ranging from all cups guessed correctly to all cups guessed wrong.
There are a total of 70 possible outcomes (see the example provided here). Guessing
all cups correctly has now a likelihood of 1/70 or 1.4%. The likelihood to make a
single mistake (16 possible outcomes in this example) is around 23%.

339

C. Statistics

C.5.4. Summary

Statistical significance test allow you to express the likelihood that your experiment
is not just the result of chance. There exist different tests for different underlying
distributions. Therefore, your first task is to convincingly argue what the underlying
distribution of your data is. Formally testing how your data is distributed can be
achieved using the Chi-Square Test. In order to test whether two sets of data are
coming from two different distributions can then be achieved using Student’s t-test
(if the distribution is Gaussian) or using the Mann-Wilcoxon Ranked Sum test if
the probability distribution is non-parametric.

340

Appendix D

Backpropagation

Simple learning can be achieved by expressing the unknown parameters of a prob-
lem in a cost function and then following its gradient to minimize cost. This is
straightforward if the cost function is directly differentiable.Calculating the partial
derivatives for the error function manually is not straightforward in a multi-layer
neural network (Chapter 10), however, which is a computation graph that trans-
forms the input « by a series of multiplications and non-linear activation functions,
which in turn require the chain rule.

Applying the chain rule can be done in two ways: moving forwards or backwards
through the computation graph. Actually doing this by hand for a simple graph
shows that going backwards is significantly more efficient. Manually deriving the
individual partial derivatives also illustrates that many of the computations can
actually be recycled. This solution is known as backpropagation (Werbos 1990),
a technique that has been independently discovered in multiple fields. Due to its
relevance beyond training artificial neural networks it is described in this appendix.
The derivation below follows (Brilliant.org 2020). Note, that we are using the
notation from Chapter 10) and Section 10.3.2 in particular.

In a first step, we note that the error function is a sum over all input-output
pairs:

=

OE(z,y,w) 0 1
— = (Yo — ya)® = = (D.1)
awﬁj T 2N Z ow k et

We will therefore focus on only one input-output pair (z4,y4) and differentiate
against wf ;- (The index d has been chosen to avoid confusion with the indices i
and j, and will be omitted for brevity in the remainder).

The Chain rule The key for understanding the backpropagation algorithm is to
apply the chain rule in a correct way. Specifically, if a variable z depends on the

343

D. Backpropagation

variable y, which itself depends on the variable x, then

dz dz @

ol D.2
de dydx (D-2)

With the output layer having index m and a single output (af*), the error is
computed by the recursive formula

B,y wig) = 505 -) = 5(gal)) = <g (> wmo;M) - y> (D)
=0

We observe that the variable £ depends on the outputs 0{”71 with [= 0..rp,_1 from
the previous layer. Recall that 0}"71 is simply the activation almf1 after applying
the activation function. Also recall that w;"} are weights coming into node 1. The
error with respect to w; ; is therefore dependent on all a? for all previous layers.
This is also visualized in Figure D.1.

k+ 1 layer /
k layer m — 1 layer

Figure D.1. Last three layers of a neural network with a single output neuron,
illustrating dependencies between function values and the output when moving
along the computation graph backwards.

The chain rule therefore states

OE OE dd*
awﬁj - @Gwﬁj (D4)

344

D.1. Backward propagation of error

Error at layer k The first term is part of a vector called the “error at layer k” that
consists of errors at all nodes j in layer k and is denoted by

oF
k
The second term can be computed from the definition of a? above
8(1]? 8 Thk—1
Z k k— k—
(r“)w’,z 7wk, < Wi, ;0 H = 2 ' (D-6)
i, 4.j \ 1=0

which follows from the fact that only the term involving 01—“_1 is the one where [= 1.
In case you expect the chain rule to apply further, remember that of ~1 is actually
not dependent on wf j» 80 you are done here.

Thus, the partial derivative of the error function E with respect to weight wf ;18

—— =grol . D.7
ur =% (0.7)

We can see that the error E' with respect to each individual weight wﬁ ; in a
layer k£ depends on the output of the layers coming before that. This is intuitive,
as information propagates through the network. We will now also show that the
error term 6;? actually depends on the error at layers above k, that is stems from
the error § — y that we ultimately want to minimize.

D.1. Backward propagation of error

In order to show how the error term 6 relates to the error at the output layer, we
will start working backwards. Let m be the index of the output layer. We are also
only considering a network with one output neuron, that is 5 = 1. The error at this
final layer m is given by

E=3-v)7 =39 -y)’ (D.8)
Using the chain rule a?ﬁq = 2% ;ﬁil as before yields
m aE m m ~ m
0" = gom = (9(ai") = v)g' (@) = (5 —y)g' (a]") (D.9)
1

for the error at layer m and
day*

= 0
owr,

by

345

D. Backpropagation

Together, these two result into

oF

(5 Ir.m mfl

We continue to use the chain rule to work backward along the computation graph.
Specifically, the activation aé’? at node j in layer k, with 1 < k < m feeds into all

nodes | = 1..7%*1 of layer k + 1. Therefore, the error 6;? calculates to

OF _i OE dai+!

o= = (D.12)
J k o k+1
8aj = 8al 8aj
Using 6;”1 = af’ﬁl’ the above equation simplifies to
l
k+1 8
Z e al (D.13)

1

Inspecting the computation graph or the definition of a we recall that ak+

)

receives the output g(a) from every node j = 1..7% in layer k via weight wkH7 i.e.
artt = Z wflﬂg (D.14)
allowing us to compute the partial derivative
8@?“ wht!

J

This allows us to provide the error at node j in layer k, also known as the jb; backpropagation

formulaj/b;:
,,_k+1

k k k+1 sk+1
87 = ¢'(a?) Z wiTt T (D.16)
=1
With this last part, we are able to define a recursive definition to calculate the
desired error gradient with respect to all weights in the neural network:

pht1

98 skt = g/ (k)b Z WhHaE, (D.17)

This computation can be executed layer by layer, starting from the output layer
and working its way backward. This phase is computationally very similar to the

346

D.2. Backpropagation algorithm

forward phase and allows reusing all the activations and outputs that have been
previously computed. As an extra goody, the derivative of the sigmoid function
o'(z) = o(z)(1 — o(x)), resulting in

E T
78?0" = 5;?02“*1 = g(af)(l _ f 1 Z k+16k+1 (D.18)
]

and from there

k+1

oE k kfl k‘ 1r k+1 k‘+1

omitting the need to store af

of the algorithm by half.

in addition to 0;?, reducing the memory requirements

D.2. Backpropagation algorithm

Training a network now follows these simple steps:
1. Randomly initialize the network’s weigths.

2. Compute the error for this network for each item in the training set and store
the output from each layer (forward propagation).

OFE
(‘)wﬁj
function with respect to each weight using the stored values of the output
from forward propagation and calculate the average over the entire training
set.

3. Use the recursive formula for to compute the gradient of the error

4. Repeat steps 2-3 for a fixed number of iterations or when the error becomes
reasonably small.

Fortunately, calculating the partial derivatives is not very hard in practice as
there exist tools that automatically calculate the gradient along a computational
chain in various programming languages (autograd, PyTorch, e.g.). These tools are
at the core of modern machine learning frameworks and enable you to construct
arbitrary network architectures without worrying about how to actually calculate
the gradients. Yet, it is difficult to understand how these tools work and what their
limitations are without understanding the derivation above.

347

Appendix E

How to write a research paper

The final deliverable of a robotics class often is a write-up on a “research” project,
modeled after research done in industry or academia. Roughly, there are three
classes of papers:

1. Original research
2. Tutorial

3. Survey

The goal of this chapter is to provide guidelines on how to think about your
project as a research project and how to report on your results as original research.

E.1. Original

Classically, a scientific paper follows the following organization:
1. Abstract

Introduction

Materials & Methods

Results

Discussion

A e

Conclusion

The abstract summarizes your paper in a few sentences. What is the problem
you want to solve, what is the method you are employing, what are you doing to
assess your work, and what is the final outcome.

349

E. How to write a research paper

The introduction should describe the problem that you are solving and why it
is important. A good guideline to write a good introduction are the Heilmeier
questions:

1. What are you trying to do? Articulate your objectives using absolutely no
jargon.

How is it done today, and what are the limits of current practice?
What’s new in your approach and why do you think it will be successful?

Who cares?

If you’re successful, what difference will it make?

I A T

What are the midterm and final “exams” to check for success?

Originally conceived for proposal writing by the head of DARPA, there are ad-
ditional questions including “What will it cost?”, “How long will it take?”, and
“What are the risks and pay-off”, which are left out for the purpose of writing a
research paper. In the context of scientific research, the question “What are you
trying to do?” is best answered in the form of a hypothesis, see below.

The materials € matters section describes all the tools that you used to solve
your problem, as well as your original contribution, e.g., an algorithm that you came
up with. This section is hardly ever labeled as such, but might consist of a series
of individual section describing the robotic platform you are using, the software
packages, and flowcharts and descriptions on how your system works. Make sure
you motivate your design choices using conclusive language or experimental data.
Validating these design choices could be your first results.

The results section contains data or proofs on how to solve the problem you
addressed or why it cannot be solved. It is important that your data is conclusive!
You have to address concerns that your results are just a lucky coincidence. You
therefore need to run multiple experiments and/or formally prove the workings of
your system either using language or math, see also Section C.5.

The discussion should address limitations of your approach, the conclusiveness
of its results, and general concerns someone who reads your work might have. Put
yourself in the role of an external reviewer who seeks to criticize your work. How
could you have sabotaged your own experiment? What are the real hurdles that
you still need to overcome for your solution to work in practice? Criticizing your
own work does not weaken it, it makes it stronger! Not only does it become clear
where its limitations are, it is also more clear where other people can step in.

The conclusion should summarize the contribution of your paper. It is a good
place to outline potential future work for you and others to do. This future work
should not be random stuff that you could possibly think about, but come out of
your discussion and the remaining challenges that you describe there. Another way

350

E.2. Hypothesis: Or, what do we learn from this work?

to think about is that the “future work” section of your conclusion summarizes your
discussion.

It is important not to mix the different sections up. For example, your result
section should exclusively focus on describing your observations and reporting on
data, i.e., facts. Don’t conjecture here why things came out as they are. You do
this either in your hypothesis — the whole reason you conduct experiments in the
first place — or in the discussion. Similarly, don’t provide additional results in your
discussion section.

Try to make the paper as accessible to as many reader styles and attention spans
as possible. While this sounds impossible at first, a good way to address this is to
think about multiple avenues a reader might take. For example, the reader should
get a pretty comprehensive picture on what you do by just reading the abstract,
just reading the introduction, or just reading all the figure captions. (Think about
other avenues, every one you address makes your paper stronger.) It is often possible
to provide this experience by adding short sentences that quickly recall the main
hypothesis of your work. For example, when describing your robotic platform in the
materials section, it does not hurt to introduce the section by something like “In
order to show that [the main hypothesis of our work], we selected...”. Similarly, you
can try to read through your figure captions if they provide enough information to
follow the paper and understand its main results on their own. It’s not a problem
to be repetitive in a scientific paper, stressing your one-sentence elevator pitch (or
hypothesis, see below) throughout the paper is actually a good thing.

E.2. Hypothesis: Or, what do we learn from this work?

Classically, a hypothesis is a proposed explanation for an observed phenomenon.
From this, the hypothesis has emerged as the corner stone of the scientific method
and is a very efficient way to organize your thoughts and come up with a one
sentence summary of your work. A proper formulation of your hypothesis should
directly lead to the method that you have chosen to test your hypothesis. A good
way to think about your hypothesis is “What do you want to learn?” or “What do
we learn from this work?”.

It can be somewhat hard to actually frame your work into a single sentence, so
what to do if a single hypothesis seems not to apply? One reason might be that you
are actually trying to accomplish too many things. Can you really describe them
all in depth in a 6-page document? If yes, maybe some are very minor compared
to the others. If this is the case, they are either supportive of your main idea and
can be rolled into this bigger piece of work or they are totally disconnected. If they
are disconnected, leave them out for the sake of improving the conciseness of your
main message. Finally, you might feel that you don’t have a main message, but
consider all the things you have done to be equally worthy, and despite answering
the Heilmeier questions you cannot fill up more than three pages. In this case you

351

E. How to write a research paper

might consider picking one of your approaches and dig deeper by comparing it with
different methods.

Being able to come up with a one-sentence elevator pitch framed as a hypothesis
will actually help you to set the scope of the work that you need to do for a research
or class project. How good do you need to implement, design or describe a certain
component of your project? Well, good enough to follow through with your research
objective.

E.3. Survey and Tutorial

The goal of a survey is to provide an overview over a body of work — potentially
from different communities — and classify it into different categories. Doing this
synthesis and establishing common language and formalism is the survey’s main
contribution. A survey following such an outline is a possible deliverable for an
independent study or a PhD prelim, but it does not lend itself to describe your
efforts on a focused research project. Rather, it might result from your involvement
in a relatively new area in which you feel important connections between disjoint
communities and common language have not been established.

A different category of survey critically examines concurring methods to solve a
particular problem. For example, you might have set out to study manipulation,
but got stuck in selecting the right sensor suite from the many available options.
What sensor is actually best to accomplish a specific task? A survey which answers
this question experimentally will follow the same structure as a research paper (see
above).

A tutorial is closely related to a survey, but focuses more on explaining specific
technical content, e.g, the workings of a specific class of algorithms or tool, com-
monly used in a community. A tutorial might be an appropriate way to describe
your efforts in a research project, which can serve as illustration to explain the
workings of a specific method you used.

E.4. Writing it up!

Writing a research report that contains equations, figures and references requires
some tedious book-keeping. Although technically possible, word processing pro-
grams quickly reach their limitations and will lead to frustration. In the scientific
community ITEX has emerged as a quasi standard for typesetting research docu-
mentation. ITEX is a mark-up language that strictly divides function and layout.
Rather than formatting individual items as bold, italic and the like, you mark them
up as emphasized, section head etc, and specify how things look elsewhere. This
is usually provided by a template provided by the publisher (or your own). While
IXTEX has quite a learning curve compared to other word processing software, it
is quickly worth the effort as soon as you need to start worrying about references,

352

E.4. Writing it up!
figures or even indices.

Further Reading

e W. Strunk and E. White. The Elements of Style (4th Edition). Longan,
1999.

e T. Oetiker, H. Partl, I. Hyna and E. Schlegl. The Not So Short Introduction
to INTEX 2¢. Available online.

353

Appendix F

Sample curricula

This book is designed to cover two full semesters at undergraduate level, CSCI 3302
and CSCI 4302 at CU Boulder, or a single semester “crash course” at graduate level.
There are multiple avenues that an instructor could take, each with their unique
theme and a varying set of prerequisites on the students. Content within the book
is deliberately agnostic to a particular robotic platform, programming language,
or simulation environment, leaving it to the instructor to choose an appropriate
platform.

F.1. An introduction to autonomous mobile robots

This describes a possible one semester curriculum, which takes the students from the
kinematics of a differential-wheel platform to a basic understanding of SLAM. This
curriculum is involved and requires a firm background in trigonometry, probability
theory and linear algebra. This might be too ambitious for third-year Computer
Science students, but fares well with Aerospace and Electrical Engineering students,
who often have a stronger, and more applied, mathematical background. This
curriculum is therefore also well suited as “advanced class”, e.g. in the fourth year
of a CS curriculum.

F.1.1. Overview

The curriculum is motivated by a maze-solving competition that is described in
Section 1.3. Solving the game can be accomplished using a variety of algorithms
ranging from wall following (which requires simple proportional control) to Depth-
first Search on the maze to full SLAM. Here, the rules are designed such that
creating a map of the environment leads to a competitive advantage on the long
run.

355

F. Sample curricula

F.1.2. Content

After introducing the field and the curriculum using Chapter 1 “Introduction”,
another week can be spent on basic concepts from Chapter 2 “Locomotion, manip-
ulation and their representations”, which includes concepts like “Static and dynamic
stability” and “Degrees of freedom”. The lab portions of the class can at this time
be used to introduce the software and hardware used in the competition. For exam-
ple, students can experiment with the programming environment of the real robot
or setup a simple world in the simulator themselves.

The lecture can then take up pace with Chapter 3. Here, the topics “Coor-
dinate Systems and Frames of Reference”, “Forward Kinematics of a Differential
Wheeled Robot”, and “Inverse Kinematics of Mobile Robots” are on the critical
path, whereas other sections in Chapter 3 are optional. It is worth mentioning that
the forward kinematics of non-holonomic platforms, and in particular the motiva-
tion for considering their treatment in velocity rather than position space, are not
straightforward and therefore at least some treatment of arm kinematics is recom-
mended. These concepts can easily be turned into practical experience during the
lab session.

The ability to implement point-to-point motions in configuration space thanks to
knowledge of inverse kinematics, directly lends itself to “Map representations” and
“Path Planning” treated in Chapter 13. For the purpose of maze solving, simple
algorithms like Dijkstra’s and A* are sufficient, and sampling-based approaches can
be skipped. Implementing a path-planning algorithm both in simulation and on the
real robot will provide first-hand experience of uncertainty.

The lecture can then proceed to “Sensors” (Chapter 7), which should be used to
motivate uncertainty using concepts like accuracy and precision. These concepts
can be formalized using materials in Chapter C “Statistics”, and quantified during
lab. Here, having students record the histogram of sensor noise distributions is a
valuable exercise.

Chapters 8 and 9, which are on “Vision” and “Feature extraction”, do not need
to extend further than needed to understand and implement simple algorithms
for detecting the unique features in the maze environment. In practice, these can
usually be detected using basic convolution-based filters from Chapter 8, and simple
post-processing, introducing the notion of a “feature”, but without reviewing more
complex image feature detectors. The lab portion of the class should be aimed at
identifying markers in the environment, and can be scaffolded as much as necessary.

Indepth experimentation with sensors, including vision, serves as a foundation
for a more formal treatment of uncertainty in Chapter 15 “Uncertainty and Error
Propagation”. Depending on whether the “Example: Line Fitting” example has
been treated in Chapter 9, it can be used here to demonstrate error propagation
from sensor uncertainty, and should be simplified otherwise. In lab, students can
actually measure the distribution of robot position over hundreds of individual trials

356

F.1. An introduction to autonomous mobile robots

(this is an exercise that can be done collectively if enough hardware is available),
and verify their math using these observations. Alternatively, code to perform these
experiments can be provided, giving the students more time to catching up.

The localization problem introduced in Chapter 16 is best introduced using
Markov localization, from which more advanced concepts such as the particle filter
and the Kalman filter can be derived. Performing these experiments in the lab is
involved, and is best done in simulation, which allows neat ways to visualize the
probability distributions changing.

The lecture can be concluded with “EKF SLAM” in Chapter 17. Actually im-
plementing EKF SLAM is beyond the scope of an undergraduate robotics class and
is achieved only by very few students who go beyond the call of duty. Instead,
students should be able to experience the workings of the algorithm in simulation
or scaffolded in the experimental platform by the instructor.

The lab portion of the class can be concluded by a competition in which stu-
dent teams compete against each other. In practice, winning teams differentiate
themselves by the most rigorous implementation, often using one of the less com-
plex algorithms, e.g., wall following or simple exploration. Here, it is up to the
instructor incentivizing a desired approach.

Depending on the pace of the class in lecture as well as the time that the instructor
wishes to reserve for implementation of the final project, lectures can be offset by
debates, as described in Section F.4.

F.1.3. Implementation suggestions

An interesting competition environment can be easily re-created using card board or
LEGO bricks and any miniature, differential wheel platform that is equipped with a
camera to recognize simple markers in the environment (which serve as landmarks
for SLAM). The setup can also easily be simulated in a physics-based simulation
environment, which allows scaling this curriculum to a large number of participants.
The setup used at CU Boulder using the e-Puck robot and the open-source, free,
Webots simulator is shown in Figure F.1.

Variations of the above curriculum can be implemented using a basic Arduino-
based platform such as “Sparki”. Sparki is equipped with a swiveling ultrasound
scanner, which can be used to simulate a laser range finder and allows the students
to extract simple features such as cones, corners or gates in the environment and use
them for localization. A bluetooth module allows this robot to be remote controlled,
allowing the instructor to move from the Arduino language (C) and computational
limitations to a fully-fledged Desktop computer.

The class can also be taught using a “Raspberry Pi”-based platform that can
be equipped with a webcam, runs Linux, and allows the students to perform basic
computer vision using OpenCV and other toolboxes. Here, the Python language
and Jupyter Lab provides a low floor to access the programming environment, and a
number of educational robots using this architecture have become available recently,

357

F. Sample curricula

Figure F.1. The “Ratslife” maze competition created from LEGO bricks and e-Puck
robots (left). The same environment simulated in Webots.

some even with GPU support.

The class can be taught using modified RC cars, equipped with scanning lasers,
stereo cameras and powerful onboard computation. Competitions among the stu-
dents can involve decision making around avoiding obstacles or following a previ-
ously unknown course by recognizing landmarks. Descriptions and parts for such
vehicles, e.g., the “MIT Racecar” are available online. Here, emphasis will need
to change from differential wheel kinematics to Ackerman kinematics (Section ?7?)
both for odometry and planning.

Finally, a variation of this curriculum can also be taught using drones, such as
the Parrot drone, which are equipped with a camera as well as a wireless device that
allows executing control algorithms on a desktop computer. In this case, landmarks
can be deployed throughout the environment, shifting the focus from kinematics to
computer vision.

F.2. An introduction to robotic manipulation

A class on robotic manipulation can be equally taught at introductory or ad-
vanced level, following an introductory course on mobile robots. While teaching
autonomous manipulation sets a high bar on linear algebra, vision and feature de-
tection, a manipulation curriculum can also be very practical, shifting the learning
experience from the computational into better understanding the role of embodi-
ment.

F.2.1. Overview

A class on robotic manipulation can be motivated from the overview shown in
Figure 14.1, taking the students from basic arm inverse kinematics to point cloud
processing and integrated task and motion planning. By focussing on 3D perception
and inverse kinematics, it is possible to implement the majority of the class in

358

F.2. An introduction to robotic manipulation

simulation, making the use of a shared hardware resource optional. Alternatively,
the class can also be taught without any computers and require the students to
build their own hardware.

F.2.2. Content

Following the outline of the book, the class can start with mechanisms. Here, the
critical role of embodiment should be stressed early on. In Chapter 3, the focus is
instead on manipulating arms, including the Denavit-Hartenberg scheme and nu-
merical methods for inverse kinematics. In this case, the topics “Forward Kinemat-
ics of a Differential Wheeled Robot” and “Inverse Kinematics of Mobile Robots” do
not necessarily need to be included. Forward and inverse kinematics can be easily
turned into lab sessions using a simple abstraction (Matlab/Mathematica/Python)
or simulated robot arm (Webots). If the class uses a more complex or industrial
robot arm, an alternative path is to record joint trajectories in a ROS bag and
letting the students explore this data, e.g., drawing the trajectories recorded from
the robot to guess what it has been done, before moving on to inverse kinematics.

After introducing forces Chapter 4, theory and practice of grasping can be intro-
duced following the outline in Chapter 5.

If the goal of the class is an autonomous solution, the class can then proceed
to suitable sensors including basic proprioception, distance sensing, and finally ex-
tracting structure from vision. Actuators can be treated as needed, with brushless
DC motors and servo motors being standard components of high-performance ma-
nipulating systems. If desired, the instructor can also discuss pneumatics and “soft”
robotics, which are attractive for manipulating some objects.

With manipulation a so-called integrated task and motion planning problem,
Chapter 11 will be an important part of an autonomous manipulation class.

The class can then move on to vision and feature extraction. Topics such as un-
certainty and error propagation can be skipped in a class focusing on manipulation.
If desired, Bayes rule can be introduced in the context of “false positives” in object
recognition and task execution, allowing the instructor to introduce concepts such
as inference in a task planning framework.

F.2.3. Implementation suggestions

Unless a gripper is provided, designing and modeling a gripper in a robotic simulator
can be a worthwhile exercise. Alternatively, the students can design their own
hardware, 3D print an end-effector, and try the versatility of their solution by
manually actuating their mechanism to solve a set of manipulation challenges such
as described in (Patel et al. 2016). The sky is the limit here, in particular when
“soft” actuators have been introduced and the students are encouraged to compare
conventional mechanisms with suction and jamming grippers.

How to teach feature extraction and aspects of mapping will depend on the over-
arching manipulation goals that are used throughout the class. When focusing on

359

F. Sample curricula

simple bin picking, line recognition and RANSAC can be introduced in the con-
text of identifying the bin, and objects therein. In such a scenario, path planning
can be substituted by simple inverse kinematics. When focusing on pick-and-place,
path planning can be motivated by planning around simple obstacles, focusing on
rapidly exploring random trees. Labs and experiments can be easily implemented
in simulation, initially focusing on perception only and introducing grasp planning
only later.

Object recognition and segmentation are good motivation for introducing convo-
lutional neural networks (Chapter Chapter 10) as well as appropriate open-source
tools that the students can use as a blackbox. Simulators such as Webots also
provide object detection and segmentation, allowing the instructor to focus only on
the kinematic aspects of autonomy.

Simulation reaches their limitations in task that are rich in contacts such as as-
sembly and construction. While a class that is more oriented toward perception
might skip this experience, simulation can be complemented by simple experiments
in which students create their own hardware. Optimally, a shared resource such an
assembly task board, is provided that the students can get time on after demon-
strating certain basic capabilities in a simulation environment.

F.3. An introduction to robotic systems

A robotic systems class can be either offered as an advanced class that allows
students to put theoretical concepts to practice, but also as a stand-alone class
in which advanced concepts are abstracted behind libraries that are presented as
“black box”.

F.3.1. Overview

A robotic systems curriculum can be motivated by a “grand challenge” task such as
robotic agriculture, robotic construction or assisted living, all of which require both
mobility and manipulation problem. Although a class project is likely to be limited
to a toy-example, taking advantage of modern motion-planning frameworks and
visualization tools, e.g. ROS/Moveit! (Coleman, Sucan, Chitta & Correll 2014),
makes it easy to put the class into an industry-relevant framework and expose the
students to state of the art platforms in simulation. Possible class project range
from “robot gardening” or “robots building robots”, for which setups can easily
be created. These include real or plastic cherry tomato or strawberry plants and
robotic construction kits such as Modular Robotics “Cubelets”, which easily snap
together and have the advantage to form structures that are robots themselves,
adding additional motivation.

360

F.4. Class debates

F.3.2. Content

The first two weeks of this curriculum can be mostly identical to that described in
Section F.1.2. If a message passing system such as ROS is used, a good exercise
is to record a histogram of message passing times in order to get familiar with the
software.

It is now the choice of the instructor, whether to focus more on kinematics of arms
or differential kinematics of for mobile platforms. If the systems class is used in an
introductory format, it might be sufficient to introduce basic forward kinematics of
robot arms. In an advanced setting, the instructor might instead cover differential
kinematics in the force domain.

In case more advanced platforms are available, a depth camera can be mounted
above or on the end-effector, allowing to introduce topics like vision (Section 8),
feature extraction (Section 9) and grasping (Section 5).

F.3.3. Implementation suggestions

A simple servo-based arm can be mounted on a portable structure that contains
fixed a set of fixed (3D) cameras. In order to allow a large number of students to
get familiar with the necessary software and hardware, the instructor can provide
a virtual machine with a preinstalled Linux environment and simulation tools. In
particular, using the “Robot Operating Systems” (ROS) allows recording so-called
“bag”-files of sensor values, including entire sequences of joint recordings and RGB-
D video. This allows the students to work on a large part of the homeworks and
project preparation from a computer lab or from home, maximizing availability of
real hardware.

If hardware such as a Kinova arm with integrated Intel RealSense or a Universal
Robot arm are available, students can prepare for using the shared resource by
working with pre-recorded data and a simulation environment. This is not ideal for
educating students about grasping, which is not only difficult to simulate, but also
difficult to understand in a non-experiental setting. While not explicitely covered
in this book, the instructor could bridge this gap by letting the students design
their own end-effectors using 3D-printing techniques or augmenting simple two-
bar linkage grippers with padding. Experimenting with such devices in a remote
controlled setting — as simple as the students manually actuating the gripper — will
provide some insights on the challenges of grasping and manipulation. The students
can then test their designs with the shared resource and allow the instructor to
demonstrate the importance of mechanism and sensing co-design.

F.4. Class debates

Class debates are a good way to decompress at the end of class, create a buffer for
students to apply their knowledge by preparing for a final project, and require the

361

REFERENCES

students to put the materials they learned in a broader context. Student teams
prepare pro and contra arguments for a statement of current technical or societal
concern, exercising presentation and research skills. Sample topics include Robots
putting humans out of work is a risk that needs to be mitigated; Robots should
not have the capability to autonomously discharge weapons / drive around in cities
(autonomous cars); or Robots need to be made from components other than links,
joints, and gears in order to reach the agility of people.

The students are instructed to make as much use as possible of technical argu-
ments that are grounded in the course materials and in additional literature. For
example, students can use the inherent uncertainty of sensors to argue for or against
enabling robots to use deadly weapons. Similarly, students relate the importance
and impact of current developments in robotics to earlier inventions that led to
industrialization, when considering the risk of robots putting humans out of work.

Although suspicious as first, students usually receive this format very well. While
there is agreement that debates help to prepare them for the engineering profession
by improving presentation skills, preparing engineers to think about questions posed
by society, and reflecting up-to-date topics, the debates seem to have little effect on
changing the students’ actual opinions on a topic. For example, in a questionnaire
administered after class, only two students responded positively. Students are also
undecided about whether the debates helped them to better understand the tech-
nical content of the class. Yet students find the debate concept important enough
that they prefer it over a more in-depth treatment of the technical content of the
class, and disagree that debates should be given less time in class. However, stu-
dents are undecided whether debates are important enough to merit early inclusion
in the curriculum or to be part of every class in engineering.

Concerning the overall format, students find that discussion time was too short
when allotting 10 minutes per position and 15 minutes for discussion and rebuttal.
Also, students tend to agree that debates are an opportunity to decompress (“re-
laxing”), which is desirable as this period of class coincides with wrapping up the
course project.

References

Arkin, R. C. (1989), ‘Motor schema—based mobile robot navigation’, The Interna-
tional journal of robotics research 8(4), 92-112.

Bay, H., Tuytelaars, T. & Van Gool, L. (2006), Surf: Speeded up robust features,
in ‘European conference on computer vision’, Springer, pp. 404-417.

Blum, A. L. & Rivest, R. L. (1992), ‘Training a 3-node neural network is np-
complete’, Neural Networks 5(1), 117-127.

Braitenberg, V. (1986), Vehicles: Experiments in synthetic psychology, MIT press.

Brilliant.org (2020), ‘Backpropagation’, https://brilliant.org/
wikibackpropagation. Last retrieved March 7, 2020.

362

https://brilliant.org/wiki backpropagation
https://brilliant.org/wiki backpropagation

REFERENCES

Brooks, R. A. (1990), ‘Elephants don’t play chess’, Robotics and autonomous sys-
tems 6(1-2), 3-15.

Coleman, D., Sucan, I., Chitta, S. & Correll, N. (2014), ‘Reducing the barrier
to entry of complex robotic software: a moveit! case study’, arXiw preprint
arXiv:1404.3785 .

Colledanchise, M. & Ogren, P. (2018), Behavior trees in robotics and AI: An intro-
duction, CRC Press.

Correll, N., Bekris, K. E., Berenson, D., Brock, O., Causo, A., Hauser, K., Okada,
K., Rodriguez, A., Romano, J. M. & Wurman, P. R. (2016), ‘Analysis and
observations from the first amazon picking challenge’, IEEE Transactions on
Automation Science and Engineering 15(1), 172-188.

Craig, J. J. (2009), Introduction to robotics: mechanics and control, 3/E, Pearson
Education India.

Deimel, R. & Brock, O. (2016), ‘A novel type of compliant and underactuated
robotic hand for dexterous grasping’, The International Journal of Robotics
Research 35(1-3), 161-185.

Dijkstra, E. W. (1959), ‘A note on two problems in connexion with graphs’, Nu-
merische mathematik 1(1), 269-271.

Duda, R. O. & Hart, P. E. (1972), ‘Use of the hough transformation to detect lines
and curves in pictures’, Communications of the ACM 15(1), 11-15.

Ester, M., Kriegel, H.-P., Sander, J., Xu, X. et al. (1996), A density-based algorithm
for discovering clusters in large spatial databases with noise., in ‘Kdd’, Vol. 96,
pp- 226-231.

Fikes, R. E. & Nilsson, N. J. (1971), ‘Strips: A new approach to the application of
theorem proving to problem solving’, Artificial intelligence 2(3-4), 189-208.

Floreano, D. & Mondada, F. (1998), ‘Evolutionary neurocontrollers for autonomous
mobile robots’, Neural networks 11(7-8), 1461-1478.

Grisetti, G., Kummerle, R., Stachniss, C. & Burgard, W. (2010), ‘A tutorial
on graph-based slam’, IEEE Intelligent Transportation Systems Magazine
2(4), 31-43.

Harel, D. (1987), ‘Statecharts: A visual formalism for complex systems’, Science of
computer programming 8(3), 231-274.

Hart, P. E., Nilsson, N. J. & Raphael, B. (1968), ‘A formal basis for the heuristic
determination of minimum cost paths’, Systems Science and Cybernetics, IEEE
Transactions on 4(2), 100-107.

Hartenberg, R. S. & Denavit, J. (1955), ‘A kinematic notation for lower pair mech-
anisms based on matrices’, Journal of applied mechanics 77(2), 215-221.
Henry, P., Krainin, M., Herbst, E., Ren, X. & Fox, D. (2010), Rgb-d mapping:
Using depth cameras for dense 3d modeling of indoor environments, in ‘In the

12th International Symposium on Experimental Robotics (ISER’.

Hughes, A. & Drury, B. (2019), Electric motors and drives: fundamentals, types
and applications, Newnes.

363

REFERENCES

Hughes, D. & Correll, N. (2015), ‘Texture recognition and localization in amorphous
robotic skin’, Bioinspiration & biomimetics 10(5), 055002.

Katzschmann, R. K., DelPreto, J., MacCurdy, R. & Rus, D. (2018), ‘Exploration
of underwater life with an acoustically controlled soft robotic fish’, Science
Robotics 3(16).

Kavraki, L. E., Svestka, P., Latombe, J.-C. & Overmars, M. H. (1996), ‘Probabilistic
roadmaps for path planning in high-dimensional configuration spaces’, Robotics
and Automation, IEEE Transactions on 12(4), 566-580.

Keivan, N. & Sibley, G. (2013), Realtime simulation-in-the-loop control for ag-
ile ground vehicles, in ‘Conference Towards Autonomous Robotic Systems’,
Springer, pp. 276-287.

LaValle, S. M. (1998), ‘Rapidly-exploring random trees a new tool for path plan-
ning’.

Lowe, D. G. (1999), Object recognition from local scale-invariant features, in ‘Com-
puter vision, 1999. The proceedings of the seventh IEEE international confer-
ence on’, Vol. 2, Teee, pp. 1150-1157.

Maulana, E., Muslim, M. A. & Hendrayawan, V. (2015), Inverse kinematic imple-
mentation of four-wheels mecanum drive mobile robot using stepper motors,
in ‘2015 International Seminar on Intelligent Technology and Its Applications
(ISITIA), IEEE, pp. 51-56.

Newell, A., Shaw, J. C. & Simon, H. A. (1959), Report on a general problem solving
program, in ‘IFIP congress’, Vol. 256, Pittsburgh, PA, p. 64.

Nourbakhsh, 1., Powers, R. & Birchfield, S. (1995), ‘Dervish an office-navigating
robot’; AI magazine 16(2), 53-53.

Otte, M. & Correll, N. (2013), ‘C-forest: Parallel shortest-path planning with super
linear speedup’, IEEE Transaction on Robotics 29(3), 798-806.

Patel, R., Cox, R. & Correll, N. (2018), ‘Integrated proximity, contact and force
sensing using elastomer-embedded commodity proximity sensors’, Autonomous
Robots 42(7), 1443-1458.

Patel, R., Segil, J. & Correll, N. (2016), Manipulation using the “utah” prosthetic
hand: The role of stiffness in manipulation, in ‘Robotic Grasping and Manip-
ulation Challenge’, Springer, pp. 107-116.

Polygerinos, P., Correll, N., Morin, S. A., Mosadegh, B., Onal, C. D., Petersen, K.,
Cianchetti, M., Tolley, M. T. & Shepherd, R. F. (2017), ‘Soft robotics: Re-
view of fluid-driven intrinsically soft devices; manufacturing, sensing, control,
and applications in human-robot interaction’, Advanced Engineering Materials
19(12), 1700016.

Pratt, G. A. & Williamson, M. M. (1995), Series elastic actuators, in ‘Proceedings
1995 IEEE/RSJ International Conference on Intelligent Robots and Systems.
Human Robot Interaction and Cooperative Robots’, Vol. 1, IEEE, pp. 399-406.

Rimon, E. & Burdick, J. (2019), The Mechanics of Robot Grasping, Cambridge
University Press.

364

REFERENCES

Rublee, E., Rabaud, V., Konolige, K. & Bradski, G. (2011), Orb: An efficient
alternative to sift or surf, in ‘2011 International conference on computer vision’,
Teee, pp. 2564-2571.

Rusinkiewicz, S. & Levoy, M. (2001), Efficient variants of the ICP algorithm, in
‘Third International Conference on 3D Digital Imaging and Modeling (3DIM)’,
pp. 145-152.

Saito, M., Chen, H., Okada, K., Inaba, M., Kunze, L. & Beetz, M. (2011), Semantic
object search in large-scale indoor environments, in ‘Proceedings of IROS 2012
Workshop on active Semantic Perception and Object Search in the Real World’.

Sibley, G., Matthies, L. & Sukhatme, G. (2010), ‘Sliding window filter with appli-
cation to planetary landing’, Journal of Field Robotics 27(5), 587-608.

Siegwart, R., Nourbakhsh, I. R. & Scaramuzza, D. (2011), Introduction to au-
tonomous mobile robots, MIT press.

Stentz, A. (1994), Optimal and efficient path planning for partially-known environ-
ments, in ‘Robotics and Automation, 1994. Proceedings., 1994 IEEE Interna-
tional Conference on’, IEEE, pp. 3310-3317.

Todd, D. J. (1985), Walking machines: an introduction to legged robots, Chapman
& Hall.

Van Der Schaft, A. J. & Schumacher, J. M. (2000), An introduction to hybrid
dynamical systems, Vol. 251, Springer London.

Walter, W. G. (1953), ‘The living brain.’.

Watson, J., Miller, A. & Correll, N. (2020), ‘Autonomous industrial assembly using
force, torque, and rgb-d sensing’, Advanced Robotics 34(7-8), 546-559.

Werbos, P. J. (1990), ‘Backpropagation through time: what it does and how to do
it’, Proceedings of the IEEE 78(10), 1550-1560.

Whelan, T., Johannsson, H., Kaess, M., Leonard, J. J. & McDonald, J. (2013),
Robust real-time visual odometry for dense rgb-d mapping, in ‘Robotics and
Automation (ICRA), 2013 IEEE International Conference on’, IEEE, pp. 5724~
5731.

Youssefian, S., Rahbar, N. & Torres-Jara, E. (2013), ‘Contact behavior of soft
spherical tactile sensors’, IEEFE sensors Journal 14(5), 1435-1442.

Zhang, L., Curless, B. & Seitz, S. M. (2002), Rapid shape acquisition using color
structured light and multi-pass dynamic programming, in ‘3D Data Processing
Visualization and Transmission, 2002. Proceedings. First International Sym-
posium on’, IEEE, pp. 24-36.

365

REFERENCES

367

REFERENCES

368

	Introduction
	Intelligence and embodiment
	A roboticists' problem
	Ratslife: an example of autonomous mobile robotics
	Autonomous mobile robots: some core challenges
	Autonomous manipulation: some core challenges

	Mechanisms
	Locomotion, manipulation and their representations
	Locomotion and manipulation examples
	Static and dynamic stability
	Degrees of freedom
	Coordinate Systems and Frames of Reference
	Matrix notation
	Mapping from one frame to another
	Concatenation of Transformations
	Other representations for orientation

	Kinematics
	Forward Kinematics
	Forward Kinematics of a simple robot arm
	The Denavit-Hartenberg notation

	Inverse Kinematics
	Solvability
	Inverse Kinematics of a Simple Manipulator Arm

	Differential Kinematics
	Forward Differential Kinematics
	Forward Kinematics of a Differential Wheeled Robot
	Forward kinematics of Car-like steering

	Inverse Differential Kinematics
	Inverse Kinematics of Mobile Robots
	Feedback Control for Mobile Robots
	Under-actuation and Over-actuation

	Forces
	Statics
	Kineto-Statics Duality
	Manipulability
	Manipulability Ellipsoid in Velocity space
	Manipulability Ellipsoid in Force space
	Manipulability Considerations

	Grasping
	The theory of grasping
	Friction
	Multiple contacts and deformation
	Suction

	Simple grasping mechanisms
	1-DoF scissor-like gripper
	Parallel jaw
	4-bar linkage parallel gripper
	Multi-fingered hands

	Sensing and actuation
	Actuators
	Electric motors
	AC and DC motors
	Stepper motor
	Brushless DC motor
	Servo motor
	Motor controllers

	Hydraulic and pneumatic actuators
	Hydraulic actuators
	Pneumatic actuators and soft robotics

	Safety considerations

	Sensors
	Terminology
	Proprioception vs. Exteroception

	Sensors that measure the robot's joint configuration
	Sensors that measure ego-motion
	Accelerometers
	Gyroscopes

	Measuring force
	Measuring pressure or touch

	Sensors to measure distance
	Reflection
	Phase shift
	Time-of-flight

	Sensors to sense global pose

	Computation
	Vision
	Images as two-dimensional signals
	From signals to information
	Basic image operations
	Threshold-based operations
	Convolution-based filters
	Morphological Operations

	Extracting Structure from Vision
	Computer Vision and Machine Learning

	Feature extraction
	Feature detection as an information-reduction problem
	Features
	Line recognition
	Line fitting using least squares
	Split-and-merge algorithm
	RANSAC: Random Sample and Consensus
	The Hough transform

	Scale-invariant feature transforms
	Overview
	Object Recognition using scale-invariant features

	Feature detection and machine learning

	Artificial Neural Networks
	The simple Perceptron
	Geometric interpretation of the simple perceptron
	Training the simple perceptron

	Activation Functions
	From the simple perceptron to Multi-layer neural networks
	Formal description of Artificial Neural Networks
	Training a multi-layer neural network

	From single outputs to higher dimensional data
	Objective functions and optimization
	Loss functions for regression tasks
	Loss functions for classification tasks
	Binary and Categorical cross-entropy

	Convolutional Neural Networks
	From convolutions to 2D neural networks
	Padding and striding
	Pooling
	Flattening
	A sample CNN
	Convolutional Networks beyond 2D image data

	Recurrent Neural Networks

	Task execution
	Reactive control
	Limitations of reactive control

	Finite State Machines
	Implementation

	Hierarchical Finite State Machines
	Implementation

	Behavior Trees
	Node Definition and Status
	Node Types
	Behavior Tree Execution
	Implementation

	Mission Planning
	The General Problem Solver and STRIPS

	Mapping
	Map representations
	Iterative Closest Point for Sparse Mapping
	Octomap: dense mapping of voxels
	RGB-D mapping: dense mapping of surfaces

	Path Planning
	The configuration space
	Graph-based planning algorithms
	Dijkstra's algorithm
	A*

	Sampling-based path planning
	Rapidly Exploring Random Trees

	Planning at different length scales
	Coverage path planning
	Summary and Outlook

	Manipulation
	Non-Prehensile Manipulation
	Choosing the right grasp
	Finding good grasps for simple grippers
	Finding good grasps for multi-fingered hands

	Pick and place
	Peg-in-hole problems

	Uncertainty
	Uncertainty and Error Propagation
	Uncertainty in Robotics as Random Variable
	Error Propagation
	Example: Line Fitting
	Example: Odometry

	Optimal Sensor Fusion
	The Kalman Filter

	Take-home lessons

	Localization
	Motivating Example
	Markov Localization
	Perception Update
	Action Update
	Example: Markov Localization on a Topological Map

	The Bayes Filter
	Example: Bayes filter on a grid

	Particle Filter
	Extended Kalman Filter
	Odometry using the Kalman Filter

	Summary: Probabilistic Map based localization

	Simultaneous Localization and Mapping
	Introduction
	Landmarks
	Special Case I: one landmark
	Special Case II: two landmarks

	The Covariance Matrix
	EKF SLAM
	Algorithm
	Multiple Sensors

	Graph-based SLAM
	SLAM as a Maximum-Likelihood Estimation Problem
	Numerical Techniques for Graph-based SLAM

	Appendices
	Trigonometry
	Inverse trigonometry
	Trigonometric identities

	Linear Algebra
	Dot product
	Cross product
	Matrix product
	Matrix inversion
	Principal Component Analysis

	Statistics
	Random Variables and Probability Distributions
	The Normal Distribution
	Normal distribution in two dimensions

	Conditional Probabilities and Bayes Rule
	Sum of two random processes
	Linear Combinations of Independent Gaussian Random Variables
	Testing Statistical Significance
	Null Hypothesis on Distributions
	Testing whether two distributions are independent
	Statistical Significance of True-False Tests
	Summary

	Backpropagation
	Backward propagation of error
	Backpropagation algorithm

	How to write a research paper
	Original
	Hypothesis: Or, what do we learn from this work?
	Survey and Tutorial
	Writing it up!

	Sample curricula
	An introduction to autonomous mobile robots
	Overview
	Content
	Implementation suggestions

	An introduction to robotic manipulation
	Overview
	Content
	Implementation suggestions

	An introduction to robotic systems
	Overview
	Content
	Implementation suggestions

	Class debates

